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Cardiac mechanics tools can be used to enhance medical diagnosis and treatment,

and assessment of risk of cardiovascular diseases. Still, the computational cost to solve

cardiac models restricts their use for online applications and routine clinical practice.

This work presents a surrogate model obtained by training a set of Siamese networks

over a physiological representation of the left ventricle. Our model allows us to modify

the geometry, loading conditions, and material properties without needing of retraining.

Additionally, we propose the novel concept of intrinsic domain that improves the accuracy

of the network predictions by one order of magnitude. The neural networks were trained

and tested with numerical predictions from a previously published finite element model

of the left ventricle. Different loading conditions, material properties and geometrical

definitions of the domain were simulated by the model leading to a dataset of 5, 670

cases. In terms of accuracy and performance, the surrogate model approximates

the displacement field of the finite element model with an error of 4.4 ± 2.9% (with

respect to the L2-norm of the true displacement field) across all cases while performing

computations 62 times faster. Hence, the trained model is capable of computing a

passive cardiac filling of the chamber at 10 different time points in just ∼ 0.7 s. These

outcomes prove usability of training surrogate models for efficient simulations to facilitate

the use of complex mechanical models in clinical practice for therapeutic planning and

online diagnosis.

Keywords: cardiacmodeling, mechanicmodel, deep learning,multilayer perceptron, principal component analysis

1. INTRODUCTION

During the last decades, increasingly complex multi-scale computational models of cardiac
structure and mechanical function have been developed for improving our understanding of
cardiac physiology [1]. These advances coupled with precisionmedicine have shown great potential
for improving diagnosis, guiding therapies, and predicting prognosis in a number of clinical
applications [2, 3]. However, clinical translation of these models is often hampered by the high
computational expense involved in solving the multi-physics PDEs necessary for simulating
cardiac mechanical function [4–6]. These models often require high performance computing
(HPC) infrastructure to generate outputs in a tractable time. For example, personalizing models
to patient-specific data, and assessing confidence in model predictions requires large numbers
of simulations to be performed. The requirement for Verification, Validation and Uncertainty
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Quantification (VVUQ) in the modeling process imposes
additional computational demands [7, 8]. For example, assessing
the uncertainties associated with constructing anatomical models
from medical images, prescribing loading and boundary
conditions, and incorporating microstructural features into the
models can make the assessment of even relatively simpler
models computationally intractable.

The use of surrogate models or efficient techniques for solving
PDEs are promising approaches to reducing the computational
burden in solving mathematical models. Numerical methods
based on neural networks approximants, particularly multilayer
perceptron (MLP), have been proposed by for PDE solving
[9–11]. Many approaches based on the Galerkin method were
proposed where an MLP is employed to combine [10–12] or
replace classic basis functions [9, 13, 14]. The later methods
provide a meshfree alternative which is especially appealing
for high-dimensionality problems and complex geometrical
descriptions of the domain of interest. Recently, Raissi et al. [15]
introduced a simpler methodology to solve PDEs, in which a
neural network is optimized by minimizing the residuals of the
equilibrium equations (PDEs) inside the domain (unsupervised
learning) and specified initial and boundary values (supervised
learning). Further more, Raissi et al. [16] and Raissi [17] explored
the discovery of linear and non-linear differential equations,
using an MLP to generate data-driven models without any
knowledge from the underlying PDEs.

All previous approaches were trained to solve a specific
mechanical setup, i.e., a fixed geometry of the domain, material
properties, loading and boundary conditions. For any variation
in the mechanical setup, the network must be retrained which is
time consuming. Recently, Liang et al. [18] proposed a surrogate
model to predict the stress distribution of the aorta for patient-
specific geometries. This was achieved by encoding the geometry
of the domain as a set of parameters using a principal component
analysis. Also, Swischuk et al. [19] introduced surrogate models
that allow variations of the material parameters by reducing
the dimensionality of the output fields using proper orthogonal
decomposition (POD) and, then, creates a mapping between
inputs and POD coefficient by means of an MLP.

In this work, we present an MLP-based surrogate model
of the left ventricle (LV) trained only from a FEM model of
the LV, capable of performing predictions for different domain
geometries, loading conditions, and material parameters without
retraining the network. Also, we proposed the construction of
a domain representation—refereed as intrinsic domain—better
suited for training the surrogate model, yielding 10 times more
accurate results than using the spatial representation of the LV
for a given training dataset.

The manuscript is structured as follows. Section 2 presents
the mechanical model used to generate the training dataset and
the network architectures used to assimilate mechanical models
in an efficient manner. Section 3.1 describes the mechanical
model setup and training datasets used to evaluate the methods
performance. Section 3.3 compares the performance of the
proposed architecture when using the traditional domain and
the intrinsic domain descriptions. Section 3.5 quantifies the
computational burden of the FEM mechanical model and the

surrogate model. Section 4 discusses the findings and limitations
of the proposed methodology. Finally, Section 5 outlines the
conclusions of this manuscript.

