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The structure and dynamics of liquids and glasses are usually discussed in terms of the

short-range atomic structure and the nature of atomic bonds. However, many properties

of liquids are rather similar and only weakly dependent on chemistry. Here we suggest

that these properties are controlled not so much by the short-range atomic correlations

but mainly by the medium-range density correlations which are similar among various

liquids and supersede chemical details of the system. Taking metallic alloy liquids as

examples we discuss the origin of the medium-range density correlations and argue

they are only weakly dependent on the detailed nature of the atomic bond. We also

discuss some consequences of the medium-range correlations on atomic transport.

By extrapolating the coherence of density correlation to infinity we can define an ideal

glass state which is very diverse in the local atomic structure but is characterized by

long-range density correlations. This ideal state is very different from those previously

proposed based on the coherence in the atomic structure.

Keywords: liquid, density correlation, Van Hove function, liquid dynamics, medium-range correlation

INTRODUCTION

The atomic structure of liquid and glass appears random, but unlike gas they are condensedmatters
held together by cohesive force. The density of a liquid is comparable, or even higher as in the case
of water, than that of a solid of the same composition. Therefore, atoms are strongly correlated
in position and momentum, and the structure and dynamics of liquid should be described by
not where the atoms are (structure), but in terms of the correlations. Actually the “structure of
liquid” is an oxymoron, because liquid is intrinsically dynamic. In solids, the time-scales of the
structure, diffusion and phonon are all very different, so that they can be characterized by different
scattering methods; diffraction (elastic scattering) for structure, inelastic scattering for phonon and
quasielastic scattering for diffusion. However, in liquids the time-scales for them are all in the same
order of magnitude, about a pico-second (ps). Consequently liquid shows no elastic scattering [1],
and phonons are overdamped and often localized. Thus, not only the method of characterization
needs to be reconsidered, but also the terminology needs to be readdressed; structure, diffusion and
phonon are all mixed up and are deeply entangled. We need a new experimental approach and a
new description to characterize suchmixed dynamics. The same difficulty is found for a large family
of soft-matter including colloids and biological matters. Actually to call them soft-matter is missing
the point, because softness is relative, and is not the most important characteristic of their nature.
They may be more adeptly called dynamic aperiodic matter (DAM), rather than soft-matter.

A powerful approach to describe the dynamics of DAM is the time-dependent pair-distribution
function (PDF) called the Van Hove function (VHF) [2]. The VHF is often spelled the van Hove
function, but he is not Dutch but Belgian; we follow the original spelling. The VHF has been
known for a long time, but only recently it became possible to determine it by inelastic scattering
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experiments as shown in Figure 1 [3]. At the same time the
behavior of the VHF was examined by molecular dynamics (MD)
simulation, which gave a new insight on the interpretation of the
VHF [4]. In particular, it became clear that the dynamics of the
medium-range correlations beyond the first nearest neighbors is
quite distinct from that of the short-range structure represented
by the first neighbor shell. Whereas, the short-range structure
reflects the local chemistry, the medium-range part of the VHF
describes collective density fluctuations which are more universal
and less dependent on chemistry.

VAN HOVE FUNCTION

The structure of liquid and glass is usually described by the
atomic pair-distribution function (PDF),

g (r) =
1

4πr2ρ0N

∑

i,j

〈

δ
(

r −
∣

∣ri − rj
∣

∣

)〉

(1)

where ri is the position of the i-th atom at time t, ρ0 is the
atomic density of N atoms, and <. . .> denotes thermal average.
However, for liquid this is misleading because ri varies with
time. The PDF is merely the same-time (snapshot) correlation
function. The time-dependent, or time-delayed, correlation is
described by the VHF,

G (r, t) =
1

4πr2ρ0N

∑

i,j

〈

δ
(

r −
∣

∣ri (0) − rj (t)
∣

∣

)〉

, (2)

where ri(t) is the position of the i-th atom at time t. At t = 0,
G (r, 0), is just the g(r). The VHF describes how g(r) decays with
time, and is obtained from the dynamic structure factormeasured
by inelastic scattering, S(Q, ω) [5],

