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We study the time-dependent Schrödinger equation with finite number of Dirac δ and δ′

potentials with time dependent strengths in one dimension. We obtain the formal solution

for generic time dependent strengths and then we study the particular cases for single

delta potential and limiting cases for finitely many delta potentials. Finally, we investigate

the solution of time dependent Schrödinger equation for δ′ potential with particular forms

of the strengths.
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1. INTRODUCTION

Dirac delta potentials in quantum mechanics have been used to model different physical systems
almost since the beginning of quantum mechanics. Kronig Penney model [1] is the well-known
example of these models. These potentials are the particular cases of much more general class of
potentials, namely point interactions. In one dimension, one rigorous way of defining the point
interaction at the origin is based on the self-adjoint extension of the free symmetric Hamiltonian
defined on R \ {0}. In this approach, the initially ill-defined formal δ and δ′ function potentials
appear naturally as two special cases of point interactions constructed from the self-adjoint
extension theory. In general one has a 4 -parameter family of self-adjoint extension in one
dimension. The monograph [2] includes a great deal of all the details and summarize the history
of the literature about the δ interactions. The review article [3] and the book [4] are also good
reference sources about the δ potentials from the physical point of view.

The δ′ perturbation of free HamiltonianH0 = − d2

dx2
is defined as a limit of short range potentials

in the distributional sense [5–7]. Although there are some controversial issues about δ′ interactions
(see e.g., [8–11]), they are also getting considerable amount of interest. The ambiguities about
δ′ interactions have been summarized in a very recent article [11], where the integral form of
the Schrödinger equation for δ′ potential has been studied based on the work of Kurasov [12].
We also adopt the distributional approach developed by Kurasov [12] for the functions having a
discontinuity at the point of δ′. It is possible to overcome these ambiguities by considering different
choices, as different type of δ′ interactions [13]. Therefore, the different results on the spectrum of δ′

potential obtained in [2] and in [8] using the Kurasov’s approach -as a special case of−aδ(x)+bδ′(x)
potential- can be interpreted consistently. In other words, the Kurasov’s approach corresponds
to different self-adjoint extension of the free Hamiltonian H0. These self-adjoint extensions are
given by matching conditions at the origin (or at the point supporting the perturbation) and two of
these matching conditions maybe identified as a δ′ interaction and receive the names of non-local
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and local δ′ interaction, respectively [13]. Both approaches are
used to see how the spectrum of the V-shaped potential changes
when it is perturbed by −aδ(x) + bδ′(x) perturbation in [9, 13].
The scattering, and resonant tunneling for δ′ potential in one
dimension is also a controversial issue because different results
are obtained in the literature [8, 10], depending on whether the δ′

interaction is the non-local or the local one. The results obtained
in [14–16] for the non-local δ′ potential, show that it is opaque for
all energies of an incoming beam. However, other authors [17–
20] claim that there are discrete energy values in the spectrum
of δ′ potential which lead to resonant tunneling. As an another
physical application, δ′ interactions are used to model Casimir
effect in [21, 22].

The exact expression of the propagator for one dimensional
single Dirac delta potentials have been found in different
ways [23–25]. The generalization to two center case have
been studied in Cacciari and Moretti [26]. The propagator
for general four parameter family of point interactions have
been given in Albeverio et al. [27]. Propagators for systems
involving δ potentials are also studied from various points of
view in references [28–34]. The propagator for derivatives of
Dirac delta distribution for constant strengths has been recently
studied in Lange [11]. The Cauchy problem for the non-local
δ′ potential with a time dependent strength has also been
studied rigorously in detail [35]. Moreover, time dependent one
dimensional point interactions have been studied in Campbell
[36] and the exact solution to the initial value problem for
Schrödinger equation has been given for some particular form
of strength λ(t) of the Dirac delta potential. Later on, the system
has been investigated in Hmidi et al. [37] more rigorously and the
regularity assumptions on λ(t) is determined for which the initial
value problem defines a unitary strongly continuous dynamical
system on L2(R). Such time-dependent point interactions have
been studied rigorously in order to model asymptotic complete
ionization and suitable conditions on the function λ(t) has
been determined for ionization problem [38–41]. The higher
dimensional generalizations of the problem have been studied
in great detail and summarized in the thesis by Correggi [42].
Transmission properties of a monochromatic beam and wave
packets by studying the scattering from the time-dependent δ
potential are studied in Martinez and Reichl [43] and Kuhn et al.
[32]. Utilizing δ potential with a time dependent coefficient in
an infinite well, Baek et al. [44] showed that it is possible to
split a wave function which may have applications in statistical
mechanics and condensed matter physics. However, it may also
lead to philosophical problems [44]. The time dependence of
the Dirac delta potentials could also be expressed through the
motion of its support [45]. As a physical application, a moving
Dirac δ potential is used to describe particle displacement using a
standard tunneling microscope [46].