2. METHODS

2.1. Heart Modeling
Kinematics of the LV are simulated using a patient-specific FE
model [3]. This involves solving the finite elasticity equilibrium
equations during the diastolic phase of the cardiac cycle under
an endocardial pressure boundary condition to simulate passive
filling of the ventricle. Patient-specific geometrical models of
the LV are constructed at the diastasis frame of the cardiac
cycle for a range of individuals, which are assumed to be in
a load-free configuration. Cubic Lagrange basis functions are
used for constructing the FE mesh of the geometry. A typical
mammalian description of the myocyte orientation through
the LV wall [20] is incorporated into the geometry through
a material fiber field. The LV myocardium is modeled as an
ideally-incompressible transversely isotropic material by means
of the Guccione constitutive model [21] with the following strain
energy density function

9 = c1(e
Q − 1)

Q = c2E
2
ff + c3(E

2
cc + E2rr + E2cr)+ 2c4(E

2
fc + E2fr)

(1)

where the c1 parameter scales the overall stiffness of the
myocardium, and c2, c3, and c4 control the material anisotropy in
the fiber (f), cross-fiber (c), and radial (r) directions, respectively.
Incompressibility of the myocardium is enforced through a
mixed formulation that uses linear Lagrange basis functions for
describing the hydrostatic pressure [22]. Homogeneous Dirichlet
boundary conditions are applied on nodes of the FE mesh at
the epicardial perimeter of the basal surface of the model. All
simulations were performed using the OpenCMISS open-source
computational modeling software package [23].

2.2. Reference Domain and Dimensionality
Reduction
We decompose the load-free LV geometries of a set of individuals
using PCA, allowing for a compact description of the LV.
Observations xi, i = 1, . . . , n, described bym geometric FE mesh
parameters, are mean-centered and concatenated into an m × n
data matrix

X =







x11 − x̄1 · · · x1n − x̄m
...

. . .
...

xm1 − x̄1 · · · xmn − x̄m






(2)

where

x̄ = 1

n

n
∑

i=1

xi. (3)
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A covariance matrix is then constructed from the mean-centered
data matrix and an eigendecomposition is applied as

CX = 1√
n− 1

XXT

= EDET.

(4)

The normalized eigenvectors b1..bn in E are the principal
components and the eigenvalues, λ1 > λ2 > ... > λn, in the
diagonal matrix D are the variances (σ 2) along each principal
component. In practice, the covariance matrix is rank deficient,
as m > n. The rank of the covariance matrix is further reduced
by one because the data matrix is mean-centered. Therefore,
there can only be as many non-zero eigenvalues, and meaningful
principal components, as the number of shape observations
minus one (n− 1).

In this analysis, the principal components are efficiently
identified using singular value decomposition (SVD) [24]. This
is achieved by normalizing the data matrix as

Y = 1√
n− 1

X, (5)

such that YTY = CX. By performing SVD on Y, we factorize

Y = U6V (6)

yielding a PCA space with orthonormal principal components,
b1..bn, in the columns ofV, and the square root of their variances,
σ1..σn, ranked in descending order, in the diagonals of 6.

The weights, g, of the i-th individuals load-free LV geometry
evaluated on their corresponding principal components in PCA
space are calculated as

gi = (xi − x̄) ·









...
...

...
b1 . . . bn
...

...
...









. (7)

A reduced space for these geometries can be constructed by
dropping the less meaningful components, i.e., the components
associated with lower eigenvalues. Thus, we can approximate the
i-th load-free LV geometry with k components as

x̃ = x̄+
k

∑

j=1

bjgj. (8)

where weights gj are computed from Equation [(7)]. For ease
of interpretation, the j-th weight value is normalized using
the square root of the variance of its corresponding principal
component, i.e.,

ĝj =
gj

σj
. (9)

The cumulative variance in shape explained with increasing
number of principal components can be evaluated as

σ̂ 2
k =

∑k
j=1 λj

∑n−1
l=1 λl

. (10)

Note that x̄ can be used as a reference domain where you can
recover the load-free LV geometries x̃ by means of the PCA-
weights gj using the mapping described by Equation (8) (see
Figure 3). We can then fix the geometrical representation of the
mean LV shape as x̄ and encode the geometrical variations as the
set of parameters gj, j = 1, . . . , k, for a given approximation space
of k principal components. For the remainder of the manuscript,
we denote the reference domain as �PCA, which encapsulates the
LV shape through a vector of PCA-weights, g.