S (Q,ω) =
1

2πN

∑

i,j

∫

〈

exp
(

iQ
[

ri (0) − rj (t)
])〉

exp (−iωt) dt,

(3)

through the double Fourier-transformation,

G (r, t) − 1 =
1

2π2ρ0r

∫

S (Q,ω) sin (Qr) exp (iωt)QdQdω, (4)

whereQ = |Q|. Sometimes S(Q, ω) is Fourier-transformed to the
time domain by

F (Q, t) =
∫

S (Q,ω) exp (iωt) dω (5)

which is called the intermediate scattering function and is widely
used for the study of relaxation phenomena [5]. The VHF is
obtained by the Fourier-transformation of F(Q, t) to real space.
We should also note that the energy integral of S(Q, ω),

S (Q) =
∫

S (Q,ω) dω, (6)

FIGURE 1 | The Van Hove function of water at room temperature determined

by inelastic x-ray scattering [3]. The cut at t = 0 corresponds to the snapshot

PDF. As time proceeds the nearest neighbors move away, while the second

neighbors move in, showing dynamic correlations.

yields the snapshot PDF, g(r), upon Fourier-transformation.
Therefore, the regular x-ray diffraction measurement with low
energy resolution produces the snapshot PDF. For a long time
this has been the only way to assess the structural nature of liquid.
That is why g(r) is called the “structure of liquid.” Now that the
VHF is experimentally accessible, we should focus on the VHF.
To perform the double Fourier-transformation by Equation (4)
requires the knowledge of S(Q, ω) over a wide Q-ω space, which
has been difficult for a long time. But recent progress in the source
and instrumentation [6, 7]made it possible to determine the VHF
in a reasonable time.

MEDIUM-RANGE DENSITY CORRELATION

At first it was assumed that the VHF decays uniformly for all
distances, controlled by diffusion [8]. Then the decay rate of
F(Q, t) should vary as 1/Q2 as expected for diffusion. However,
De Gennes showed that the decay rate of F(Q, t) depends non-
monotonically on Q [9]. In particular, the quasi-elastic width,
1ω, of S(Q, ω) shows strong narrowing at the first peak of S(Q),
now known as the De Gennes narrowing. This effect is generally
considered to be the evidence of collective excitations, but our
recent results have shown otherwise. As shown in Figure 2 the
decay time of the VHF increases linearly with distance, with the
rate related to the Maxwell relaxation time [4]. In general the
r-dependent decay time depends on r as,

τ(r) = τ(0) + τr

( r

a

)χ

, (7)

where a is the nearest neighbor distance. The power exponent

χ depends on the spatial dimension, D, as χ = (D−1)
2 .

The argument for this dimensional dependence is as follows.
The number of atoms in the shell from r to r + dr, Ndr, is
proportional to rD−1. Then the rate of fluctuation is proportional
to

√
N, thus to r(D−1)/2. The De Gennes narrowing occurs as a

natural consequence of this r-dependence, and is not necessarily
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FIGURE 2 | Linear dependence of the decay time of the Van Hove function on

distance, simulated for liquid Fe [4].

indicative of collective excitation. Whereas, the first peak of the
VHF describes the dynamics of the nearest neighbors, the higher
order peaks describe the dynamics of many atoms. The number
of atoms involved in the first peak is the coordination number,
NC, which is 12–14 for close-packed systems. Then the number
of atoms in the n-th shell is of the order of n2NC, quite a large
number as n increases. The width of the peaks of g(r) beyond
the first peak is of the order of a/2, whereas the uncertainty
in the atomic position, for instance the phonon amplitude, is
smaller by an order of magnitude. That is why at large distances
the PDF peaks do not reflect detailed atomic positions, but a
coarse-grained density correlations.

