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The research paper aims to investigate the space-time fractional cubic-quartic non-linear

Schrödinger equation in the appearance of the third, and fourth-order dispersion

impacts without both group velocity dispersion, and disturbance with parabolic law

media by utilizing the extended sinh-Gordon expansion method. This method is one

of the strongest methods to find the exact solutions to the non-linear partial differential

equations. In order to confirm the existing solutions, the constraint conditions are

used. We successfully construct various exact solitary wave solutions to the governing

equation, for example, singular, and dark-bright solutions. Moreover, the 2D, 3D, and

contour surfaces of all obtained solutions are also plotted. The finding solutions have

justified the efficiency of the proposed method.

Keywords: the non-linear cubic-quartic Schrödinger equation, conformable derivative, analytical solutions, the

extended sinh-Gordon expansion method, solitary wave solutions

1. INTRODUCTION AND MOTIVATION

Non-linear partial differential equations have different types of equations, one of them is the
non-linear Schrödinger equation (NLSE) that relevant to the classical and quantum mechanics.
The non-linear Schrödinger equation is a generalized (1+1)-dimensional version of the Ginzburg-
Landau equation presented in 1950 in their study on supraconductivity and has been specifically
reported by Chiao et al. [1] in their research of optical beams. In the past several years, various
methods have been proposed to obtain the exact optical soliton solutions of the non-linear
Schrödinger equation [2–12]. Dispersion and non-linearity are two of the essential components
for the distribution of solitons across inter-continental regions. Usually, group velocity dispersion
(GVD) level with self-phase modulation in a sensible manner allows these solitons to sustain tall
range travel. In fact it might happen that the GVD is tiny and thus totally ignored, in this case
the dispersion effect is determined by third and fourth order dispersion effects. Subsequently,
this equation has been studied in a variety of ways, such as the Lie symmetry [13], both the
(

m+ G′

G

)

-improved expansion, and the exp (−ϕ (ξ))−expansion methods [14], and the semi-

inverse variation principle method [4]. In this study, the extended sinh-Gordon expansion method
(ShGEM) is applied to the non-linear cubic-quartic Schrödinger equations with the Parabolic law
of fractional order, which is given by

iDαt u+ iβD3α
x
u+ γD4α

x
u+ cF

(

|u|2
)

u = 0, (1)
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where u (x, t) is the complex valued wave function. The operator
Dα of order α, where α ∈ (0, 1] is the fractional derivative,
the parameters γ and β are real constants, a real-valued algebraic
function F

(

|u|2
)

is p-times continuously differentiable, then

F
(

|u|2
)

∈
∞
⋃

m, n=1

Cp
(

(−n, n)× (−m,m) :R2
)

. (2)

By using the relation of

F (u) = c1u+ c2u
2,

on Equation (1), we obtain the fractional non-linear Schrödinger
equations with Parabolic law as follows:

iDαt u+ iβD3α
x
u+ γD4α

x
u+

(

c1|u|2 + c2|u|4
)

u = 0. (3)

The extended sinh-Gordon expansion method is intended to a
generalization of the sine-Gordon expansion equation because
it is based on an auxiliary equation namely the sine-Gordon
equation (see previous studies [15, 16] for details). Moreover,
different computational and numerical methods have been
utilized to constructed new solutions to the non-linear partial
differential equations, such as the variable separated method
[17], the auxiliary parameters and residual power series method
[18], the Bernoulli sub-equation method [19, 20], the modified
auxiliary expansion method [21], the homotopy analysis
transform method [22–26], the homotopy perturbation sumudu
transform method [27], the shooting method with the explicit
Runge-Kutta scheme [28, 29], and the Adomian decomposition
method [30]. Recently, several fractional operators have been
applied to the mathematical models in order to seek their exact
solutions, such as the Laplace transform [31, 32], the Nabla
operator [33–35].

The outline of paper are organize the paper as follows: A
short review of the conformable derivative is presented in section
2. Section 3 deals with the analysis of the ShGEM. In section
4, the method is applied to solve the non-linear Schrödinger
equation involving the fractional derivatives with the parabolic
law. Eventually, in section 5, we presented our conclusion of
this paper.

