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In our study, we define the linear backward in time problem for a thermoelastic body with

a dipolar structure. In our first main result, we prove the uniqueness of the solution for this

problem. Afterward, the issue of locating solutions of the backward in time problem in

time will be approached as a consequence of the uniqueness result. In fact, we address

the question of the impossibility of locating the solution of this problem in time.
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1. INTRODUCTION

Our study is dedicated to a dipolar structure for a thermoelastic body. This kind of material
falls within a more general theory, namely that of microstructure, initiated by Eringen (see, for
instance, [1, 2]). The importance of the dipolar structure can be deduced from the great number of
studies that have appeared on this subject; see for instance [3–7]. Therefore, our present study is a
continuation of research in this domain.

Another kind of microstructure is also obtained by taking into account voids in materials,
starting with the paper of Nunziato and Cowin [8]. Since then, the number of studies on this
topic has become impressive. Here, we mention just some of these: [9–16] It is considered that
the initiator of backward in time problems is Serrin, who approached these kinds of problems
by taking into account the Navier-Stokes equations (see [17]). Some results of uniqueness for the
forward in time problem can be found in the study [17]. More recently, the number of articles
related to the backward in time problem has significantly increased; we can recommend [18–27].
As a particular observation, the results of Quintanilla [25] improve on the studies of Ciarletta [23]
and of Ciarletta and Chirita [24]. Other studies by Quintanilla solve some questions regarding
location in time when considering the solutions for backward in time problems, even in the theory
of thermoelastic porous bodies and of thermoelasticity of Green and Naghdi [26, 27]. Iovane and
Passarella [28] also approached elastic bodies with voids. Passarella and Tibullo [29] considered the
backward in time problem for thermo-microstretch elastic bodies. Other results regarding bodies
with microstructure can be found in Marin et al. [30], Marin and Florea [31], and Marin [32, 33].
We should point out that our idea to consider the backward in time problem in the context of
the theory of dipolar bodies was stimulated by the paper of Quintanilla and Straughan [34]. So
far, no study has addressed the problem of the localization in time of solutions for the mixed
problem in the context of thermoelastic dipolar solids. Inspired by articles [35–37], in our future
studies, we will try to generalize the results of this study in the sense that we will try to replace
the common derivative with a fractional one. Now we set out the structure of our paper. First,
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in section 2, we detail the system of the main differential
equations. After that, as usual, we add the boundary conditions.
The mixed-value problem obtained is a final value problem.
Using an accessible transformation, the final problem is replaced
by an initial value problem. For this last problem, we prove
the uniqueness of the solution. Afterward, the issue of locating
solutions of the backward in time problem in time will be
approached as a consequence of the result of uniqueness. In
fact, we address the question of the impossibility of locating the
solution of this problem in time.

2. PRELIMINARY EQUATIONS AND

CONDITIONS

As already seen, our study is dedicated to a thermoelastic dipolar
body. We consider an anisotropic and non-homogeneous body
that occupies a regular region D, included in the Euclidean
space R3. The boundary of the domain D is a piecewise regular
surface, denoted by ∂D. As usual, we use the notation D̄ for the
closure of the domain D, and we have D̄ = D ∪ ∂D. We will
use an orthonormal system of references and suppose that the
tensors and vectors have components with indices over 1,2,3. The
convention for summation in case of a repeated index is used,
and the derivation operations are correspondingly defined. So, a
partial derivative with respect to a spatial coordinate is designated
by a subscript preceded by a comma. A superposed dot is used
to designate the derivative with regards to t, the time variable.
All functions used in our study are assumed to be as regular as
necessary. Sometimes, the dependence of functions regarding the
time or spatial independent variables is omitted, of course, when
there is no possibility of confusion.