The paper is organized as follows: In section 2, we obtain a
formal expression of the propagator for a finite number of Dirac
δ potentials with time dependent strengths and solve the time
dependent Schrödinger equation for this system. In the following
subsections, we investigate one δ potential with time dependent
strength in more detail and find the propagator for N Dirac
δ potential in the limit that centers are infinitely separated. In

section 3, we get an expression of the propagator for a finite
number of δ′ potentials with time dependent strengths and
solve the time dependent Schrödinger equation for this potential.
Finally, we elaborate on one δ′ case.

2. THE PROPAGATOR FOR N DIRAC DELTA

POTENTIALS WITH TIME DEPENDENT

STRENGTHS

We begin with a one dimensional model in which a free

Hamiltonian of the type H0 = − h̄2

2m
d2

dx2
is perturbed with a time

dependent potential

V(x, t) =
N
∑

j=1

λj(t)δ(x− xj) . (1)

The initial value problem of the time-dependent Schrödinger
equation for this potential is

i
∂

∂t
ψ(x, t) =



− d2

dx2
+

N
∑

j=1

λj(t)δ(x− xj)



ψ(x, t) , (2)

with the given sufficiently smooth functionψ(x, 0). Here we have
used the units such that h̄ = 2m = 1 for simplicity. It is well-
known that the Laplace transform is a very useful tool to solve
initial value problems so we first take the Laplace transformation
of Equation (2) with respect to time variable t and get

ψ̄xx(x, s)− iψ(x, 0)+ isψ̄(x, s) =
N
∑

j=1

δ(x− xj)L
{

λj(t)ψ(xj, t)
}

,

(3)

where ψ̄(x, s) = L
{

ψ(x, t)
}

and ψ̄xx(x, s) = L

{

∂2

∂x2
ψ(x, t)

}

.

After this, we take the Fourier transformation of both sides of
Equation (3) with respect to the coordinate variable x and get:

− k2 ˆ̄ψ(k, s)− iψ̂(k, 0)+ is ˆ̄ψ(k, s) =
N
∑

j=1

e−ikxjL
{

λj(t)ψ(xj, t)
}

,

(4)

where ˆ̄ψ(k, s) = F(ψ̄(x, s)) denotes the Fourier transform of
ψ̄(x, s) with respect to the variable x. This equation is an algebraic

equation for the unknown wave function ˆ̄ψ(k, s) and the solution
is easily obtained as

ˆ̄ψ(k, s) = − 1

k2 − is



iψ̂(k, 0)+
N
∑

j=1

e−ikxjL
{

λj(t)ψ(xj, t)
}



 .

(5)
Now, we immediately find the inverse Fourier transform of the
ˆ̄ψ(k, s):

ψ̄(x, s) = −i

∫ ∞

−∞

dk

2π

eikx

k2 − is
ψ̂(k, 0)
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−
N
∑

j=1

L
{

λj(t)ψ(xj, t)
}

∫ ∞

−∞

dk

2π

eik(x−xj)

k2 − is
. (6)

Using ψ̂(k, 0) =
∫∞
−∞ dx′ e−ikx′ψ(x′, 0), the Equation (6)

becomes

ψ̄(x, s) = −i

∫ ∞

−∞
dx′ ψ(x′, 0)

∫ ∞

−∞

dk

2π

eik(x−x′)

k2 − is

−
N
∑

j=1

L
{

λj(t)ψ(xj, t)
}

∫ ∞

−∞

dk

2π

eik(x−xj)

k2 − is
. (7)

The integrals in Equation (7) are easily taken using
residue theorem

∫ ∞

−∞

dk

2π

eikx

k2 − is
= i

ei
√
is|x|

2
√
is

, (8)

so we obtain

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

− i

2
√
is

N
∑

j=1

ei
√
is|x−xj|L

{

λj(t)ψ(xj, t)
}

. (9)

Now we need to take inverse Laplace transform to obtain
the solution of the time dependent equation for the potential
λ(t)δ(x). Using the Bromwich contour [47], one can easily find
the inversion

L
−1

{

ei
√
is|x|

√
is

}

= 1√
iπ t

exp

(

ix2

4t

)