2. BASIC DEFINITIONS

The basic definitions of the conformable derivative of order α are
given as follows [36–41]:

Definition 2.1. Assume the function h : (0,∞) → R then, the
conformable derivative of h of order α is defined as Dαt h (t) =
lim
ε→0

h(t+εt1−α)−h(t)
ε

, ∀t > 0, and 0 < α ≤ 1.

Definition 2.2. Assume that c ≥ 0 and t ≥ c, let h be a function
defined on (c, t] as well as α ∈ R. Then, the α-fractional integral
of h is given by

tI
α
c h (t) =

α
∫

c

h (x)

x1−α
dx, (4)

FIGURE 1 | 3D, 2D, and contour surfaces of Equation (26) where

ω = 0.1, c2 = 0.1, κ = 2, α = 0.8.

FIGURE 2 | 3D, 2D, and contour surfaces of Equation (28) where

γ = 0.5, c2 = 0.2, κ = 0.4, α = 0.7.

if the Riemann improper integral exists.

Theorem 2.1. Let α ∈ (0, 1] , and h = h (t), g = g (t) be
α-conformable differentiable at a point t > 0, then:

Dαt
(

ah+ bg
)

= aDαt h+ bDαt g, forall(a, b /∈ R).

Dαt
(

tλ
)

= λtλ−α , forall(λ ∈ R).

Dαt
(

hg
)

= gDαt
(

h
)

+ hDαt
(

g
)

.

Dαt

(

h

g

)

=
gDαt

(

h
)

− hDαt
(

g
)

g2
. (5)

Furthermore, if function h is differentiable, then Dαt
(

h (t)
)

=
t1−α dh

dt
.
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FIGURE 3 | 3D, 2D, and contour surfaces of Equation (30) where

γ = 0.5, c1 = 0.7, α = 0.9.

FIGURE 4 | 3D, 2D, and contour surfaces of Equation (32) where

γ = 5, c1 = 7, α = 0.7.

Theorem 2.2. (see for details pervious research [40]): Let h be a
differentiable function and α is order of the conformable derivative.
Let g be a differentiable function defined in the range of h, then

Dαt
(

fog
)

(t) = t1−αg(t)α−1g′ (t)Dαt
(

f (t)
)

t=g(t)
, (6)

here “prime” is the classical derivatives with respect to t.

3. THE EXTENDED ShGEM

In the current section, we presented the main steps of the e
ShGEM (see previous study [42, 43]).

Consider the following fractional non-linear PDE:

W
(

Dσx p, p
2D2σ

x p, Dυt p, D
υ
t D

σ
x p, . . .

)

= 0, (7)

FIGURE 5 | 3D, 2D, and contour surfaces of Equation (34) where

c1 = 0.2, κ = 0.4, ω = 6, α = 0.4.

FIGURE 6 | 3D, 2D, and contour surfaces of Equation (36) where

c2 = 0.2, A1 = 0.3, α = 0.7.

where p = p (x, t).
Consider the wave transformation

p (x, t) = ψ(ζ ), ζ =
xσ

σ
− c

tυ

υ
, (8)

by substitute relation Equation (8) into Equation (7), we obtain
the following non-linear ODE:

P
(

ψ , ψ ′ , ψ ,′′ ψ2ψ ′ , . . .
)

= 0. (9)

Consider the trial solution of Equation (9) of the form

ψ (θ) =
k
∑

j=1

[

Aj sinh (θ)+ Bj cosh (θ)
]j + A0. (10)
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FIGURE 7 | 3D, 2D, and contour surfaces of Equation (38) where

α = 0.3, c1 = 0.5, c2 = 0.2, κ = 0.4.

The parameters Aj, Bj, for (j = 1, 2, . . . , k) and A0 are real
constants, and θ is a function of η that hold the following ODE:

θ ′ = sinh(θ). (11)

The homogeneous balance principle is applied on Equation (9)
to find the value of k. From the space-time fractional the sinh-
Gordon equation, we have (see previous study [15, 16]).