2.3. Surrogate Network
We define a surrogate model for the FE model defined in section
2.1 by using Siamese neural networks. Specifically, two networks
are defined: (i) a boundary network (BN) that learns Dirichlet
boundary conditions; and (ii) a domain network (DN) that learns
the mechanics of the inner-domain and non-Dirichlet boundary
conditions. Both networks share the same parameters (weights
and biases) and architecture. The only difference is that each may
optimize different terms of the loss function using a different set
of inputs. The Siamese network defines a point-wise operator that
estimates a field for a given point on the domain. As denoted
by their names, BN computes a chosen field for points at the
Dirichlet boundary and DN computes the field in the remaining
loci of the domain.

For our particular application, the Siamese network predicts
the displacement field of the LV. Each component of the
displacement field is estimated by an independent network,
leading to an architecture with 3 Siamese networks. The inputs
and outputs of the networks are detailed in Figure 1. Note that
each set of inputs fully characterizes the mechanical problem:
g = (g1, . . . , gk) defines the geometry of the domain, p defines
the loading conditions, c1 defines the material properties and
x = (xd, yd, zd) is the material point where the displacement
is estimated.

We choose a loss functions that combines the L2-norm error
of BN and DN networks by means of a mixture parameter
as follows

l(B) =
∑

ud∈Bd

‖ud − ũd‖L2 + α
∑

ub∈Bb

‖ub − ũb‖L2 (11)

where Bb and Bd are sets of points (training batches) on the
boundary and inside the domain, respectively, ui and ũi are the
displacements predicted with the neural network and the FE
model, respectively, α is the penalty for the Dirichlet boundary
conditions, and B = Bb + Bd is a given training batch.
During training, two batches of the same size are fed in parallel
to BN and DN, one with points over the boundary and one
with points inside the domain. Then, the loss values from BN
and DN are added and a back-propagation process updates the
network weights.

2.4. Intrinsic Learning Domain
Training networks over a domain that is sparse (see Figure 3,
�PCA is only defined sparsely through x, y, z in the Cartessian
coordinates) can be challenging due to the large degree of
uncertainty in the non-sampled (or non-defined) regions.
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FIGURE 1 | Surrogate network architecture for one component of the displacement field. wi represents parameters of the i-th layer that are the shared by the

boundary network (BN) and the domain network (DN). During training, both networks optimize these shared parameters with different data, leading to a single network

with parameters {w1, . . . ,wl} that meet the conditions of both networks (boundary and domain constrains).

Moreover, as the coordinates are defined in a global Cartesian
reference frame, the kinematic description can be too complex
and higher-order approximants (or higher-capacity networks)
would be required to approximate it. In turn, higher-order
approximants will require larger datasets to properly define the
unknown parameters through optimization.

To tackle such issues, we ideally want a reference domain
in which the solution field is continuous, can be described
by lower-order approximants, and where the dataset samples
are evenly and contiguously spaced. To obtain that space,
while preserving the topology of the geometry, we morph the
reference domain to an intrinsic learning domain by means of
a diffeomorphic mapping.

In this case, we map the reference domain �PCA

into a cylindrical representation of the LV �learn (see
Figure 2). The mapping is performed by stretching the
ventricle base to be the outer radius of a cylinder, and
fixing the central axis of the cylinder to be the apex of
the heart. In this description, the axial direction is the
intramural direction. Figure 2 shows the relationship
between image, reference, and learning domains and
their mappings. Note that by constructing these mapping

functions, we can obtain the description of the fields in
any domain.

3. RESULTS

3.1. Training Data
To construct the LV representation, we performed PCA over
reconstructions of 28 in-vivo MRI sequences discretized by 1200
FE nodal points. We performed a statistical shape analysis on
these reconstructions, as detailed in section 2.2. We assessed
the accuracy of the PCA approximation space by means of the
cumulative variance σ̂ 2

k
introduced in Equation (10) to determine

the necessary number of components to generate an acceptable
representation of the LV. Figure 4 illustrates the improvement
of the representation as more principal components are included
into the space. We selected to use the approximation space of 2
principal components, accounting for 78.51% of the variability
observed across the geometries. A qualitative interpretation of
these two selected components is depicted in Figure 5, where g1
has an important scaling contribution while g2 increases the axial
curvature and basal tilt of the chamber.
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FIGURE 2 | Morphing procedure between reference �PCA and learning �learn. The top and bottom surface of the �learn correspond to the endocardial surface and

epicardial surface of the myocardium, respectively. The outer-radial surface corresponds to the base of the heart (beige surface). The gold spheres represent material

points sampled from the geometry to help visualize the morphing process.

FIGURE 3 | Representations for the free-load LV: (top left) reference domain, (top right) image domain, and (bottom) learning domain.

