
MINI REVIEW
published: 21 February 2020

doi: 10.3389/fphy.2020.00037

Frontiers in Physics | www.frontiersin.org 1 February 2020 | Volume 8 | Article 37

Edited by:

Xinming Li,

South China Normal University, China

Reviewed by:

Costantino De Angelis,

University of Brescia, Italy

Fabrice Pierre Laussy,

University of Wolverhampton,

United Kingdom

Xuetao Gan,

Northwestern Polytechnical

University, China

*Correspondence:

Zhenzhou Cheng

zhenzhoucheng@tju.edu.cn

Xuejin Li

lixuejin@szu.edu.cn

Specialty section:

This article was submitted to

Optics and Photonics,

a section of the journal

Frontiers in Physics

Received: 01 October 2019

Accepted: 06 February 2020

Published: 21 February 2020

Citation:

Wang J, Xing Z, Chen X, Cheng Z, Li X

and Liu T (2020) Recent Progress in

Waveguide-Integrated Graphene

Photonic Devices for Sensing and

Communication Applications.

Front. Phys. 8:37.

doi: 10.3389/fphy.2020.00037

Recent Progress in
Waveguide-Integrated Graphene
Photonic Devices for Sensing and
Communication Applications
Jiaqi Wang 1, Zhengkun Xing 2,3, Xia Chen 4, Zhenzhou Cheng 2,3,5*, Xuejin Li 1* and

Tiegen Liu 2,3

1 Shenzhen Key Laboratory of Sensor Technology, College of Physics and Optoelectronic Engineering, Shenzhen University,

Shenzhen, China, 2 School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China, 3 Key

Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin, China, 4Optoelectronics Research

Centre, University of Southampton, Southampton, United Kingdom, 5Department of Chemistry, The University of Tokyo,

Tokyo, Japan

Graphene is a two-dimensional material with numerous intriguing optical properties,

such that graphene photonic devices have attracted great interest for sensing and

communication applications. However, surface-illuminated graphene photonic devices

usually suffer from weak light-matter interactions due to the atomic-layer thickness of

graphene, seriously limiting the performances of such devices. To tackle this problem,

waveguide-integrated graphene photonic devices have been demonstrated since 2010,

which offer the advantage of much longer interaction length between the evanescent field

of the optical waveguide and graphene than the surface-illuminated devices. Moreover,

the fabrication of waveguide-integrated graphene photonic devices is compatible with

CMOS technology, allowing potentially low-cost and high-density on-chip integration. To

date, a tremendous interest is growing in the hybrid integration platform composed of

graphene and silicon photonic integrated circuits. In this paper, we review the recent

progress in waveguide-integrated graphene photonic devices and their applications in

sensing and communication.
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INTRODUCTION

Graphene has fascinating optical properties for developing photonic devices [1]. First, graphene
has a broad spectral band and tunable optical absorption from visible light to the mid-infrared
wavelengths because of the linear and zero-bandgap energy band diagram, which is suitable for
developing broadband saturable absorbers for ultrafast lasers [2–4]. Second, the electron mobility
of graphene could be as large as 200,000 cm2/Vs [5], which is promising for realizing high-speed
electro-optic modulators and photodetectors. Third, graphene photonic devices are promising
for biochemical sensing applications since graphene has huge adsorption capacity due to the
large specific surface area of the monolayer carbon atoms. Moreover, the adsorbed chemical
molecules can change the local carrier density of graphene by electron transport and therefore
change the optical properties of the photonic devices [6–8]. However, the light absorption of
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graphene photonic devices based on surface-illuminated
geometries is insufficient due to the weak light-matter interaction
in the atomic-layer-thick material.

To enhance the light-matter interaction in graphene photonic
devices, researchers have proposed to integrate graphene with
various photonic structures, such as plasmonic structures [9, 10],
optical fibers [11], and photonic integrated circuits (PICs) [12,
13]. Among them, by integrating graphene with PICs, the light-
matter interaction can be dramatically enhanced through the
coupling of the evanescent field of the optical waveguide. Besides,
compared with other configurations, the fabrication process
of waveguide-integrated graphene photonic devices is fully
CMOS-compatible, which can potentially bring us high-density
integration at a low cost. Therefore, numerous waveguide-
integrated graphene photonic devices have been widely studied
since 2010, for example, broadband polarizers [14], saturable
absorbers [15], modulators [16, 17], and photodetectors [18].