In order to describe the evolution of a dipolar thermoelastic
body, we will use the following variables:

ui(t, x), φij(t, x), θ(t, x), (t, x) ∈ [0, t0)× D, (1)

where we denote the displacement vector field by u = (ui). By
φ =

(

φij

)

, we denote the dipolar displacement tensor field.
Using the above variables ui(x, t), φij(x, t), we will introduce the
components of the tensors of strain, namely εij, κij, and χijk,
as follows:

2εij = uj,i + ui,j, κij = uj,i − φij, χijk = φij,k. (2)

Wemust specify that our further considerations refer to the linear
theory; as such, we can consider Helmholtz’s free energy as a
quadratic form with regard to all its independent variables. Let
us denote by W the Helmholtz’s free density of energy in the
initial configuration. As a consequence, according to the principle
of energy conservation, we will expand in series the function
W and retain only the terms until the second order. If we take
into account that the initial state (the reference state) is supposed
free of charges, we are led to the conclusion that the Helmholtz’s
energy per unit mass has the following expression:

W =
1

2
Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr

+
1

2
Bijmnκijκmn + Gijmnrκijχmnr +

1

2
Cijkmnrχijkχmnr

− aijεijθ − bijκijθ − cijkχijkθ −
1

2
cθ2. (3)

If we substitute the Helmholtz’s energy into the entropy
production inequality, we obtain a relation from which the
equations of motion are deduced. Also, the same relation can be
used to deduce the constitutive equations, as it is known that the
constitutive equations give the expression of the stress tensors as
functions of the strain tensors and some constants of thematerial.
In what follows, we will use the notations τij, ηij, and µijk for
the stress tensors. In our case the relationships that describe
the connections τij, ηij, µijk, and the tensors εij, κij, χijk are the
constitutive equations.

Inspired by the procedure used by Green and Rivlin in the
paper [6], we adopt a similar technique so that by taking into
account the Helmholtz’s energy (3), we are led to the following
constitutive equations:

τij =
∂W

∂εij
= Aijmnεmn + Dmnijκmn + Fmnrijχmnr − aijθ ,

ηij =
∂W

∂κij
= Dijmnεmn + Bijmnκmn + Gijmnrχmnr − bijθ ,

µijk =
∂W

∂χijk
=Fijkmnεmn+Gmnijkκmn+Cijkmnrχmnr−cijkθ , (4)

η = −
∂W

∂θ
= aijεij + bijκij + cijkχijk + cθ ,

where we use the notation η to designate the entropy (per
unit mass).
We will consider that the above equations take place in a cylinder
[0, t0)× D.

Denoting the components of the heat flux vector by qi, we can
deduce a constitutive relation similar to that from the classical
theory, namely

qi = Kijθ,j, (5)

where the thermal conductivity tensor is denoted by Kij and it is
assumed that Kij is a symmetric tensor.

The differential equations that govern the thermoelasticity of
dipolar bodies, obtained as in Mindlin [5] and Green and Rivlin
[6], are:

- the equations of motion:

(

τij + ηij
)

,j
+ ρfi = ρüi,

µijk,i + ηjk + ρgjk = Ikrφ̈jr; (6)

- the equation of energy:

ρT0η̇ = qi,i + ρr. (7)

In the preceding equations, we used some notations with the
following signification: ρ - the constant mass density; Iij - the
tensor ofmicroinertia, which is a symmetric tensor; k - a scalar for
the intrinsic inertia; εij, κij, χijk - the strain tensors; τij, ηij, µijk
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- the stress tensors; fi - the body forces; gjk - the dipolar
charges; Aijmn,Bijmn, ..., aij - the coefficients that characterize the
properties of the material with regards to elasticity. Clearly, from
(3) we can deduce the following symmetry relations:

Aijmn = Ajimn = Amnij, Bijmn = Bmnij, aij = aji,

Cijkmnr = Cmnrijk, Fijkmn = Fijknm, Dijmn = Dijnm. (8)

Consider the Equations (6) and (7), in the particular case where
there are no supply terms and taking into account the kinematic
equations (2) and the constitutive relations (4) and (5). Then,
from the equations of motion and the energy equations, we
obtain the following system of equations:

ρüi =
[(

Cijmn + Gijmn

)

un,m

+
(

Gmnij + Bijmn

) (

un,m − φmn

)

+

+
(

Fmnrij + Dijmnr

)

φnr,m −
(

aij + bij
)

θ
]