At temperatures above the viscosity crossover temperature,
TA [10], which is about twice the glass transition temperature
for metallic liquids [11], the phonon propagation length, λp =
vtτM , where vt is the transverse sound velocity, becomes
smaller than the interatomic distance [12]. In other words the
structural relaxation time, τM , becomes shorter than the time-
scale of phonon, τD = 2π

ωD
, where ωD is the Debye frequency.

Then atoms separated by a distance beyond the range of the
interatomic potential cannot communicate, and should show
no correlation. The reason why the PDF shows oscillation
beyond the first peak even at high temperatures is that these
peaks represent not the detailed structural correlations of atoms,
but coarse-grained medium-range density correlations. These
density correlations interact via long wave longitudinal waves
which survive well above TA [13] and modulate only the local
density, not the detailed structure. For this reason the medium-
range correlations represent the coarse-grained density rather
than the atomic structure.

More than a century ago Ornstein and Zernike published a
paper with a remarkable insight [14]. They pointed out that g(r)
has two components,

g (r) = 1+ c (r) +m (r) , (8)

where c(r) describes short-range correlation, and m(r) medium-
range correlation. The c(r) is directly influenced by the
interatomic potential, whereas m(r) is a medium-range
consequence of c(r), and as discussed above reflects coarse-
grained density correlations. Then, they proposed a mean-field
closure equation,

h (r) = c (r) + ρ0

∫

c
(∣

∣r− r′
∣

∣

)

h
(

r′
)

dr′. (9)

where h(r) = c(r) + m(r). Then, as a result of integration the
medium-range part of h(r) reflects the effect of the interatomic
potential only indirectly, usually weakly. We now move to Q

space by the Fourier-transformation. Equation (9) becomes [15],

h (Q) = c (Q) + ρ0c (Q) h (Q) , h (Q) =
c (Q)

1− ρ0c (Q)
. (10)

c(r) has a relatively sharp peak at the interatomic distance, a,
represented by

c (r) =
∫

f
(

r − r′
)

δ
(

r
′
− a

)

dr′. (11)

where f (r) is the peak shape function. Then,

c (Q) = F (Q)
sin (Qa)

Qa
, (12)

where F(Q) is the Fourier-transform of f (r). Thus c(Q) has the
first peak at Q = Q1 ∼ 5π /2a. The medium-range part of h(r),
m(r), is determined primarily by the first peak of S(Q) [16], so
that only the first peak of c(Q) at Q1 is of interest for m(r). Note
that the effects of the interatomic potential and composition are
included solely in f (r), thus in F(Q), which is a slowly varying
function of Q. Consequently the first peak of c(Q) is nearly
universal, only weakly dependent on composition and the nature
of bonding. As a result the behavior ofm(r) is remarkably general.
This makes sense becausem(r) represents medium-range density
correlations which are almost independent of atomic details. For
oxide and polymeric glasses if we use the first sharp diffraction
peak (FSDP) [17], similar results should be obtained.

We expand the first peak of c(Q) around Q1

c (Q) = c (Q1)

[

1−
(Q− Q1)

2

2σ 2
Q

+ . . .

]

(13)

Because c(r) has a relatively sharp peak F(Q) is a slowly varying
function. Then,

d2c (Q)

dQ2
≈ −F (Q1)

a

Q1
= −c (Q1) a

2,
1

σ 2
Q

≈ a2. (14)

1 − ρ0c (Q) = 1− ρ0c (Q1)

[

1−
a2

2
(Q− Q1)

2 + . . .