Due to the above mentioned merits, the graphene-on-silicon
PICs provide an excellent platform for developing on-chip
applications of information and communications technology
(ICT). The rapid development of 5G telecommunication
and internet over things (IoTs) requires up to 50 billion
connected devices in use by 2020 [1], which will demand
an operation speed larger than 25 Gb s−1 and power
consumption lower than 1 pJ bit−1 for key components
[19], such as photodetectors and modulators. According to
the statistics, the global silicon photonics market (including
various applications, such as data center, communications,
military, medical science, and sensing) was valued with USD
0.8 billion in 2018 and is expected to increase to USD 2.0
billion by 2023 [20]. Graphene’s optical properties may help
improve optoelectronic performances of the conventional PICs
for meeting the requirement of the quickly developing ICT
market. For example, the plasma dispersion effect induced
by carrier injection or depletion may limit the speed of
chip-integrated optical modulation up to 50 GHz, while the
integration of graphene on silicon devices is expected to boost
the modulation speed up to 500 GHz [5]. Besides, the integration
of graphene can increase the devices’ adsorption capacities to
chemical molecules which can enhance the sensitivities of on-
chip chemical sensors. As a result, the study of waveguide-
integrated graphene photonic devices opens up a new way for
on-chip optical sensing and communication applications for the
next-generation ICT.

In this paper, we introduce the recent progress in
waveguide-integrated graphene photonic devices for sensing
and communication applications. The design principle of
waveguide-integrated graphene photonic devices is introduced
in section Design Principle of Waveguide-Integrated Graphene
Photonic Devices. Then, in section Waveguide-Integrated
Graphene Photonic Devices for Sensing Applications, we review
the progress in waveguide-integrated graphene devices for
sensing applications, especially the waveguide-integrated
graphene biochemical sensors. In section Waveguide-
Integrated Graphene Photonic Devices for Communication
Applications, we introduce the waveguide-integrated
graphene devices for optical communication applications,

namely, electro-optical modulators and photodetectors.
Finally, we summarize the paper in section Summary
and Prospect.

DESIGN PRINCIPLE OF
WAVEGUIDE-INTEGRATED GRAPHENE
PHOTONIC DEVICES

The optical properties of graphene can be described in terms of
optical conductivity (σ) which is calculated by using the Kubo
model [21]

σ = −
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where h is Planck constant, � is the optical frequency, ω is the
energy of the relativistic Landau levels, 1 is the excitonic gap of
Landau level energies, nF(ω) is the Fermi distribution function,
and Γ is the scattering rate. By assuming a finite thickness (d)
to the monolayer graphene, the complex relative permittivity of
graphene can be deduced from [21]

εeff = 1+ i
σ

�ε0d
, (2)

where ε0 is the relative permittivity of vacuum. The monolayer
graphene is a broadband absorber with a 2.3% absorption of
normally incident light as a consequence of its gapless energy
band diagram. By integrating graphene on the surface of an
optical waveguide, the optical absorption can increase toward
100% via the evanescent field coupling. By applying the relative
permittivity in a commercial software simulator (e.g., COMSOL
Multiphysics), the graphene-on-waveguide absorption coefficient
can be calculated. Based on this method, the optical absorption
of graphene can be theoretically optimized by designing the
waveguide structure and tailoring the length of graphene
integrated on the surface of the waveguide [12, 13]. On the other
hand, when the Fermi level of graphene is tuned optically or
electrically beyond half of the photon energy, graphene becomes
transparent due to the Pauli blocking effect, leading to the
significant change of the refractive index (RI) and phase shift
of the input light. After becoming transparent, graphene also
exhibits high non-linearity according to previous theoretical and
experimental studies [22–24]. Therefore, by tuning the Fermi
level of graphene with chemical doping methods or an external
electrical field, waveguide-integrated graphene devices can be
developed for chemical sensors and electro-optic modulators,
which will be discussed in the following sections.
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WAVEGUIDE-INTEGRATED GRAPHENE
PHOTONIC DEVICES FOR SENSING
APPLICATIONS