,j
,

Ikrφ̈jr =
[

Fijkmnun,m + Dmnijk

(

un,m − φmn

)

+ Aijkmnrφnr,m

−cijkθ
]

,i
+ Gjkmnum,n (9)

+Bjkmn

(

un,m − φmn

)

+ Djkmnrφnr,m − bjkθ ,

Kij

(

θ,j
)

,i
= −T0

[

aiju̇i,j + bij
(

u̇j,i − φ̇ij

)

+ cijkφ̇ij,k + cθ̇
]

,

which take place in the interval (−∞, 0].
We also suppose that the Equations (2), (4) take place in the

interval (−∞, 0].
We now want to define the surface tractions vector of

components ti, a surface couple tensor of componentsµjk and the
flux of heat denoted by q. To this end, we need the unit normal to
the border ∂D, of components ni, outward oriented. These have
the following expressions:

ti =
(

τij + ηij
)

nj, µjk = µijkni, q = qini, (10)

and are defined at regular points of the border ∂ D.
Having these tractions, we can now consider the following

boundary data, in their homogeneous form:

ui(x, t) = 0, (x, t) ∈ ∂Du × (−∞, 0], ti = 0,

(x, t) ∈ ∂Dc
u × (−∞, 0],φij(x, t) = 0, (x, t) ∈ ∂Dφ

×(−∞, 0],mjk = 0, (x, t) ∈ ∂Dc
φ

×(−∞, 0], θ(x, t) = 0, (x, t) ∈ ∂Dθ × (−∞, 0],

q = 0, (x, t) ∈ ∂Dc
θ × (−∞, 0], (11)

where the subsets ∂Du, ∂Dφ , ∂Dθ and their complements
∂Dc

u, ∂Dc
φ , ∂Dc

θ are surfaces from the boundary ∂D with the
following properties:

∂D̄u ∪ ∂Dc
u = ∂D̄φ ∪ ∂Dc

φ = ∂D̄θ ∪ ∂Dc
θ = ∂D,

∂Du ∩ ∂Dc
u = ∂Dφ ∩ ∂Dc

φ = ∂Dθ ∩ ∂Dc
θ = ∅.

The mixed problem will be complete if we add the
final restrictions:

ui(x, 0) = u0i (x), u̇i(x, 0) = u1i (x), θ(x, 0) = θ0(x),

φij(x, 0) = φ0
ij(x), φ̇ij(x, 0) = φ1

ij(x), (12)

which take place on the closed domain D̄. Here u0i (x),
u1i (x), φ0

ij(x), φ1
ij(x), and θ0(x) are given and are continuous

functions. Furthermore, we must suppose that these functions
are compatible with the restrictions (11) on the appropriate
sub-surfaces of ∂ D.

The internal energy 9 will be considered as a quadratic form
with the following representation

9 =
1

2
Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr +

+
1

2
Bijmnκijκmn + Gijmnrκijχmnr +

1

2
Cijkmnrχijkχmnr . (13)

Let us denote by P our boundary-final value problem, which
consists of the system of basic equations (9), the final conditions
(12), and the boundary data (11).

The results we want to expose will only be possible if certain
restrictions are met, imposed on all the functions we will
deal with.

First, we denote by Jm(x) the minimum eigenvalue of the
tensor of inertia Iij(x), and we need to suppose that Jm is a
continuous function. Also, the density ρ and the constitutive
coefficients are assumed be functions of class C1(D). Also, we
must suppose that:

(a) ρ(x) ≥ a1, Jm(x) ≥ a2, c(x) ≥ a3, where the real constants
a1, a2, a3 are positive;

(b) Kij is a positive definite tensor;
(c) the quadratic form 9 is positive definite.

As a consequence of hypothesis (b), we can deduce
the inequalities:

Kmθ,iθ,j ≤ Kijθ,iθ,j ≤ KMθ,iθ,j, (14)

where Km and KM are two positive constants.
If we take into account hypothesis (c), then we can determine

two positive numbersM1 andM2 to satisfy the double inequality
that follows:

M1

2

(

εijεij + κijκij + χijkχijk

)

≤ 9

≤
M2

2

(

εijεij + κijκij + χijkχijk

)

. (15)

The above restrictions are commonly imposed in the mechanics
of solids, so they cannot be considered as very restrictive.