Dt
νDx

σ p = λsinh(p). (12)

The exact solutions of Equation (12) may be given as

sinh ( θ) = ± csch (ζ ) or sinh ( θ) = ± isech (ζ ) , (13)

and

cosh (θ ) = ± coth (ζ ) or cosh (θ ) = ± tanh (ζ ) . (14)

Letting solutions of Equation (10) along with Equations (13) and
(14) as the form

ψ (ζ ) =
k
∑

j=1

[

±iAj sech (ζ )± Bj tanh (ζ )
]j+A0, (15)

ψ (ζ ) =
k
∑

j=1

[

±Aj csch (ζ )± Bj coth (ζ )
]j + A0. (16)

Finding the value of k and then inserting Equations (10) and (12)
into Equation (9), we get a system of terms of:

sinhi (θ ) coshj ( θ) , (17)

we gather a group of over-defined non-linear algebraic equations
in A0, Aj, Bj, putting the coefficients of sinhi (θ ) coshj ( θ) to

zero, and finding the solutions of acquired system, we gain
the values of A0, Aj, Bj, c1, c2, κ , and ω. Putting the values of
A0, Aj, Bj, c1, c2, κ , and ω into Equations (15) and (16), we can
find the solutions of Equation (7).

4. IMPLEMENT OF THE EXTENDED
ShGEM

The implementation of the extended ShGEM to the cubic-quartic
non-linear Schrödinger equation with conformable derivative is
provided in this section.

Consider the wave transformation

u (x, t) = U(ξ )e
i θ
, ξ =

xα

α
− ν

tα

α
, θ = −

κ xα

α
+
ω tα

α
. (18)

In Equation (18), θ (x, t) represents the phase component of
the soliton. The ω, κ , ν are the wave number, the soliton
frequency, and the soliton velocity, respectively. Substituting
wave transformation into Equation (2) and splitting the outcomes
equation into real and imaginary parts, we gain

−
(

βκ3 − γ κ4 + ω
)

U + c1U
3 + c2U

5 + 3βκU ′′

−6γ κ2U ′′ + γU(4) = 0, (19)

−
(

3βκ2 − 4γ κ3 + ν
)

U ′ + βU(3) − 4γ κU(3) = 0. (20)

Multiply both sides of Equation (19) by U ′ and integrate it,
we obtain

γ

(

−
(

U ′′)2

2
+ U ′′′ U ′

)

+
c1U

4

4
+

c2U
6

6
+ 3γ κ2

(

U ′)2

+
1

2
U2
(

−4γ κ4 + γ κ4 − ω
)

= 0. (21)

From Equation (20), we get constraint conditions ν = 4γ κ3 −
3βκ2 and β = 4γ κ . Balancing the terms U ′′′ U ′ and U6 yields
κ = 1. With κ = 1, Equations (10), (16), and (17) change to

ψ (θ) =
[

A1 sinh (θ)+ B1 cosh (θ)
]

+ A0, (22)

ψ (ζ ) =
[

±iA1 sech (ζ )± B1 tanh (ζ )
]

+A0, (23)

and

ψ (ζ ) =
[

±m1 csch (ζ )± n1 coth (ζ )
]

+ n0, (24)

respectively.
Inserting Equation (22) along with Equation (12) into

Equation (21), and using constraint conditions provides a
non-linear algebraic system. Equaling each coefficient of
sinhi (θ ) coshj ( θ) with the same power to zero, and finding the
obtained system of algebraic equations, we gain the values of the
parameters. Putting the obtained values of the parameters into
Equations (23) and (24), give the solutions of Equation (3).
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Set 1

B1 =
23/431/4ω1/4

(

c2
(

−1− 6κ2 + 3κ4
))1/4

, c1 =

√

2
3 c2

(

5+ 3κ2
)√

ω
√

c2
(

−1− 6κ2 + 3κ4
)

,

A0 = 0, γ =
ω

1+ 6κ2 − 3κ4
, A1 = 0, (25)

we get

u1 (x, t) =
23/431/4ω1/4

(

c2
(

−1− 6κ2 + 3κ4
))1/4

csch

(

xα

α
+

8tακ3ω

α
(

1+ 6κ2 − 3κ4
)

)

e
i
(

− xακ
α

+ tαω
α

)

. (26)

Set 2

B1 =
(1+ i) 61/4γ 1/4

c21/4
, ω = γ

(

1+ 6κ2 − 3κ4
)