, (10)

and using the convolution theorem we get the formal solution as

ψ(x, t) =
∫ ∞

−∞
dx′

1√
4π it

exp

[

i(x− x′)2

4t

]

ψ(x′, 0)

− i

N
∑

j=1

∫ t

0
dt′

λj(t
′)ψ(xj, t′)√

4π i(t − t′)
exp

[

i(x− xj)
2

4(t − t′)

]

.(11)

Although this is an explicit formal expression for ψ(x, t), it is
not completely expressed in terms of the initial condition ψ(x, 0)
and includes the unknown factorsψ(xj, t). These can be found by
simply inserting x = xj in the formal solution and then solving
the resulting coupled Volterra type integral equations

ψ(xj, t) =
∫ ∞

−∞
dx′

1√
4π it

exp

[

i(xj − x′)2

4t

]

ψ(x′, 0)

− i

∫ t

0
dt′

λj(t
′)ψ(xj, t′)√

4π i(t − t′)

− i

N
∑

k=1
k 6=j

∫ t

0
dt′

λk(t
′)ψ(xk, t′)√

4π i(t − t′)
exp

[

i(xj − xk)
2

4(t − t′)

]

,

(12)

where we split the term k = j in the summation over k. Since
this is not an easy problem for a generic function λ(t), we will
first investigate for particular cases, where λ is constant and λ
is inversely proportional to t. All these results we present in the
next subsection is previously obtained by Campbell [36] using a
slightly different method, where only one integral transformation
with the boundary conditions at the position of δ potential
was used.

2.1. Single δ Potential With a Time

Dependent Strength
As a particular case of (1), we consider a single delta potential
with time-dependent strength

V(x, t) = λ(t)δ(x) , (13)

where N = 1 and x1 = 0. We can formally obtain the solution
of the time dependent Schrödinger equation for this case using
Equation (11)

ψ(x, t) =
∫ ∞

−∞
dx′

1√
4π it

exp

[

i(x− x′)2

4t

]

ψ(x′, 0)

−i

∫ t

0
dt′

λ(t′)ψ(0, t′)√
4π i(t − t′)

exp

[

ix2

4(t − t′)

]

. (14)

Actually this result can be directly obtained from the Duhamel’s
formula [48] for time-dependent Schrödinger equation
associated with the Hamiltonian H = H0 + V , where H0

is self-adjoint free Hamiltonian and V is bounded (or relatively
H0 -bounded with relative bound<1):

e−itH |ψ0〉 = e−itH0 |ψ0〉 +

(−i)

∫ t

0
dt′ e−i(t−t′)H0Ve−it′H |ψ0〉 (15)

for every |ψ0〉 = |ψ(t = 0)〉. This shows that even if we
formally take V = λ(t′)|0〉〈0| which corresponds to our Dirac
delta potential, one immediately sees that the Duhamel’s formula
is still formally valid for such singular interactions.

Given the initial condition ψ(x, 0) and the function λ(t), the
function ψ(0, t) can be determined by solving the following
integral equation:

ψ(0, t) =
∫ ∞

−∞
dx′

1√
4π it

exp

[

ix′2

4t

]

ψ(x′, 0)

−i

∫ t

0
dt′

λ(t′)ψ(0, t′)√
4π i(t − t′)

. (16)

However, this is in general hard to solve and one usually
applies some approximation techniques, e.g., Dyson series [48].
Nevertheless, as shown in Campbell [36], there are cases where
one can calculate the Green’s function explicitly. We will show
two such cases here explicitly. Although Green’s functions for
these cases are derived in Campbell [36], we repeat these results
here for the sake of completeness. Instead of directly solving the
above integral equation for particular cases, it is convenient to
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start with the Laplace transformed wave function Equation (9)
for a single δ potential centered at the origin:

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

− i

2
√
is
ei
√
is|x|

L
{

λ(t)ψ(0, t)
}

. (17)

The cases for constant λ and λ ∝ 1
t are reviewed in

Appendices A and B in detail.

2.2. The Propagator for N Dirac δ

Potentials in a Limiting Case
When λj’s are constant, the Laplace transformed wave function
ψ̄(x, s) given by (9) becomes

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

− i

2
√
is

N
∑

k=1

λk e
i
√
is|x−xk|ψ̄(xk, s) . (18)

The unknown functions ψ̄(xk, s) can be found by evaluating the
above expression at x = xj:

ψ̄(xk, s) =
N
∑

j=1

[

8−1(s)
]

kj
ρ̄(xj, s) , (19)

where

8kj(s) =







1+ iλj

2
√
is

if j = k
iλk
2
√
is
ei
√
is|xj−xk| if j 6= k

, (20)

and

ρ̄(xk, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|xk−x′|ψ(x′, 0) . (21)

Substituting (19) into (18), we obtain

ψ̄(x, s) = ρ̄(x, s)− i

2
√
is

N
∑

j=1

N
∑

k=1

λk e
i
√
is|x−xk| [8−1(s)

]

kj
ρ̄(xj, s) .