Now our concerns are for transforming the boundary-
final value problem P into an initial-boundary values problem
denoted by P

′. To this aim, we will make a convenient
transformation of variables. So, in this regard, if h is the notation
for a generic function, we set h′(t′) = h(t), for t′ = −t. However,
we will renounce to the sign “prime" so as not to complicate the
writing. As such, the above problem P

′ consists of the following
restrictions and equations:

- the equations of motion (9)1 and (9)2, which take place in the
cylinder D× [0,∞);

Frontiers in Physics | www.frontiersin.org 3 March 2020 | Volume 8 | Article 41

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Marin et al. Thermoelasticity Backward in Time

- the equation of energy:

Kij

(

θ,j
)

,i
= T0

[

aiju̇i,j + bij
(

u̇j,i − φ̇ij

)

+ cijkφ̇ij,k + cθ̇
]

,

in D× [0,∞); (16)

- the kinematic equations (2), which take place in the cylinder
D× [0,∞);

- the constitutive conditions (4), which take place in the cylinder
D× [0,∞);

- the initial restrictions (11), which take place in D̄;
- the conditions to the limit:

ui(x, t) = 0, (x, t) ∈ ∂Du × [0,∞),

ti = 0, (x, t) ∈ ∂Dc
u × [0,∞),

φij(x, t) = 0, (x, t) ∈ ∂Dφ × [0,∞),

mjk = 0, (x, t) ∈ ∂Dc
φ × [0,∞),

θ(x, t) = 0, (x, t) ∈ ∂Dθ × [0,∞),

q = 0, (x, t) ∈ ∂Dc
θ × [0,∞). (17)

3. MAIN RESULTS

At the beginning of this section we will establish some identities,
of integral type, with regards to the solutions u =

(

ui,φij, θ
)

of
the above mixed problem P

′. The important results of our study
will be based on these identities.

Proposition 1. If u =
(

ui,φij, θ
)

is a solution of our above
problem P

′, then the following identity is satisfied

1

2

∫

B

[(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

+ 29(t)+ cθ2(t)
]

dV =

=

∫

B

[

ρu̇i(0)u̇i(0)+ Ijkφ̇jm(0)φ̇km(0)+ 9(0)+
1

2
cθ2(0)

]

(18)

dV ++

∫ t

0

∫

D

1

T0
Kijθ,i(τ )θ,j(τ )dVdτ , ∀t ∈ [0,∞).

Proof. If we consider the kinematic equations (2) and take into
account the equations of motion (9)1 and (9)2, then the following
identity is obtained:

1

2

∂

∂t

(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

=

=
[(

τij + ηij
)

u̇j + µijkφ̇jk

]

,i
−

(

τijε̇ij + ηijκ̇ij + µijkχ̇ijk

)

. (19)

Now, we consider the equations (4) and the form of the energy
density 9 , defined in (13). Taking into account the relations of
symmetry (8), we find that the parenthesis at the end of the
identity (19) receives the following form

(

τijε̇ij + ηijκ̇ij + µijkχ̇ijk

)

=
∂

∂t

(

9 +
1

2
cθ2

)

+

(

1

T0
qjθ

)

,j

−
1

T0
Kijθ,iθ,i. (20)

Now we introduce Equation (20) into the equality (19) and we
integrate the resulting identity over the domain [0, t] × D. It

remains only to use the divergence theorem and to take into
account the homogeneous conditions data to the limit (17), such
that we obtain the identity (18), as such, so that the proof of
Proposition 1 is finished.

A complement of the equality (18) is the identity that follows:

1

2

∫

B

[(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

+ 29(t)− cθ2(t)
]

dV =

=

∫

B

[

ρu̇i(0)u̇i(0)+ Ijkφ̇jm(0)φ̇km(0)+ 9(0)

−
1

2
cθ2(0)

]

dV − (21)

−

∫ t

0

∫

D

{

u̇i(τ )
[(

aij + bji
)

θ(τ )
]

,j
+ φ̇ij(τ )

[

cijkθ(τ )
]

,k

−− bijφ̇ij(τ )θ(τ )+
1

T0
Kijθ,i(τ )θ,j(τ )

}

dVdτ , ∀t ∈ [0,∞),

which can be proven by using a procedure similar to the one used
to prove Proposition 1.