Graphene’s tunable conductivity has been explored for chemical
sensing, which has widespread applications, ranging from toxic
gas detection for industrial safety to greenhouse gas detection
for environmental monitoring. Due to the linear and gapless
energy band diagram, graphene has a low carrier density of
states near the Dirac point, so the adsorbed molecules acting
as donors or acceptors can lead to a drastic change of the
conductivity, as shown in Figure 1A. At this point, the adsorbed
molecules can induce chemical doping into the local graphene
and change its conductivity, which alternates the absorption
and phase shift of the input light. Besides, the sensitivity
of graphene-based chemical sensing is further improved by
its two-dimensional (2D) nature, which results in the large
adsorption capacity of graphene. Moreover, compared with early
studies of graphene biochemical sensors with the detection
of electrical conductivity [6], optical sensors have advantages
of high sensitivity, high chemical selectivity, and immunity
to electromagnetic interference. Graphene optical sensors have
been investigated based on several mechanisms. For example, by
coating graphene on the surface of a thin metallic film [25, 26],
the sensitivity of conventional surface plasmon resonance sensors
can be improved due to the enhanced molecule adsorption
by graphene. Or by patterning graphene into nanostructures
with electron beam lithography and oxygen plasma etching,
localized surface plasmon resonances can be excited [8], which
are sensitive to the adsorption of molecules.

Meanwhile, the development of waveguide-based graphene
optical sensors has attracted much attention, which can improve
the sensitivity and add more functionality to the conventional
waveguide-based optical sensors. Especially, by integrating
graphene and graphene oxide (GO) [27] on side-polished
fibers [28], fused tapers [29], interferometers [30], and fiber
microknots [31], various graphene biochemical sensors have
been demonstrated. Compared with evanescent-wave devices
based on microfibers, waveguide-integrated devices offer smaller
footprints. Crowe et al. [32] studied light-matter interactions
in graphene-based silicon-on-insulator (SOI) racetrack cavity
resonators and by optimizing the thickness of the separation
spacer layer between graphene and the waveguide, the maximum
sensitivity can be achieved. Lim et al. [33] demonstrated a
humidity sensor by integrating GO on the SU-8 waveguide. Due
to the influence of the water content on the dielectric properties
of the GO film, the optical absorption decreases linearly
with increasing humidity. Maliakal et al. [34] demonstrated
waveguide-integrated chemical sensors by integrating graphene
on gated SOI waveguides. A reversible optical attenuation change
appears when these devices interact with iodine and ammonia.
Cheng et al. [35] and Wang et al. [7] studied the silicon
waveguide-integrated and silicon fiber-integrated graphene
photonic devices for gas sensing applications in the mid-
infrared wavelengths. They proposed using slot waveguides and
fiber structures to further increase graphene-light interactions
to improve sensors’ sensitivities, as shown in Figure 1B. The

adsorbed gas molecules can induce chemical doping to graphene
and change the effective RI of the graphene Bragg grating
structure, leading to the increase in the spectral bandwidth of the
central reflection band of the Bragg grating, which is proportional
to the concentration of the gas molecules, as shown in Figure 1C.

WAVEGUIDE-INTEGRATED GRAPHENE
PHOTONIC DEVICES FOR
COMMUNICATION APPLICATIONS

Graphene’s photonic properties give several complementarities
over silicon photonics, which makes waveguide-integrated
graphene photonic devices promising for communication
applications. For example, as the graphene-on-waveguide
absorption coefficient is determined by the superimposed area
between graphene and the waveguide mode, by integrating
graphene on a multimode waveguide, Xing et al. [36] developed
mode-division multiplexers based on TE1-mode-pass and TE2-
mode-pass filters, as shown in Figure 2A. Moreover, the
graphene-on-waveguide absorption is polarization-dependent
[38]. Based on the polarization-dependent optical absorption
loss, Xing et al. [39] theoretically proposed an on-chip polarizer
based on graphene-on-silicon nanowires by tailoring the electric-
field distributions on the surface of a silicon nanowire with
different polarizations. Besides, Wang et al. [15] demonstrated
an ultra-compact waveguide-integrated saturable absorber by
integrating graphene on the silicon slot waveguide, which has
the advantages of enhanced light-matter interactions and large
modulation depth, being suitable for developing on-chip ultrafast
lasers, as shown in the scanning electron microscopy (SEM)
image of Figure 2B.