(22)

Although we have obtained the Laplace transformed wave
function ψ̄(x, s), it is not explicitly given since one has to invert
the matrix 8 and find the inverse Laplace transform of the
resulting expression to get the final solution ψ(x, t). In general,
it is difficult to find the inverse Laplace transforms so one may
apply some approximation schemes [49]. Moreover, one could
use some numerical computations, but we will here simply show
the limiting case, where the centers are infinitely far away from
each other.

When all the centers are infinitely separated from each other,
that is, |xj − xk| → ∞, we expect that the off-diagonal elements
of the matrix8 given in (20) vanish, so that

[

8−1(s)
]

kj
=





1

1+ iλk
2
√
is



 δkj . (23)

Then, ψ̄(x, s) can be explicitly found as

ψ̄(x, s) = ρ̄(x, s)− i

N
∑

j=1

ei
√
is|x−xj|

(

λj

2
√
is+ iλj

)

ρ̄(xj, s) ,(24)

from which the propagator G(x, x′, s) reads

G(x, x′, s) = ei
√
is|x−x′|

2
√
is

−
N
∑

j=1

ei
√
is|x−xj|

(

λj

2
√
s+

√
iλj

)

ei
√
is|xj−x′|

2
√
s

.

(25)

Hence,

G(x, x′, t) = 1

2
√
iπ t

exp

[

i(x− x′)2

4t

]

−
N
∑

j=1

λj

4
exp

[

λj

2
(|x− xj| + |xj − x′|)+ i

λ2j

4
t

]

erfc

[

(|x− xj| + |xj − x′|)
2
√
it

+
√
it
λj

2

]

.

(26)

This is actually the superposition of the individual propagators
associated with single delta centers. This is expected since there
is no correlation among the centers when they are far away from
each other. Another limiting case is the case where all the centers
coincide.

3. THE PROPAGATOR FOR N DIRAC δ′

POTENTIALS WITH TIME DEPENDENT

STRENGTHS

In this section we first obtain a formal solution of the time-
dependent Schrödinger equation, where the potential term is
chosen formally as

V(x, t) =
N
∑

i=1

λi(t)δ
′(x− xi) . (27)

The time dependent Schrödinger equation for this potential is

i
∂

∂t
ψ(x, t) =



− d2

dx2
+

N
∑

j=1

λj(t)δ
′(x− xj)



ψ(x, t) . (28)
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As we mentioned in the introduction we adopt the distributional
approach given by [12] for the definition of δ′(x), for functions
having discontinuity at the point of δ′

δ′(x)f (x) = 〈f (0)〉δ′(x)− 〈fx(0)〉δ(x) , (29)

where we define 〈f (y)〉 = f (y+)+f (y−)
2 and 〈fx(y)〉 = fx(y

+)+fx(y
−)

2
and f (y±) denote the limits limx→y± f (x). Note that this
definition reduces to the well-known property of δ′(x) [50]

δ′(x)f (x) = f (0)δ′(x)− f ′(0)δ(x) . (30)

for continuous functions. As in the previous section we proceed
by taking the Laplace transform of all the terms in the Equation
(28) for time variable t and find

ψ̄xx(x, s)− iψ(x, 0)+ isψ̄(x, s)

=
N
∑

j=1

[

−L
{

λj(t)〈ψ(xj)〉
}

δ′(x− xj)

+L
{

λj(t)〈ψx(xj)〉
}

δ(x− xj)
]

.

(31)

Now, we take the Fourier transform with respect to the variable x

and solve ˆ̄ψ(k, s) to get:

ˆ̄ψ(k, s) = − 1
k2−is

(

iψ̂(k, 0)+
∑N

j=1−ike−ikxjL
{

λj(t)〈ψ(xj)〉
}

+e−ikxjL
{

λj(t)〈ψ(xj)〉
} )

. (32)

Before taking the inverse Fourier transform of this equation

we write ψ̂(k, 0) =
∫∞
−∞ dx′e−ikx′ψ(x′, 0) then take the inverse

Fourier transform and get

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

− 1

2

N
∑

j=1

sgn(x− xj) e
i
√
is|x−xj| L

{

λj(t)〈ψ(xj, t)〉
}

− i
1

2
√
is

N
∑

j=1

ei
√
is|x−xj| L

{

λj(t)〈ψx(xj, t)〉
}

.