Let us enter the notation

2F(x, y) = Aijmnεij(x)εmn(y)+ Dijmn

[

εij(x)κmn(y)

+εij(y)κmn(x)
]

++Fijmnr

[

εij(x)χmnr(y)

+εij(y)χmnr(x)
]

+Bijmnκij(x)κmn(y)

++ Gijmnr

[

κij(x)χmnr(y)+ κij(y)χmnr(x)
]

+Cijkmnrχijk(x)χmnr(y),

in order to simplify the writing.
Then, from (22) it is easy to obtain the symmetry property of

the quadratic form F(x, y):

F(x, y) = F(y, x). (22)

Here, we considered the relations of symmetry (8). Also, if we
analyze Equation (13), then by a simple substitution in (22), we
are led to the identity

F(τ , τ ) = 9(τ ). (23)

These above considerations will help us to obtain an analogous
identity to those from (18) but considered in the particular case
of null initial data.

Proposition 2.Let
(

ui,φij, θ
)

be a solution of the backward in time
problem,P ′, corresponding to zero initial conditions. Then, for all
t ∈ [0,∞), the following equality is satisfied:

1

2

∫

B

[(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

− cθ2(t)
]

dV =

=

∫

B

[

1

2
Aijmnεij(t)εmn(t)+ Dijmnεij(t)κmn(t)+ (24)

+Fijmnrεij(t)χmnr(t)+
1

2
Bijmnκij(t)κmn(t)+
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+Gijmnrκij(t)χmnr(t)+
1

2
Cijkmnrχijk(t)χmnr(t)

]

dV .

Proof. Let us fix an arbitrary t ∈ (0,∞). Then, with the usual
calculations, we are led to the equality:

∂

∂t

(

ρu̇i(τ )u̇i(2t − τ )+ Ijkφ̇jm(τ )φ̇km(2t − τ )

−cθ(τ )θ(2t − τ )
)

=

= ρüi(τ )u̇i(2t − τ )+ Ijkφ̈jm(τ )φ̇km(2t − τ )

+cθ(τ )θ̇(2t − τ )−−ρu̇i(τ )üi(2t − τ )

+Ijkφ̇jm(τ )φ̈km(2t − τ )− cθ̇(τ )θ(2t − τ ). (25)

Now, we consider the constitutive relations (4), the geometric
equations (2), the relations of symmetry (8), and the equations
of motion (9) so that we get the identity

∂

∂t

(

ρu̇i(τ )u̇i(2t − τ )+ Ijkφ̇jm(τ )φ̇km(2t − τ )

−cθ(τ )θ(2t − τ )
)

==
[(

τij + ηij
)

(τ )u̇i(2t − τ )

−
(

τij + ηij
)

(2t − τ )u̇j(τ )+ (26)

+µijkφ̈jk(τ )φ̇jk(2t − τ )− µijkφ̈jk(2t − τ )φ̇jk(τ )−

−
1

T0
θ(τ )qi(2t − τ )+

1

T0
θ(2t − τ )qi(τ )

]

,i

+ F(τ , 2t − τ ),

in which F(., .) is the function introduced in (22).
Now the desired identity (24) will be obtained by integration

in the above identity into [0, t] × D. We must consider that the
initial conditions are homogeneous and use the definition (13).
As such, the demonstration of the proposition is finished.

In establishing the main results of our work, we will also use
the utility of the two next enunciations.