To construct our training and testing datasets, we sampled
geometries over the PCA-space and then predicted the
displacement field for different loading conditions and material
properties by means of our FE model. In this analysis, we
considered a reduced PCA space with k = 2 principal
components for reconstructing approximate LV geometries using
Equation (8). Therefore, only weights w = {w1,w2} were
specified to generate an LV geometry. We extracted equidistant
samples of these weights using a step of 1s = 0.5 within
the range [−2, 2] over each component of w, leading to 81
geometries. For each of those geometries, we performed FEM

predictions for 10 different endocardial surface pressure loading
conditions (generated from an in vivo trace with 10 time-points)
with 7 different samples of the c1 material parameter in the
Guccione constitutive relation (ci1 = 2 + i 0.5, i = 0, 1, . . . , 6
within physiological ranges). Typical mammalian values were
used for the remaining parameters of the Guccione relation
(where c2 = 8.61, c3 = 3.67, c4 = 25.77) to ensure
physiologically plausible anisotropic mechanical responses for
the myocardium [25]. This yielded 70 mechanical problems per
geometry. Additionally, each geometry was sampled at 1108
domain points, which were equally spaced inside each mesh
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element. Thus, a total of ∼ 6M samples were obtained from the
FE models (see Table 1).

We partitioned the samples as 90% for training and 10%
for testing datasets, using the former dataset to train DN.

FIGURE 4 | Cumulative variance in shape that is explained when increasing

number of principal components are used for representing left ventricular

geometry.

To impose an homogeneous Dirichlet boundary condition at
BN, we dynamically generated batches of random points along

the boundary, prescribing d̃ = 0 in the BN loss function.
These dynamically generated points yielded better results than
assimilation of the values at the mesh boundary nodes.

The networks were trained using the ADAM algorithm [26]
with the parameters α = 0.01, β1 = 0.9, and β2 = 0.999 and a
batch size of 5, 000 samples during 500 epochs. During testing,
we computed the loss function among all cases in the testing
dataset to assess the performance of the network. After finishing
all training epochs, we assigned the network weights as those
associated with the lowest loss value among all testing epochs.

TABLE 1 | Sampling of the geometrical and mechanical parameters used to

generate training and testing dataset.

Parameter Step Range Samples

w1 0.5 [−2, 2] 9

w2 0.5 [−2, 2] 9

p variable [0.1, 0.75] 10

c1 0.5 [2, 5] 7

By the combination of w1, w2, p, and c1 samples, we obtain 81 geometries and 70

mechanical setups leading to 5,670 evaluations of the FEmodel. The domain is discretized

in 1108material points rendering∼ 6M samples across all evaluations, partitioned as 90%

for training and 10% for testing datasets.

FIGURE 5 | Visualization of LV shape related to the first two principal components of shape variation seen across the population of individuals considered in this study

(first and second rows correspond to g1 and g2, respectively). The mean shape is shown in the central column, while the weights corresponding to −2 and 2 standard

deviations (ĝj = ±2, j = 1, 2) are shown together with the mean shape for each principal component in the left and right columns, respectively.
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3.2. Evaluation Metrics
The error of the network prediction was assessed in terms of
absolute and relative L2-norm errors. For a single case—i.e., a
mechanical problem with a single set of boundary, material, and
loading conditions—, the errors in the displacements over the
entire mesh are computed as follows

εabs = ‖uFEM − uDL‖L2 (12)

εrel =
‖uFEM − uDL‖L2

‖uFEM‖L2
(13)

where uFEM are the ground truth displacements from the
FE model and uDL are the displacements predicted by the
network. The adimensionalized quantity εrel allows a statistical
comparison of errors among different loading conditions
without biasing toward contributions from the cases with
larger displacements.

3.3. Training in Reference and Learning
Domains
The surrogate network was trained in the reference and learning
domains using the same dataset (described in section 3.1)
to compare the performance of our method when different
representation spaces were employed during training. The
sensitivity of the method’s accuracy with respect to the
network architecture was also analyzed for different numbers
of layers and neurons. This involved training networks with
2, 3, and 4 identical layers, each of which consisted of
three different cases with 32, 64, and 128 neurons per layer,
yielding a total of nine different architectures. The accuracy
was quantified in terms of the relative error εrel. This allowed
us to quantify the overall error ratio in predicting the
displacement field.

The relative error was computed through all cases in
the testing dataset (mean and standard deviation of εrel
are reported in Table 2). The mean relative error across all
architectures was 10.78 times lower when using the learning
domain compared with the reference domain, showing a
clear improvement in the learning capabilities by modifying
the training domain. Of particular note, the best-ranked
model (the one with the lowest µεrel ) presented an error
of 4.4 ± 2.9%. Interestingly, the relative error has higher
sensitivity when displacements are smaller, i.e., lower pressures
and larger elasticity values (see Figure 6). In terms of
absolute displacement error, the µεabs is directly proportional
to the displacement, but not through a linear relationship
as indicated by εrel. Hence, the surrogate model favors
cases with larger displacements in terms of accuracy. Note
that such behavior is a consequence of the selected loss
function (11), which penalizes the absolute displacement error
during training.