,

c1 = i

√

2

3

√
γ
√
c2
(

5+ 3κ2
)

, A1 = 0, A0 = 0, (27)

we get

u2 (x, t) =
(1+ i) 61/4a

1/4
2

c21/4

csch

(

xα

α
+

8a2t
ακ3

α

)

e
i

(

− xακ
α

+
a2tα(1+6κ2−3κ4)

α

)

. (28)

Set 3

A0 = 0, A1 =
4
√
2
√
γ

√
c1

, B1 = 0, c2 = −
3c1

2

128γ
,

κ = −
√

2

3
,ω =

20γ

3
, (29)

we get

u3 (x, t) = −
4
√
2
√
γ

√
c1

coth





16
√

2
3γ t

α

3α
−

xα

α



 e
i

(

20γ tα

3α +
√

2
3 x
α

α

)

.

(30)

Set 4

A0 = 0, A1 = −
√
2
√
γ

√
c1

,B1 =
√
2
√
γ

√
c1

, c2 = −
3c1

2

8γ
,

κ = −
1
√
6
,ω =

5γ

12
, (31)

we get

u4 (x, t) = −
√
2
√
γ

√
c1



coth





2
√

2
3γ t

α

3α
−

xα

α





+csch





2
√

2
3γ t

α

3α
−

xα

α







× e
i
(

5a2tα

12α + xα√
6α

)

. (32)

Set 5

B1 = −
2
√

(

5+ 3κ2
)

ω
√

c1
(

−1− 6κ2 + 3κ4
)

, A1 = 0, A0 = 0,

c2 =
3c1

2
(

−1− 6κ2 + 3κ4
)

2
(

5+ 3κ2
)2
ω

, γ =
ω

1+ 6κ2 − 3κ4
,

(33)

we obtain

u5 (x, t) =
2
√

(

5+ 3κ2
)

ω
√

c1
(

−1− 6κ2 + 3κ4
)

csch

(

xα

α
+

8tακ3ω

α
(

1+ 6κ2 − 3κ4
)

)

e
i
(

− xακ
α

+ tαω
α

)

. (34)

Set 6

B1 = A1, A0 = 0, c1 = −
4A1

2c2

3
, γ = −

2A1
4c2

3
,

ω = −
5A1

4c2

18
, κ =

1
√
6
, (35)

we get

u6 (x, t) =



−A1 coth





4
√

2
3A1

4c2t
α

9α
−

xα

α





+A1csch





4
√

2
3A1

4c2t
α

9α
−

xα

α









×e
i

(

− 5A1
4c2t

α

18α − xα√
6α

)

. (36)

Set 7

B1 =
√
6
√
c1

√

c2
(

5+ 3κ2
)

, γ = −
3c1

2

2c2
(

5+ 3κ2
)2
,

ω =
3c1

2
(

−1− 6κ2 + 3κ4
)

2c2
(

5+ 3κ2
)2

, A1 = 0, A0 = 0,

(37)

we get

u7 (x, t) =
√
6
√
c1

√

c2
(

5+ 3κ2
)

csch

(

xα

α
−

12c1
2tακ3

c2α
(

5+ 3κ2
)2

)

e
i

(

− xακ
α

+
3c1

2tα(−1−6κ2+3κ4)
2c2α(5+3κ2)

2

)

. (38)

5. CONCLUSION

In this article, we have successfully used the extended sinh-
Gordon expansion method to solve the problem for the
non-linear cubic-quartic Schrödinger equations involving
fractional derivatives with the Parabolic law. A traveling wave
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transforms in the sense of the comfortable derivative has
been used to convert the governing equation into a NODE.
The various optical solutions of the studied model have been
constructed, for example, the singular soliton solutions as shown
in Figures 1–6, and the dark-bright soliton solution as seen in
Figure 7. Comparing our solutions to the results obtained in
references [16–18], our findings solutions are new and different.
To better analyze the dynamic attitude, and the characteristics of
these solutions, the 2D, 3D and counter-surface of all obtained
solutions are plotted. The study shows that this method is the
effective and appropriate technique for finding the exact solution
of the model considered in the paper.
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