]

,

(15)

h (Q) ≈
c(Q1)

(1−ρ0 c(Q1))

1+ ξ 2s (Q− Q1)
2
=

2ξ2s
a2ρ0

1+ ξ 2s (Q− Q1)
2
, (16)
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FIGURE 3 | Exponential decay of
∣

∣G (r)
∣

∣, where G(r) = 4π rρ0 [g(r) – 1], for

Pd42.5Ni7.5Cu30P20 liquid at 600K (Tg = 573K) [18].

where

ξ 2s =
a2

2

ρ0c (Q1)

1− ρ0c (Q1)
. (17)

Thus, the medium-range coherence depends on both the physical
density and the strength of the nearest neighbor correlation,
c(Q1). Now the first peak of S(Q) should be Lorentzian by
Equation (16). Indeed it is Lorentzian for simple liquids [18].
For some liquids it is more Gaussian, and S(Q1) is relatively
small, as discussed elsewhere (Ryu et al., unpublished). The
Fourier-transform of the Lorentzian is the screened Coulomb (or
Yukawa) potential,

h (r) ≈
exp

(

− r
ξs

)

r
sin (Q1r) . (18)

As shown in Figure 3 G(r) = 4πrρ0[g(r) – 1] ∼ 4πrh(r) shows
an exponential decay with sin(Q1r) oscillation. This form is
widely found, even when the shape of the first peak of S(Q) is
more Gaussian.

The coherence length, ξs, varies with temperature, through
the temperature dependence of c(Q1) by Equation (17). At
temperatures above TA τM is shorter than the phonon time-scale,
τD = 2π

ωD
. Thus atoms cannot communicate through phonons,

and the transport is controlled by action of cutting the bond,
anankeons [12, 19]. Then, the atomic transport is controlled
by the nearest neighbors alone, and medium-range order has
no direct relevance. The snapshot structure represented by S(Q)
has little or no bearing to the transport properties. However, at
temperatures well below TA the dynamics is more cooperative,
and is controlled by the density correlations represented by ξs(T).
Also the time-scale of structural change is much slower than
phonons. In this case the snapshot structure plays the usual role
of the structure in determining the dynamic properties such as

FIGURE 4 | Dependence of the activation energy for viscosity, Ea(T ), on the

coherence length, ξs(T), of density correlation [18].

transport and mechanical deformation. The activation energy for
viscosity, Ea(T),

η (T) = η∞exp

(

Ea (T)

kBT

)

. (19)

Near the glass transition Ea(T) for Pd42.5Ni7.5Cu30P20 liquid
depends on the coherence volume as,

Ea (T) = E0

(

ξs (T)

a

)3

, (20)

as shown in Figure 4. The coherence volume normalized by the
atomic volume indicates the number of atoms involved in the
coherent volume. Equation (20) means that the activation energy
for viscosity depends linearly on the number of atoms involved in
the local shear deformation event [20]. Through this relationship
the temperature variation of ξs is related to liquid fragility [18].
Similar arguments were advanced for the height of the first peak
of S(Q) for metallic liquids [21, 22] and the width of the FSDP of
complex liquids [17].

Various theories, notably the mode-coupling theory [23], use
the first peak of S(Q) as a parameter to represent the atomic
structure. Ironically their success originates from the fact that
the first peak of S(Q) does not describe the detailed atomic
structure but represent the coarse grained density fluctuations
which are more general and do not depend on detailed chemistry.
Conversely they indeed catch the universal aspects of the
behavior of liquid and glass.

IDEAL GLASS STATE

The Equation (17) is quite enlightening. If

Z = ρ0c (Q1) ≪ 1, (21)
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ξs is negligibly small, and the liquid structure has no correlation.
When Z = 2/3, ξs = a. As Z approaches unity the coherence
length ξs quickly increases, and diverges when Z = 1. Then h(Q)
has a Bragg peak at Q1. In other words,

c (Q1) =
1

ρ0

= Va =
V

N
, (22)

is the critical condition for the coherence length, ξs, to diverge,
attaining the ideal glass state. By taking the limit of ξs →∞ with
Equation (18), its medium-range order is given by

hIG (r) ≈
sin (Q1r)

r
. (23)

Then, G0(r) = 4πrρ0[g0(r) – 1] has long-range oscillation.
This ideal glass state has long-range density correlation without
positional order. Quasicrystal [24] was the first example of a state
with long-range order without positional order. It is a crystal in
six-dimensions, characterized by six order vectors. The ideal glass
is a crystal in the infinite dimensions. Therefore the magnitude
of the coherence length at the glass transition is a good measure
of how close the structure is to the ideal glass state (Ryu et al.,
unpublished).