(33)

where sgn(x) denotes sign function sgn(x) =
{

1 x > 0

−1 x < 0
. We

have also used
∫∞
−∞

dk
2π

eikx

k2−is
= − i

2
√
is
ei
√
is|x| and

∫∞
−∞

dk
2π

ikeikx

k2−is
=

− 1
2
√
is
ei
√
is|x| sgn(x). Now using L

{

exp
[

i x
2

4t

]

2
√
iπ t

}

= ei
√
is|x|

2
√
is

and

L

{

(−1)3/4
exp

[

i x
2

4t

]

x

2
√
π t3/2

}

= ei
√
is|x| sgn(x) and convolution theorem

for Laplace transform we get the formal expression of the
wave function

ψ(x, t) =
∫ ∞

−∞
dx′

1√
4π it

ei
(x−x′)2

4t ψ(x′, 0)

−
∫ t

0
dt′
{

N
∑

j=1

(−1)3/4

4
√
π
λj(t

′)〈ψ(xj)〉
exp

[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2
(x− xj)

+ i

2
√
iπ

N
∑

j=1

λj(t
′)〈ψx(xj)〉

exp
[

i
(x−xj)

2

4(t−t′)

]

√
(t − t′)

}

.

(34)

Similar to the time dependent δ potential case, this formal
equation contains unknown functions ψ(x±j )’s and ψx(x

±
j )’s.

One can find equations for ψ(x±j )’s by inserting x = x±j to

the Equation (34). In order to find equations for ψx(xj)
±’s, the

derivative of the Equation (34) with respect to the variable x has
to be calculated. By taking this derivative we get

ψx(x, t) =
1

4
√
iπ t3/2

∫ ∞

−∞
dx′ i(x− x′) ei

(x−x′)2
4t ψ(x′, 0)

−
∫ t

0
dt′
{

− 1

8

√

i

π

N
∑

j=1

λj(t
′)〈ψ(xj)〉i(x− xj)

2
exp

[

i
(x−xj)

2

4(t−t′)

]

(t − t′)5/2

+ (−1)3/4

4
√
π

N
∑

j=1

λj(t
′)〈ψ(xj)〉

exp
[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2

− 1

4
√
iπ

N
∑

j=1

λj(t
′)〈ψx(xj)〉(x− xj)

exp
[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2

}

.

(35)

Now putting x = x±j in the Equation (35) one can get also

integral equations for ψx(x
±
j )’s. Finally one has to solve the

system of integral equations for ψ(x±j )’s and ψx(x
±
j )’s to get the

complete solution.

3.1. Single δ′ Potential With a Time

Dependent Strength
Now we will elaborate more on the single δ′ interaction which is
described by the potential

V(x, t) = λ(t)δ′(x) (36)

The formal solution of the time dependent Schrödinger equation
for single δ′ can be obtained from the above section for N = 1,
x1 = 0 and λ1 = λ

ψ(x, t) =
∫ ∞

−∞
dx′

1√
4π it

ei
(x−x′)2

4t ψ(x′, 0)

−
∫ t

0
dt′
{

(−1)3/4

4
√
π
λ(t′)〈ψ(0)〉 x

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

+ i

2
√
iπ
λ(t′)〈ψx(0)〉

exp
[

i x2

4(t−t′)

]

√
(t − t′)

}

.

(37)

Frontiers in Physics | www.frontiersin.org 5 April 2020 | Volume 8 | Article 65

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Erman et al. Time Dependent Point Interactions

Similarly the expression for the ψx(x, t) is obtained from the
Equation (35)

ψx(x, t) =
1

4
√
iπ t3/2

∫ ∞

−∞
dx′ i(x− x′) ei

(x−x′)2
4t ψ(x′, 0)

−
∫ t

0
dt′
{

− 1

8

√

i

π
λ(t′)〈ψ(0)〉 x2

exp
[

i x2

4(t−t′)

]

(t − t′)5/2

+ (−1)3/4

4
√
π
λ(t′)〈ψ(0)〉

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

− 1

4
√
iπ
λ(t′)〈ψx(0)〉 x

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

}

.

(38)

For a given λ(t) one gets integral equations for ψ(x, 0) and
ψx(x, 0) by inserting x = 0 in Equations (37) and (38),
respectively:

ψ(0, t) =
∫ ∞

−∞
dx′

1√
4π it

ei
x′2
4t ψ(x′, 0)

−
∫ t

0
dt′
{

(−1)3/4

4
√
π
λ(t′)〈ψ(0)〉 1

(t − t′)3/2

+ i

2
√
iπ
λ(t′)〈ψx(0)〉

1√
(t − t′)

}

.