3.4. Analysis of the Surrogate Model Error
To further characterize the surrogate model error, we analyzed
influences of the geometry, pressure loading, and material
properties on the error distribution. In the previous section,
we found that the relative errors were higher for mechanical

TABLE 2 | Prediction error for the surrogate model trained in the reference

domain �PCA and learning domain �learn.

Architecture �PCA �learn

(layers x nl) µεrel ± σεrel µεrel ± σεrel

2 × 32 0.768± 0.373 0.104± 0.119

3 × 32 0.617± 0.076 0.052± 0.040

4 × 32 0.665± 0.187 0.050± 0.036

2 × 64 0.652± 0.211 0.069± 0.070

3 × 64 0.652± 0.115 0.050± 0.038

4 × 64 0.593± 0.064 0.044± 0.029

2 × 128 0.783± 0.634 0.057± 0.052

3 × 128 0.615± 0.199 0.051± 0.041

4 × 128 0.609± 0.118 0.223± 0.216

The accuracy is estimated in terms of εrel, and is reported in terms of the mean and

standard deviation of its distribution in all testing cases.

Bold value represents best-ranked (best performance) surrogate model.

problems with the smaller loads or the stiffer material properties.
To understand the distribution of such errors across the PCA-
space, we computed εrel for the 81 geometries described in
section 3.1 and analyzed its distribution for three different
materials (with c1 values for a softer, an intermediate and a
stiffer model of myocardium) under the range of physiological
pressures during the filling of the LV chamber (see Figure 7).
We observed that lower pressures not only increased the
mean relative error, but also resulted in a wider spread
in its distribution (higher εrel values were associated with
higher g1 values), indicating that some parts of the PCA-
space are more affected by the error than others. A similar
effect was observed when increasing the stiffness of the LV.
Increasing c1 led to a wider error distribution with a larger
effect in the low pressure regime (as can be observed by
comparing relative stretching of the violins for p < 0.4
vs. p > 0.4).

Regarding the spatial distribution of the error, no specific
pattern was found, although the errors tend to localize
toward the base of the LV (see Figures 8, 9). As mentioned
previously, an increase in pressure and decrease in stiffness
results in an increment of εabs but does not change its spatial
distribution. Conversely, geometrical variations result in changes
in error distribution as expected (see Figure 9). Furthermore,
an increment of error and overall displacements is observed
as ĝ1 increases which is related to the fact that this principal
component scales with the LV size.

3.5. Performance Assessment
To highlight the increase in performance, we recorded the
wall clock time for the FEM and surrogate models to simulate
the LV filling process at 10 different time points. Each
simulation (of 10 time points) was repeated 10 times to
evaluate the mean performance and its standard deviation.
The FEM model was implementation in OpenCMISS (refer
to section 2.1 and references within for further details) and
executed in an Intel Xeon Gold 6136 CPU at 3.00GHz for
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FIGURE 6 | Prediction error for the best-ranked surrogate model (4 layers of 64 neurons trained in �learn) for the testing dataset: mean ε value (Left) and mean

absolute displacement error (Right) for a given loading condition (p in the vertical axis) and material property (c1 in the horizontal axis) across all geometries in the

testing dataset.

FIGURE 7 | Distribution of εrel for the best-ranked surrogate model across all 81 geometries generated (training and testing datasets combined) leading to 81 samples

per violin. From left to right, the error is presented for three different material properties c1 = 2, 3.5, and 5 kPa, and each model was loaded with 10 different pressures.

a duration of 44.515 ± 0.484 seconds per simulation. The
surrogate model was implemented in TensorFlow v1.12 and
executed in a TitanXP GPU with a duration of 0.704 ±
0.056 seconds per simulation. The proposed model presented a
mean acceleration of 62.23 times with respect to a traditional
FEM simulation.

4. DISCUSSION

This work presents a surrogate model capable of reproducing
FEM predictions of a load-free LV mechanical model 62.23
times faster with an overall error of 4.4%. Deeper networks
would render even more accurate results but would result
in longer training times, more memory consumption and
larger computational times for predictions. This particular
trade-off should be studied for each specific application and
its clinical demands. The error in the surrogate model is
the difference between the surrogate model predictions and
the trainer model predictions (in this case, the FE model
predictions) and is expected to be trainer-model-dependent. If

a more complex training model is used, the surrogate network
may require a deeper and wider architecture to maintain the
same order of accuracy. Also, the methodology deals with
geometric variations of the domain by encoding them in a
finite set of parameters by means of principal component
analysis. A similar approach has been adopted in Liang et al.
[18] for the assessment of wall shear stress in the aorta.
Our strategy presents an important step toward translation of
computational models to clinical practice. In this particular
case, our surrogate model assimilated the mechanical behavior
from a FEM model although the methodology is independent
of the computational strategy (e.g., FEM, finite volume method,
mesh-free methods, or finite difference approximations). The
strategy is interestingly appealing in scenarios where large
number of simulations are required, such as inverse problems
for mechanical or geometrical parameter identification, or
applications that require fast response times such as real-time
simulations for risk assessment during therapeutic treatments or
for teaching purposes.