The tunable optical properties of graphene can enable light
modulation and detection in one chip. High-speed, wide-
bandwidth, low-power-consumption, small-footprint, and
CMOS-compatible electro-optic modulators are desirable in
the fields of optical communication and optical interconnects.
During the past few years, waveguide-integrated graphene
modulators have been extensively studied to achieve the above-
mentioned characteristics. Waveguide-integrated graphene
modulators can be classified into two categories, namely, electro-
absorption modulators and electro-refractive modulators. For
the electro-absorption modulation, it utilizes the change in
the optical absorption of graphene induced by the shift of
Fermi level produced by electrical gating [40]. Giambra et al. [41]
demonstrated a broadband electro-absorptionmodulator with 29
GHz bandwidth by integrating the dual-layer graphene capacitor
on the passive SOI waveguide. Besides the dual-layer graphene
capacitor, Shu et al. [42], Hu et al. [43], and Sorianello et al.
[44] demonstrated the graphene-oxide-silicon capacitor-based
waveguide-integrated modulators, in which the gate voltage
is applied through the intentionally doped silicon waveguide.
Apart from passive straight waveguide structures, the hybrid
plasmonic waveguide-integrated modulators were demonstrated
with potential for achieving high modulation depth. Ansell et al.
[45] utilized a nanostructured plasmonic waveguide to increase
graphene interaction with light, achieving a modulation depth
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FIGURE 1 | Design of graphene-based photonic chemical sensors. (A) Schematic of the variation of Fermi level induced by the adsorbed molecules on graphene. (B)

Design of the silicon fiber-integrated graphene photonic gas sensor. (C) Reflection spectra of the graphene Bragg grating structure for sensing NO2 gas. The black,

blue, and red curves represent the Bragg grating reflection spectra at 0, 0.1, and 20 ppm NO2 gas concentrations, respectively. Figures 1B,C are reprinted with

permission from Ref. [7]. Copyright © 2019 IEEE.

of >0.03 dB µm−1 in an active region of 10 µm2. Ding et al.
[46] demonstrated efficient electro-absorption modulation based
on leaky mode plasmonic slot waveguides integrated on the
SOI platform, which shows an absorption loss tunability of 0.13
dB µm−1.

Although the graphene-based electro-absorption modulators
hold superb merits of relatively low drive voltages and high
speed, these modulators may suffer from serious signal-to-noise
ratio degradation when applied in long-haul communications. In
order to meet the needs of phase-shift keying formats, graphene-
based electro-refractive modulation has been demonstrated,
which utilizes the change in the real part of the dielectric
constant of graphene by applying an electric field to alternate
the phase of the light propagating in the waveguide [47].
By using advanced fabrication processes, Sorianello et al. [48]
reported an electro-refractive modulator based on a graphene-
insulator-silicon capacitor integrated on the Mach-Zehnder
interferometer configuration. The device has a modulation
efficiency of 2.8 Vmm, with a static modulation depth of
35 dB and modulator bandwidth of 5 GHz. To further
improve the modulators’ efficiency, Wang et al. [37] proposed
to use vertical germanium (Ge) slot waveguides to enhance
the light intensity and reduce the confinement of the optical
mode in the slot nanostructure, as shown in Figure 2C.
By changing the Fermi level of graphene, the variation in
the effective RI of the graphene-on-slot waveguide is two
times as large as that of the conventional graphene-on-
rib waveguide.