Proposition 3. Let us consider that the array u =
(

ui,φij, θ
)

satisfies the mixed problemP
′. Then, the following equality is valid

∫

D

[

ρui(t)u̇i(t)+ Ijkφjm(t)φ̇km(t) (27)

−
1

2T0
Kij

(∫ t

0
θ(τ )dτ

)

,i

(∫ t

0
θ(τ )dτ

)

,j

]

dV =

=

∫

D

[

ρui(0)u̇i(0)+ Ijkφjm(0)φ̇km(0)
]

dV

+

∫ t

0

∫

D
ρη(0)θ(τ )dVdτ + (28)

+

∫ t

0

∫

D

[

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)− 29(τ )

−cθ2(τ )
]

dVdτ ,

for all t ∈ [0,∞).

Proof. We first take into account the kinematic equations (2).
Considering the constitutive equations (4) and the equations of
motion (9)1 and (9)2, we get the equality:

∂

∂t

(

ρui(t)u̇i(t)+ Ijkφjm(t)φ̇km(t)
)

=

= ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)+ (29)

+
[(

τij(t)+ ηij(t)
)

uj(t)+ µijk(t)φjk(t)
]

,i
−

−
[(

τij(t)+ ηij(t)
)

εij(t)+ ηij(t)κij(t)+ µijk(t)χijk(t)
]

.

Considering the notation (13), we can restate the last parentheses
of Equation (29) in the following form:

τij(t)εij(t)+ ηij(t)κij(t)+ µijk(t)χijk(t) =

=

(

1

2
cθ2(t)+ 9(t)

)

+

(

1

T0
θ(t)

∫ t

0
qi(τ )dτ

)

,i

− (30)

−
1

T0
Kij

(∫ t

0
θ(τ )dτ

)

,i

(∫ t

0
θ(τ )dτ

)

,i

− ρη(0)θ(t).

We get the above expression of the entropy η after we integrate
the evolution equation (19)3, satisfied by η, with respect to the
variable t.

Finally, the equality (30) is integrated over [0, t] × D. If we
apply the divergence theorem and consider the boundary data
(17), we arrive at the desired identity (29). As such, the proof of
the proposition is finished.

Proposition 4. If the array
(

ui,φij, θ
)

is a solution of the mixed
backward in time problem P

′, then we have the identity:

2

∫

D

[

ρui(t)u̇i(t)+Ijkφjm(t)φ̇km(t)

−
1

2T0
Kij

(∫ t

0
θ(τ )dτ

)

,i

(∫ t

0
θ(τ )dτ

)

,j

]

dV

=

∫

D

[

ρu̇i(0)ui(2t)+ Ijkφ̇jm(0)φkm(2t)
]

dV + (31)

+

∫

D

[

ρui(0)u̇i(2t)+ Ijkφjm(0)φ̇km(2t)
]

dV −

−

∫ t

0

∫

D
ρη(0)

[

θ(t + τ )− θ(t − τ )
]

dVdτ ,

for all t ∈ [0,∞).

Proof. We first consider the kinematic equations (2) and take
into account the equations of motion (9)1 and (9)2. As such, we
are led to the next equality

∂

∂t

[

ρ
(

u̇i(t + τ )ui(t − τ )+ ui(t + τ )u̇i(t − τ )
)]

+

+
∂

∂t

[

Ijk
(

φ̇jm(t + τ )φkm(t − τ )+ φjm(t + τ )φ̇km(t − τ )
)]

=

=
[(

τij + ηij
)

(t + τ )ui(t − τ )−
(

τij + ηij
)

(t − τ )uj(t + τ )+ (32)

+µijk(t + τ )φjk(t − τ )− µijk(t − τ )φjk(t + τ )
]

,i
−

−
[(

τij + ηij
)

(t + τ )εij(t − τ )−
(

τij + ηij
)

(t − τ )εij(t + τ )
]

−

−
[

µijk(t + τ )χijk(t − τ )− µijk(t − τ )χjk(t + τ )
]

.