The intrinsic learning domain introduced in this work
produced a significant increase in the surrogate model
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FIGURE 8 | Mean intramural spatial distribution of εabs for a fixed set of geometrical parameters ĝ1 = 0 and ĝ2 = 0 in the anterior and posterior views of the LV:

(horizontal axis) variations in the material properties (c1 = 2, 3.5, and 5 kPa); and (vertical axis) variations in the loading conditions (p = 0.112, 0.488, and 0.75 kPa).

For each pair of images, the posterior surface of the heart is shown on the left and the anterior surface is shown on the right.

performance, gaining one order of magnitude in accuracy
with respect to using the Cartesian description of the LV.
Traditional approaches for improving the surrogate model
accuracy would have required increasing the size of the
dataset that would result in a larger training process and
refinements to the FEM model to compute such new data
(which in some cases can lead to intractable computational
cost). This issue is even more prohibitive for complex multi-
physics models where only small datasets can be generated
in a reasonable execution time. The proposed domain relaxes
such requirements, easing the data generation and training
process, and is therefore more beneficial for training HPC
and multi-physics models than using traditional Cartesian
description. Generalizing this methodology to other mechanics
problems, or more complex domains such as bi-ventricular
or whole-heart models, could be achieved by automating the
morphing task for obtaining the intrinsic learning domain.
Flattening-based strategies [27] may provide such a solution for
2D domains meanwhile 3D domains may exploit the 2D solution
to project its surfaces and map the internal points by means of an

optimization problem. Overall, we showed that the choice of the
representation domain upon which the training is performed,
is of utmost importance for the performance and training of
the network.

Here, we addressed the estimation of three scalar
fields by predicting each field in a decoupled manner
by means of a different neural network. This approach
can be extended straightforwardly to compute as many
fields as needed. Nevertheless, multi-physics problems
can benefit through the use of networks that predict
more than one field at the time, allowing the network
to learn the correlation among the fields. In our
particular problem, the prediction of the three fields by
a single neural network yielded lower accuracy than its
decoupled counterpart.

The FEM model, employed in this work, was a simple
phenomenological model that approximates the left ventricle
inflation phenomenon. Contractile, multi-scale or multi-
physics cardiac models present more complex behavior
involving higher-order and non-linear responses. This will
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FIGURE 9 | Mean intramural spatial distribution of εabs for a fixed set of mechanical properties p = 0.488 kPa and c1 = 3.5 kPa: (left to right) variations in the

geometric parameter ĝ1 = −2, 0, and 2; and (bottom to top) variations in the geometric parameter ĝ2 = −2, 0, and 2. For each pair of images, the posterior surface

of the heart is shown on the left and the anterior surface is shown on the right.

impact the network architecture required to approximate
the physical fields of interest, where deeper and wider layers
of neurons in the surrogate model may be better suited
to reproduce such models. It is noteworthy that only the
target physical field to be learnt would change, thus the
presented methodology and learning space is still valid for
such cases.

Another interesting aspect is the independence from the
dataset generator. We chose to employ a computational
model because of the availability and control over the
model. However, a similar study could be conducted
using experimental data, as long as all relevant mechanical
parameters are identifiable, turning the surrogate model into
a mechanical model per se. An advantage of this approach is
that it provides the capabilities of neural networks to model
non-linear contributions by construction (most activation
functions are non-linear) and offers a universal approximator
for continuous functions [28] in contrast to traditional
computational models.

While great strides have been made for modeling LV
mechanics, a number of issues remain before reliable

and accurate LV models can be incorporated in medical
practice. During construction of the PCA spaces, it is
difficult to establish point-to-point correspondence between
reconstructions of different subjects due to the difficulty
to find multiple anatomical landmarks throughout the
myocardium. Also, the lack of myocardial texture in the
MR images hinders the estimation of displacements inside
the muscle, encumbering the definition of appropriate
boundary conditions for the displacement at the base of
the LV. Also, a non-invasive and reliable methodology to
determine the inner ventricular pressure would be beneficial to
determine the stiffness of the LV by means of this model in a
clinical setup.