With properties of high carrier mobility and zero energy
band gap, graphene is also suitable for developing high-speed
and broadband photodetectors. Early demonstrations are
based on normally incident graphene field-effect transistor
configurations with responsivities around several mA/W [5, 49],
limited by the 2.3% optical absorption of monolayer graphene.
Then, graphene has been proposed and demonstrated to be
integrated with microcavities [50] and plasmonic structures [10]
to enhance the optical interaction. However, these structures are
relatively complicated and have restricted spectral bandwidths.
Waveguide-integrated graphene photodetectors have been
demonstrated since 2013 [51–53], in which the optical absorption
is enhanced by the evanescent field interaction along the silicon
waveguides. Shiue et al. [54] introduced a 2D heterostructure
consisting of monolayer graphene encapsulated by hexagonal
boron nitride on the silicon waveguide, which reaches a
responsivity of 0.36 A/W with 42 GHz bandwidth. Moreover, the
performance of graphene photodetectors could be improved by
using sophisticated waveguide structures [55]. Zhou et al. [56]
demonstrated an enhanced photoresponsivity by integrating
graphene with the slow-light photonic crystal waveguide to
form a graphene-silicon Schottky-like photodetector. Schuler
et al. [57] reported a graphene photodetector based on a silicon
photonic crystal defect waveguide combined with a split-gate
electrode to create a p–n junction in the vicinity of the optical
absorption area. Li et al. [58] integrated graphene on the
photonic crystal waveguide with a lateral p-i-n configuration
which creates a built-in electrical field and enables the bias-free
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FIGURE 2 | Waveguide-integrated graphene photonic devices. (A) Schematic of the waveguide-integrated graphene TE1-mode-pass and TE2-mode-pass filters. (B)

SEM image of the graphene-on-silicon slot waveguide saturable absorber. (C) Schematic of the dual-layer graphene-on-Ge slot waveguide modulator. A is reprinted

with permission from Ref. [36]. Copyright © 2019 Optical Society of America. B is reprinted with permission from Ref. [15]. Copyright © 2019 IOP Publishing. C is

reprinted with permission from Ref. [37]. Copyright © 2019 Optical Society of America.

photodetection. Besides photonic crystal waveguides, plasmonic
nanostructures can also provide the field enhancing effect.
Ma et al. [59] integrated nanosized metallic structures on
the silicon channel waveguide and realized a responsivity of
0.5 A/W and a fast photoresponse of 110 GHz with a 6 µm-
long device footprint. Apart from silicon waveguides, people
have demonstrated graphene photodetectors based on other
waveguides. For example, Wang et al. [60] reported the first
graphene photodetector based on silicon nitride waveguide
with a maximum internal responsivity of 126 mA/W in the
telecommunication band. Later, photoconductor graphene
photodetectors based on glass waveguide were reported [61]
in 2016.

SUMMARY AND PROSPECT

In summary, we review the recent progress in waveguide-
integrated graphene photonic devices for sensing and
optical communication applications, namely, waveguide-
integrated graphene photonic chemical sensors, polarizers,
spatial-mode filters, modulators, and photodetectors.
In the future, the following topics may be interesting
to explore.

First, compared with modulators and photodetectors, the
development of waveguide-integrated graphene photonic sensors

is still in its infancy. A great deal of previous research mainly
focused on fiber and SPR sensors, rather than PICs. Moreover,
the effects of doping and defects of graphene need to be deeply
investigated for further improving the sensitivity and specificity
of graphene-based sensors.

Second, for waveguide-integrated modulators and
photodetectors, delicate designs with photonic structures of
enhanced light-matter interaction and electrode settings of
improved carrier transport are highly demanded in the future.
Besides, more efforts need to be made for realizing the low-cost
integration of graphene with insulator (namely, silicon nitride
and SiO2) waveguides based on the back-end process.

Third, the fabrication process needs to be improved
to meet the criteria for wafer process lines. Currently,
most reported results are laboratory research using the lift-
off method to fabricate metal electrodes, which is not
suitable for the large-scale chip manufacturing. A CMOS-
compatible metal contact fabrication process is required in
the future.

Finally, it is promising to explore the integration of
other 2D materials, such as black phosphorus, transition
metal dichalcogenides, and hexagonal boron nitride, on
a waveguide. By virtue of the extraordinary properties of
various 2D materials and their heterostructures [62], it can
be expected that the performance of 2D material-silicon
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hybrid PICs can be future boosted in sensing and
communication applications.
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