The S(Q) of the ideal glass state has a Bragg sphere with the
radius of Q1. The single atom density is given by

ρ (r) =
∫

ρQexp (Q1·r+ δ (Ω)) dΩ , (24)

where Ω is the solid angle of the vector Q1, and the phase factor
δ(Ω) varies randomly with Ω to avoid pile-up of atomic density
at the same place. Each density wave has the same wavelength,
λ1 = 2π/Q1 = (4/5 ) a, thus it is fairly coarse-grained. In
order to specify the atomic position with higher precision higher
order Bragg peaks are needed, just as in crystalline solids. For
this reason the density correlation established in the ideal glass
does not represent the order in the atomic structure, such as the
icosahedral order. Indeed the model of ideal glass obtained by the
reverse Monte-Carlo simulation to fit to G0(r) has very diverse
local structures. The local topology by Voronoi polyhedral
analysis [18] shows there is no dominant topology with a wide
distribution of local structures. For instance icosahedra, which
dominate the simple liquid [25, 26], has the population of only
0.7% in this model of ideal glass. A liquid is stabilized by
configurational entropy. This diversity in the local structure is an
excellent signature of such a high entropy state. The high entropy
state is achieved either by increasing temperature (usual way),
or mixing a large number of elements. The discovery of bulk
metallic glasses with many elements [27, 28] is consistent with
the second approach. On the other hand the structure dominated
by a single local structural motif, such as an icosahedron, has a
low entropy and is far from ideal. It easily forms an ordered state
including the crystalline state.

The idea that the growth of icosahedral clusters which are
incompatible with periodicity is the origin of glass formation
has been widely discussed [29–31]. The current discussion
on the ideal glass assumes it is a low enthalpy [32], low
entropy state dominated by one or two local structures [33]. In

contrast, the ideal glass proposed here is characterized by the
diversity in the local structure and high configurational entropy,
which is the hallmark of the liquid state. The dominance by a
particular structural motif, such as icosahedron, is seen in a single
component system which is a poor glass former, or in glasses
with particular compositions [34]. In our view it is a sign of
nano-crystallization rather than glass formation.

CONCLUSIONS

Usually the structure of liquid is described in terms of the
same-time two body correlation function, the snapshot pair-
distribution function (PDF). However, liquid does not have a
structure in the usual sense because it is inherently dynamic.
It is much preferred to characterize the liquid dynamics
through the dynamic two-body correlation function, the Van
Hove function (VHF). The recent studies of the VHF by
experiment and simulation revealed the fundamental difference
in nature between the short-range order and the medium-
range order. Whereas, the short-range order, represented by
the first peak of the PDF, describes the atomic environment of
an atom and reflects the nature of the atomic bond and some
details of the interatomic potential, the medium-range order,
represented by the PDF peaks beyond the first peak, describes
more coarse-grained density correlations which supersedes local
chemistry. Thus, various liquids with different bonding and
chemistry share very similar medium-range order, characterized
by the Ornstein-Zernike form and the coherence in density
correlation. This density correlation is coarse-grained and does
not represent detailed atom-atom correlation. Therefore, it is
nearly independent of the details of local structure. The ideal
glass state obtained by extrapolation has long-range correlations
in density, but its local structure is very diverse and it has
no structural coherence at the atomic level. In our view
many properties of liquids, such as viscosity just above the
glass transition, depend on such density correlations rather
than atomic structural correlations. This explains why many
properties of liquids depend only weakly upon chemistry, and are
largely common for liquids with varying nature of atomic bonds.
The efforts to seek the origin of these properties directly to local
atomic structure may be misguided.
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