5. CONCLUSIONS

In this work, we presented a surrogate model of the load-
free left ventricle that was capable of predicting the heart’s
displacement field during passive inflation under physiological
loading conditions and material properties. To the best of our
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knowledge, our model is the first to account for physiologically
realistic geometric variations of the myocardium for training
machine learning based mechanical models. Additionally, we
introduce a novel representation domain to increase the accuracy
of the model and ease the training task. The surrogate model
trained with 28 in vivo geometries produced an error of just
4.4% compared with FEM simulations while increasing its
performance by more than 62 times, delivering simulations
in 0.7 s. The analysis of the model error showed a higher
relative accuracy for larger displacements given by larger
loading conditions or less stiffer material properties. The
model developed in this study is suitable for a number of
applications including the characterization of the myocardial
material properties and quantifying uncertainties associated with
cardiac mechanics modeling.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

GM designed the study, implemented, trained, and validated the
machine learning networks, and prepared the manuscript. TB
developed the biomechanical modeling framework, performed
the PCA, and contributed to the design of the study and the
manuscript text. MS contributed to the design of the study. MN
contributed to the design of the study, the development of the
biomechanical modeling framework, and edited the manuscript.

FUNDING

GM was funded by the Li Ka Shing Foundation. This work was
supported by research funding grants 13/317 and 17/608 from
the Health Research Council of New Zealand.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for this research.

REFERENCES

1. Niederer SA, Lumens J, Trayanova NA. Computational models in

cardiology. Nat Rev Cardiol. (2019) 16:100–11. doi: 10.1038/s41569-018-

0104-y

2. Niederer SA, Smith NP. Using physiologically based models for

clinical translation: predictive modelling, data interpretation or

something in-between? J Physiol. (2016) 594:6849–63. doi: 10.1113/

JP272003

3. Wang ZJ, Wang VY, Bradley CP, Nash MP, Young AA, Cao JJ.

Left ventricular diastolic myocardial stiffness and end-diastolic myofibre

stress in human heart failure using personalised biomechanical analysis.

J Cardiovasc Transl Res. (2018) 11:346–56. doi: 10.1007/s12265-018-

9816-y

4. Wang VY, Nielsen PMF, Nash MP. Image-based predictive

modeling of heart mechanics. Annu Rev Biomed Eng.

(2015) 17:351–83. doi: 10.1146/annurev-bioeng-071114-

040609

5. Chabiniok R, Wang VY, Hadjicharalambous M, Asner L, Lee J, Sermesant

M, et al. Multiphysics and multiscale modelling, data–model fusion

and integration of organ physiology in the clinic: ventricular cardiac

mechanics. Interface Focus. (2016) 6:20150083. doi: 10.1098/rsfs.20

15.0083

6. Morris PD, Narracott A, Tengg-Kobligk Hv, Soto DAS, Hsiao S, Lungu

A, et al. Computational fluid dynamics modelling in cardiovascular

medicine. Heart. (2016) 102:18–28. doi: 10.1136/heartjnl-2015-

308044

7. Oberkampf WL, Roy CJ. Verification and Validation in Scientific Computing.

Cambridge, UK: Cambridge University Press (2010).

8. Pathmanathan P, Cordeiro JM, Gray RA. Comprehensive uncertainty

quantification and sensitivity analysis for cardiac action potential models.

Front Physiol. (2019) 10:721. doi: 10.3389/fphys.2019.00721

9. Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for

solving partial differential equations. J Comput Phys. (2018) 375:1339–64.

doi: 10.1016/j.jcp.2018.08.029

10. Rudd K, Ferrari S. A constrained integration (CINT) approach to solving

partial differential equations using artificial neural networks.Neurocomputing

(2015) 155:277–85. doi: 10.1016/j.neucom.2014.11.058

11. Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks

for solving ordinary and partial differential equations. IEEE

Trans Neural Netw. (1998) 9:987–1000. doi: 10.1109/72.

712178

12. Lagaris IE, Likas AC, Papageorgiou DG. Neural-network

methods for boundary value problems with irregular boundaries.

IEEE Trans Neural Netw. (2000) 11:1041–9. doi: 10.1109/72.

870037

13. McFall KS, Mahan JR. Artificial neural network method for solution

of boundary value problems with exact satisfaction of arbitrary

boundary conditions. IEEE Trans Neural Netw. (2009) 20:1221–33.

doi: 10.1109/TNN.2009.2020735

14. Berg J, Nyström K. A unified deep artificial neural network

approach to partial differential equations in complex geometries.

Neurocomputing (2018) 317:28–41. doi: 10.1016/j.neucom.2018.

06.056

15. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a

deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. J Comput Phys. (2019) 378:686–707.

doi: 10.1016/j.jcp.2018.10.045

16. Raissi M, Perdikaris P, Karniadakis GE. Machine learning of linear differential

equations using Gaussian processes. J Comput Phys. (2017) 348:683–93.

doi: 10.1016/j.jcp.2017.07.050

17. Raissi M. Deep hidden physics models: deep learning of nonlinear

partial differential equations. J Mach Learn Res. (2018) 19:

932–55. Available online at: http://jmlr.org/papers/v19/18-046.html

18. Liang L, Liu M, Martin C, Sun W. A deep learning approach to

estimate stress distribution: a fast and accurate surrogate of finite-

element analysis. J R Soc Interface. (2018) 15:20170844. doi: 10.1098/rsif.