Next, we consider the constitutive equations (4), so that by
taking into account the equations of symmetry (8), the last two
parentheses of the relation (32) receive the following expressions:

[(

τij + ηij
)

(t + τ )εij(t − τ )−
(

τij + ηij
)

(t − τ )εij(t + τ )
]

+
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+
[

µijk(t + τ )χijk(t − τ )− µijk(t − τ )χjk(t + τ )
]

=

=
1

T0

[

θ(t + τ )

∫ t−τ

0
qi(s)ds− θ(t − τ )

∫ t+τ

0
qi(s)ds

]

,i

−

−
1

T0
Kij

[

(∫ t+τ

0
θ(s)ds

)

,i

(∫ t−τ

0
θ(s)ds

)

,j

(33)

−

(∫ t+τ

0
θ(s)ds

)

,i

(∫ t−τ

0
θ(s)ds

)

,j

]

−

−ρη(0)
[

θ(t + τ )− θ(t − τ )
]

,

We get the above expression of the entropy η after we integrate
the evolution equation (19)3, satisfied by η, with respect to the
variable t.

Finally, the equality (33) is integrated over [0, t] × D. If we
apply the divergence theorem and consider the boundary data
(17), we arrive at the desired identity (31). As such, the proof of
the proposition is finished.

A new useful identity will be obtained by combining the
results from the identities (24) and (31), namely:

2

∫

B

[(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

− cθ2(t)
]

dV =

= −2

∫

D

[

ρui(0)u̇i(0)+ Ijkφjm(0)φ̇km(0)
]

dV +

+

∫

D

[

ρu̇i(0)ui(2t)+ Ijkφ̇jm(0)φkm(2t)
]

dV + (34)

+

∫

D

[

ρui(0)u̇i(2t)+ Ijkφjm(0)φ̇km(2t)
]

dV +

−

∫ t

0

∫

D
ρη(0)

[

2θ(τ )+ θ(t + τ )− θ(t − τ )
]

dVdτ ,

for all t ∈ [0,∞).
The utility of the previously proven equalities of integral type

identities will result from their involvement in approaching the
main results of our work. Our first main result is a theorem of
uniqueness that will be established with regards to the solution
of the backward in time problem. Then, the issue of locating
solutions of the backward in time problem in time will be
approached as a consequence of the result of uniqueness.

Theorem 1.The equations and conditions of the backward in time
problem P

′ can be satisfied by only one array u =
(

ui,φij, θ
)

.

Proof. Suppose by absurdity, as usual, that our problem is
satisfied by two arrays of the above form; that is, P ′ would
admit two different solutions. Clearly, since our problem P

′ is a
linear one, the difference of the respective two solutions is also a
solution of the problem P

′, but it corresponds to zero initial and
boundary data. As such, it is enough to prove that the problem
P
′, for null data, admits the null solution. It is clear that for the

difference of two solutions, the boundary and initial conditions
become homogeneous.

The function M, defined in the following, is to simplify
writing, and can be considered as a measure for the solutions
of P ′:

M(s) =

∫

D

[ε

2

(

ρu̇i(t)u̇i(s)+ Ijkφ̇jm(s)φ̇km(s)
)

+ (ε + 2)9(s)+
ε

2
cθ2(s)

]

, (35)

where ε designates a sufficiently small positive constant.
It is not difficult to deduce that the above function M

is a positive one if we take into account the assumptions
(a), (b), and (c). Based on the fact that the initial conditions are
homogeneous, we can restate in a simpler form the identity (18):

∫

B

[

1

2

(

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)
)

+ 9(t)+
1

2
cθ2(t)

]

dV =

=

∫ t

0

∫

D

1

T0
Kijθ,i(s)θ,j(s)dVds, ∀t ∈ [0,∞). (36)

In a similar manner, we can give to the equality (21) the following
simpler form:

∫

B

[

1

2

(

ρu̇i(s)u̇i(s)+ Ijkφ̇jm(s)φ̇km(s)
)

+ 9(s)−
1

2
cθ2(s)

]

dV =

= −

∫ s

0

∫

D

{

u̇i(τ )
[(

aij + bji
)

θ(τ )
]

,j

+ φ̇ij(τ )
[

cijkθ(τ )
]

,k
− (37)

−bijφ̇ij(τ )θ(τ )+
1

T0
Kijθ,i(τ )θ,j(τ )

}

dVdτ ,

∀s ∈ [0,∞).