(39)

ψx(0, t) = 1
4
√
iπ t3/2

∫∞
−∞ dx′ (−x′)ei

x′2
4t ψ(x′, 0)

− (−1)3/4

4
√
π

∫ t
0 dt

′ λ(t′)〈ψ(0)〉 1
(t−t′)3/2 . (40)

The Equations (39) and (40) constitute an equation system
for ψ(0, t) and ψx(0, t). Solving this system one can determine
ψ(0, t) and ψx(0, t) and insert them to Equation (37) to get
the wave function for all times. When studying special cases
the expression of the Laplace transform of the wave function is
necessary. Therefore, utilizing Equation (33) we write the general
formula of the Laplace transform of the wave function for a delta
prime at x1 = 0 and λ1(t) = λ(t):

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

− 1

2
sgn(x) ei

√
is|x|

L
{

λ(t)〈ψ(0, t)〉
}

− i
1

2
√
is
ei
√
is|x|

L
{

λ(t)〈ψx(0, t)〉
}

.

(41)

Now will investigate some special cases.

3.1.1. Case 1: λ Is Constant

When the strength of the single δ′ interaction is constant, we
obtain from Equation (33)

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

− λ

2
sgn(x)ei

√
is|x| 〈 ¯ψ(0, s)〉

− i
λ

2
√
is
ei
√
is|x| 〈 ¯ψx(0, s)〉 ,

(42)

where 〈ψ̄(0, s)〉 = L
{

〈ψ(x, t)〉
}

and 〈ψ̄x(0, s)〉 = L
{

〈ψx(x, t)〉
}

.
We need also derivative of the Laplace transformed wave
function ψ̄(x, s) with respect to x.

ψ̄x(x, s) =
i

2

∫ ∞

−∞
dx′ sgn(x− x′) ei

√
is|x−x′| ψ(x′, 0)

− iλ
√
is

2
sgn2(x)ei

√
is|x| 〈 ¯ψ(0, s)〉

− λ

2

d sgn(x)

dx
ei
√
is|x| 〈 ¯ψ(0, s)〉 + λ sgn(x)ei

√
is|x|

2
〈 ¯ψx(0, s)〉 ,

(43)

where we have used d|x|
dx

= sgn(x). Now we find wave function
and its derivative at 0± by choosing x = 0± in Equations (42)
and (43):

ψ̄(0±, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0)∓ λ

2
〈 ¯ψ(0, s)〉

− iλ

2
√
is

〈 ¯ψx(0, s)〉 , (44)

where we take sgn(0±) = ±1. In order to find ψ̄(x, s) we need to
calculate 〈ψ̄(0, s)〉 and 〈ψ̄x(0, s)〉. From Equation (44) we get

〈ψ̄(0, s)〉 + iλ

2
√
is
〈ψ̄x(0, s)〉 =

1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0) .

(45)

In order to find another equation for 〈ψ̄(0, s)〉 and 〈ψ̄x(0, s)〉 we
calculate ψ̄x(0

±, s)

ψ̄x(0
±, s) = i

2

∫ ∞

−∞
dx′ sgn(−x′) ei

√
is|x′| ψ(x′, 0)

− iλ
√
is

2
〈ψ̄(0, s)〉 ∓ λ

2
〈ψ̄x(0, s)〉 . (46)

where we take
d sgn(x)

dx
|x=0± = 0. Using this equation we get

iλ
√
is

2
〈ψ̄(0, s)〉 + 〈ψ̄x(0, s)〉 =

i

2

∫ ∞

−∞
dx′ sgn(−x′) ei

√
is|x′| ψ(x′, 0).(47)

Solving Equations (45) and (47) we get

〈ψ̄(0, s)〉 = 1

2
√
is

(

1+ λ2

4

)−1
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∫ ∞

−∞
dx′

(

1− λ

2
sgn(x′)

)

ei
√
is|x′| ψ(x′, 0) , (48)

and

〈ψ̄x(0, s)〉 =
∫ ∞

−∞
dx′

[

− i

2
sgn(x′)− iλ

4

(

1+ λ2

4

)−1

(

1− λ

2
sgn(x′)

)]

ei
√
is|x′| ψ(x′, 0) , (49)

respectively. Substituting the expressions in Equations (48) and
(49) into Equation (42) we get

ψ̄(x, s) =
∫ ∞

−∞
dx′

{

ei
√
is|x−x′|

2
√
is

+
(

1+ λ2

4

)−1 [

− λ

4
sgn(x′)

− λ2

8
− λ

4
sgn(x) + λ2

8
sgn(x) sgn(x′)

]

ei
√
is(|x|+|x′|)
√
is

}

ψ(x′, 0) .