2017.0844

19. Swischuk R, Mainini L, Peherstorfer B, Willcox K. Projection-based model

reduction: formulations for physics-based machine learning. Comput Fluids.

(2019) 179:704–17. doi: 10.1016/j.compfluid.2018.07.021

20. Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ. Mathematical model

of geometry and fibrous structure of the heart. Am J Physiol Heart

Circul Physiol. (1991) 260:H1365–78. doi: 10.1152/ajpheart.1991.260.4.

H1365

21. Guccione JM, McCulloch AD, Waldman LK. Passive material properties

of intact ventricular myocardium determined from a cylindrical model. J

Biomech Eng. (1991) 113:42–55. doi: 10.1115/1.2894084

22. Nash MP, Hunter PJ. Computational mechanics of the heart. J Elast Phys Sci

Solids. (2000) 61:113–41. doi: 10.1007/0-306-48389-0_4

Frontiers in Physics | www.frontiersin.org 11 February 2020 | Volume 8 | Article 30

https://doi.org/10.1038/s41569-018-0104-y
https://doi.org/10.1113/JP272003
https://doi.org/10.1007/s12265-018-9816-y
https://doi.org/10.1146/annurev-bioeng-071114-040609
https://doi.org/10.1098/rsfs.2015.0083
https://doi.org/10.1136/heartjnl-2015-308044
https://doi.org/10.3389/fphys.2019.00721
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1109/TNN.2009.2020735
https://doi.org/10.1016/j.neucom.2018.06.056
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2017.07.050
http://jmlr.org/papers/v19/18-046.html
https://doi.org/10.1098/rsif.2017.0844
https://doi.org/10.1016/j.compfluid.2018.07.021
https://doi.org/10.1152/ajpheart.1991.260.4.H1365
https://doi.org/10.1115/1.2894084
https://doi.org/10.1007/0-306-48389-0_4
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Maso Talou et al. Deep Learning Mechanics of the Left Ventricle

23. Bradley C, Bowery A, Britten R, Budelmann V, Camara O,

Christie R, et al. OpenCMISS: a multi-physics & multi-scale

computational infrastructure for the VPH/Physiome project. Prog

Biophys Mol Biol. (2011) 107:32–47. doi: 10.1016/j.pbiomolbio.2011.

06.015

24. Golub GH, Reinsch C. Singular value decomposition and least squares

solutions. Numer Math. (1970) 14:403–20. doi: 10.1007/BF02163027

25. Wang VY, Lam HI, Ennis DB, Cowan BR, Young AA, Nash MP.

Modelling passive diastolic mechanics with quantitative MRI of

cardiac structure and function. Med Image Anal. (2009) 13:773–84.

doi: 10.1016/j.media.2009.07.006

26. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint

arXiv:14126980 (2014). Available online at: https://arxiv.org/pdf/1412.6980

27. Kreiser J, Meuschke M, Mistelbauer G, Preim B, Ropinski TA. Survey

of flatteningbased medical visualization techniques. Graph Forum. (2018)

37:597–624.

28. Lu Z, Pu H,Wang F, Hu Z, Wang L. The expressive power of neural networks:

a view from the width. In: Advances in Neural Information Processing Systems.

Long Beach, CA (2017). p. 6231–9.

Conflict of Interest: GM was supported by research funding grant 9077/31/8402

from the Li Ka Shing Foundation and received an NVIDIA GPU Grant from

NVIDIA Corporation. This work was supported by research funding grants

13/317 and 17/608 from the Health Research Council of New Zealand. The

NVIDIA Corporation was not involved in the study design, collection, analysis,

interpretation of data, the writing of this article or the decision to submit it for

publication.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Maso Talou, Babarenda Gamage, Sagar and Nash. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physics | www.frontiersin.org 12 February 2020 | Volume 8 | Article 30

https://doi.org/10.1016/j.pbiomolbio.2011.06.015
https://doi.org/10.1007/BF02163027
https://doi.org/10.1016/j.media.2009.07.006
https://arxiv.org/pdf/1412.6980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Deep Learning Over Reduced Intrinsic Domains for Efficient Mechanics of the Left Ventricle
	1. Introduction
	2. Methods
	2.1. Heart Modeling
	2.2. Reference Domain and Dimensionality Reduction
	2.3. Surrogate Network
	2.4. Intrinsic Learning Domain

	3. Results
	3.1. Training Data
	3.2. Evaluation Metrics
	3.3. Training in Reference and Learning Domains
	3.4. Analysis of the Surrogate Model Error
	3.5. Performance Assessment

	4. Discussion
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