With the help of the identities (36) and (37), we can restate the
functionM, defined in (35), as follows:

M(t) = −

∫ t

0

∫

D

{

2u̇i(s)
[(

aij + bji
)

θ(s)
]

,j
+ φ̇ij(s)

[

cijkθ(s)
]

,k
−

−bijφ̇ij(s)θ(s)+
1− ε

T0
Kijθ,j(s)θ,i(s)

}

dVds,

∀t ∈ [0,∞). (38)

If we use the derivative with respect to the time variable t in (38),
we get the following identity

dM(t)

dt
= −2

∫

D

{

u̇i(τ )
[(

aij + bji
)

θ(τ )
]

,j
+ φ̇ij(τ )

[

cijkθ(τ )
]

,k
−

−bijφ̇ij(τ )θ(τ )+
1− ε

2T0
Kijθ,i(τ )θ,j(τ )

}

dV ,

∀t ∈ [0,∞). (39)

Next, in (39), we take into account the inequality of Schwarz and
use a specific form of the arithmetic-geometric mean inequality
so that we arrive at the next inequality

dM(t)

dt
≤ C1

∫

D

[

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)+ cθ2(t)
]

dV +

+
δ − 1+ ε

T0

∫

D
Kijθ,i(τ )θ,j(τ )dV , ∀t ∈ [0,∞). (40)

Now, we remember that the energy density9 is a quadratic form,
positive definite. Also, we take into account hypothesis (c), use
functionM, defined in (35), and choose δ ≤ 1− ε. As such, from
(40) we get the equality

dM(t)

dt
≤

C1

ε

∫

D
ε
[

ρu̇i(t)u̇i(t)+ Ijkφ̇jm(t)φ̇km(t)+ cθ2(t)
]
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dV ≤
C1

ε
M. (41)

From this, we deduce that if the function M(t) satisfies this
inequality, it satisfies the following inequality:

0 ≤ M(t) ≤ M(0)eC1/ε . (42)

But, as we have already established, for the difference of the two
solutions, the initial data are zero, so that, as a consequence, we
haveM(0) = 0; as such, from (42), we deduce that:

M(s) = 0, ∀s ∈ [0,∞).

Using this statement and taking into account assumptions (a)-(c),
we are led to the conclusion that the mixed problem admits only
the null solution, i.e.

ui(s) = 0, φij(s) = 0, θ(s) = 0, ∀s ∈ [0,∞).

As such, Theorem 1 is proven.
For the final result of our study, we will approach the problem

P
∗, which consists of the motion equations (9), the constitutive

equations (4), the geometric equations (2), the initial restrictions
(12), and the boundary homogeneous conditions (11). For this
problem, we will establish that it is impossible to locate in
time the solutions to this problem. In fact, it is shown that
the solution with all null components, that is, the null solution,
is the only solution of P∗ that vanishes in the finite time.

Theorem 2. Assume that
(

ui,φij, θ
)

is a solution of the mixed
problem P

∗, which decays in finite time t0 ≥ 0,

ui(t) = 0, φij(t) = 0, θ(t) = 0, ∀t ≥ t0. (43)

Then, the only solution that satisfies this condition is the
null solution.

Proof. Using the way back in the previous procedure, we
return to the backward in time problem defined on (−∞, t0].
Consider that this problem is defined by the equations of motion
(9), the constitutive equations (4), the geometric equations (2),
the null boundary data, and the homogeneous final restrictions:

ui(x, t0) = 0, u̇i(x, t0) = 0,

φij(x, t0) = 0, φ̇ij(x, t0) = 0, θ(x, t0) = 0.

Based on Theorem 1, we deduce that the null solution is the only
one with this property.

4. CONCLUSIONS

In our study, we formulated the linear backward in time problem
for a thermoelastic body with a dipolar structure. In our first
main result, we proved the uniqueness of the solution for this
problem. Then, we approached the question of the possibility of
locating the solution for this problem in time. So far, no study has
addressed the problem of the localization in time of solutions for
the mixed problem in the context of thermoelastic dipolar solids.
We consider that, as suggested by a reviewer, it will be very useful
for us to generalize the results of the present study in another
study, in which we will replace the common derivative with a
fractional one.
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