(50)

The factor that multiplies ψ(x′, 0) in the integral of the equation
above is the Green’s function:

Ḡ(x, x′, s) =
{

ei
√
is|x−x′|

2
√
is

+
(

1+ λ2

4

)−1 [

− λ

4
sgn(x′)− λ2

8

− λ

4
sgn(x) + λ2

8
sgn(x) sgn(x′)

]

ei
√
is(|x|+|x′|)
√
is

}

.

(51)

The Green’s function in terms of s variable can be converted using
Equation (10) to get

G(x, x′, t) = 1√
4π it

{

ei
(x−x′)2

4t +
(

1+ λ2

4

)−1 [

− λ

2
sgn(x′)

− λ2

4
− λ

2
sgn(x) + λ2

4
sgn(x) sgn(x′)

]

ei
(|x|+|x′ |)2

4t

}

.

(52)

So, we can write the wave function for all times as:

ψ(x, t) = 1√
4π it

∫ ∞

−∞
dx′

{

ei
(x−x′)2

4t +
(

1+ λ2

4

)−1

[

− λ

2
sgn(x′)− λ2

4
− λ

2
sgn(x) + λ2

4
sgn(x) sgn(x′)

]

ei
(|x|+|x′ |)2

4t

}

ψ(x′, 0) .

(53)

This result is completely consistent with the one given in Lange
[11] except the convention λ = −c.

3.1.2. Case 2: λ(t) = α/t

The general expression (41) for the Laplace transform of the
wave function in this particular case λ(t) = α

t , where α is a
constant, becomes

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)− 1

2
sgn(x) ei

√
is|x|

L

{α

t
〈ψ(0, t)〉

}

− i
1

2
√
is
ei
√
is|x|

L

{α

t
〈ψx(0, t)〉

}

.

(54)

Using the identity given in Equation (B.2) in Appendix B this
equation becomes

ψ̄(x, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)− 1

2
sgn(x) ei

√
is|x|

α

∫ ∞

s
ds′〈ψ̄(0, s′)〉 − i

1

2
√
is
ei
√
is|x| α

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 .
(55)

In order to calculate this expression we need ψ(0±, s) and
ψx(0

±, s). The first of this is easily calculated by choosing x = 0±

in Equation (55)

ψ̄(0±, s) = 1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0)

∓α
2

∫ ∞

s
ds′〈ψ̄(0, s′)〉 − iα

2
√
is

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (56)

In order to find ψx(0
±, s) we take the derivative of the Equation

(54) with respect to x variable and get

ψ̄x(x, s) =
i

2

∫ ∞

−∞
dx′ sgn(x− x′)ei

√
is|x−x′| ψ(x′, 0)

− i
√
isα

2
sgn2(x) ei

√
is|x|

∫ ∞

s
ds′〈ψ̄(0, s′)〉

− 2ei
√
is|x| α

d sgn(x)

dx

∫ ∞

s
ds′〈ψ̄(0, s′)〉

+ α

2
sgn(x)ei

√
is|x|

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 .

(57)

From this equation we get

ψ̄x(0
±, s) = − i

2

∫ ∞

−∞
dx′ sgn(x′)ei

√
is|x′| ψ(x′, 0)

− i
√
isα

2

∫ ∞

s
ds′〈ψ̄(0, s′)〉 ± α

2

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (58)

We denote u1(s) =
∫∞
s ds′〈ψ̄(0, s′)〉 and u2(s) =

∫∞
s ds′〈ψ̄x(0, s

′)〉. We obtain from Equations (56) and (58)

〈ψ̄(0, s)〉 = I0(s)

2
√
is
− iα

2
√
is
u1(s) (59)

and

〈ψ̄x(0, s)〉 = −i
I1(s)

2
− i

√
isα

2
u2(s). (60)

Here I0(s) =
∫∞
−∞ dx′ ei

√
is|x′|ψ(x′, 0) and I1(s) =

∫∞
−∞ dx′ sgn x′ei

√
is|x′|ψ(x′, 0). Note that 〈ψ̄(0, s)〉 = − du1(s)

ds
and

〈ψ̄x(0, s)〉 = − du2(s)
ds

. Inserting these equalities into Equations
(59) and (60) we obtain two coupled differential equations:

du1(s)

ds
− iα

2
√
is
u2(s) = − I0(s)

2
√
is

(61)
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and

du2(s)

ds
− i

√
isα

2
u1(s) = i

I1(s)

2
√
is

. (62)

Although the coefficients of the unknown functions are not
constants in these coupled equations, by taking the derivative of
the Equations (61) and (62) with respect to the variable s one
can uncouple these equations and get second order differential
equations for u1(s) and u2(s):

d2u1(s)

ds2
+ 1

2s

du1(s)

ds
+ α2

4
u1(s) =

α

4
√
is
I1(s)−

1

2
√
is

dI0(s)

ds
(63)

and

d2u2(s)

ds2
− 1

2s

du2(s)

ds
+ α2

4
u2(s) =

1

4is
I1(s)−

iα

4
I0(s)+

i

2

dI1(s)

ds
.

(64)
The solutions of these equations are elementary and easily

obtained after some algebra as

u1(s) = − π

4
√
2

∫ ∞

−∞
dx′ψ(x′, 0)

{∫ s

0
ds′

s1/4s′3/4√
is′

g1(s, s
′)

[

α sgn(x′)+ |x′|√
is′

]

ei
√
is′|x′|

}

(65)

where

g1(s, s
′) = J 1

4

(

αs′

2

)

J− 1
4

(αs

2

)

− J 1
4

(αs

2

)

J− 1
4

(

αs′

2

)

. (66)

Here and in the following expressions Ja(x), stands for the first
kind of Bessel’s function. The solution of the differential equation
in Equation (64) is

u2(s) = − π

4
√
2

∫ ∞

−∞
dx′ψ(x′, 0)

{∫ s

0
ds′ s3/4s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα − ix′√

is′

]

ei
√
is′|x′|

}

(67)

where

g2(s, s
′) = J 3

4

(

αs′

2

)

J− 3
4

(αs

2

)

− J 3
4

(αs

2

)

J− 3
4

(

αs′

2

)

. (68)

Note that

L

{

1

t
〈ψ(0, t)〉

}

= u1(s) =
∫ ∞

s
ds′〈ψ̄(0, s′)〉 (69)

and

L

{

1

t
〈ψx(0, t)〉

}

= u2(s) =
∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (70)

Thus using Equations (69) and (70) in (41) we get

ψ̄(x, s) =
∫ ∞

−∞
dx′ψ(x′, 0)

{

ei
√
is|x−x′|

2
√
is

ei
√
is|x−x′|

+ sgn(x)π α s1/4ei
√
is|x|

8
√
2i

∫ ∞

s
ds′s′1/4g1(s, s

′)

[

α sgn(x′)+ |x′|√
is′

]

(71)

ei
√
is′|x′| +

√
iπ α s1/4 ei

√
is|x|

8
√
2

∫ ∞

s
ds′s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα − ix′√

is′

]

ei
√
is′|x′|

}

.

Thus the Green’s function in Laplace transformed space for the
Schrödinger equation with a potential
V(x, t) = α

t δ
′(x) is

G(x, x′, s) =
{

ei
√
is|x−x′|

2
√
is

ei
√
is|x−x′| + sgn(x)π α s1/4ei

√
is|x|

8
√
2i

∫ ∞

s
ds′s′1/4g1(s, s

′)

[

α sgn(x′)+ |x′|√
is′

]

ei
√
is′|x′|

+
√
iπ α s1/4 ei

√
is|x|

8
√
2

∫ ∞

s
ds′s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα − ix′√

is′

]

ei
√
is′|x′|

}

.

(72)

This Green’ s function cannot be converted in terms
of elementary functions but it is possible to use
numerical methods to obtain Green’ s function in the
position-time space.

4. CONCLUSION

In this work, we have studied some analytically solvable
time-dependent point interactions. First, we have obtained
a formal expression of the propagator for finite number of
Dirac δ potentials with time dependent strengths and solved
the time dependent Schrödinger equation for this system.
Then we have investigated one δ potential with various time
dependent strengths in more detail and found the propagator
for N Dirac δ potential in the limit that centers are infinitely
separated. Furthermore, we have found an expression of
the propagator for finite number of δ′ potentials with time
dependent strengths and solved the time dependent Schrödinger
equation for this potential. We believe that these results
obtained are useful in models of ionization problems, where
the particle is initially bound to the time dependent δ or δ′

potentials. Such type of models have been studied (see e.g.,
[42, 51]) and the results obtained are compared with the
experiment [52].
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