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In this paper, we investigated the non-linear Schrödinger equation (NLS) to extract

optical soliton solutions by implementing the extended Sinh–Gordon equation expansion

method (ShGEEM). Optical soliton solutions included bright, dark, combined bright-dark,

singular soliton combined singular soliton solutions, and singular periodic wave solutions.

Our new results have been compared to these in the literature. Also, graphical

analysis was presented with 3D and contour graphs to understand the physics of

obtained solutions.

Keywords: extended Sinh-Gordon equation expansion method (ShGEEM), optical soliton, non-linear Schrödinger
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INTRODUCTION

In recent years, soliton propagation in non-linear optical fiber has become the most extensive topic
of research in the field of non-linear sciences. In non-linear optical fiber, the study of the non-linear
Schrödinger equation (NLS) plays an important role in order to understand the dynamical behavior
of optical soliton. NLS helps to provide exact soliton solutions in non-linear fiber optics. During the
last few years, in the study of optical solitons, many new research developments have taken place,
which is a great achievement in the field of soliton [1–15]. However, there are a lot of problems that
need to be solved.

Many new methods have been developed to tackle complicated problems in a very smooth
manner and provide exact soliton solutions of these problems such as the modified simple equation
method [16, 17], the extended trial equation method [18, 19], the tan(φ(ξ)

2 )-expansion method
[20, 21], and many others.

In this paper, our main focus is the study of NLS [22]. This equation has large physical
importance in non-linear optics.

iVt − Vxx + 2 |V|2V − 2σ 2V = 0, i =
√
−1, (1)

where V (x, t) is a complex function and σ is a constant. It should also be noted that, for σ = 0,
Equation (1) reduces to the non-Kerr law non-linearity as

Vt − Vxx + 2 |V|2V = 0, i =
√
−1 (2)
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To study Equation (1), we consider the following
wave transformation:

V (x, t) = p (ξ) eiφ(x,t), ξ = ρx− υt, ϕ = −kx+ ̟ t + θ (3)

where ϕ (x, t) is the phase component, and k, ̟ , θ , and υ

represent the frequency, wave number, phase constant, and
velocity of the soliton. By substituting Equation (3) into Equation
(1), we obtain the following real and imaginary equations:

(

d2

dξ 2
ϕ (ξ)

)

ρ2 + φ (ξ)
(

k2 − 2σ 2 − ̟
)

− 2 (φ (ξ))3 = 0, (4)

ν = 2kρ, (5)

ALGORITHM OF EXTENDED ShGEEM

To describe the mechanism of the extended Sinh–Gordon
equation method (SGEM) for differential equations, we consider
the equation [23]

ϒxt = ̺ sinh (ϒ) , (6)

where ϒ = ϒ (x, t) and ̺ is a nonzero constant.
Applying the traveling wave transformation ϒ (x, t) =

8(ζ) , ζ = λ(x − µt), to Equation (6), we acquire the following
form of non-linear ODE:

8
′′
= −

̺

λ2µ
sinh (8) , (7)

where8 = 8(ζ), λ is a wave number, andµ is the velocity of the
traveling wave. By applying the integration procedure, Equation
(7) can be found in a simplified form:





(

8
′
)

2





2

= −
̺

λ2µ
sinh2

(

8

2

)

+ r, (8)

where r is the constant of integration. Setting v (ζ ) = 8
2 , and

θ = − ̺

λ2µ
, into Equation (8) yields

v
′
(ζ ) =

√

θ sinh2 (v) + r, (9)

Equation (9) has the following set of solutions, by substituting
different values for given parameters θ and r.
Set I:

If we substitute r = 0, θ = 1 in Equation (9), we obtain

v′ (ζ ) = sin h (v), (10)

Simplifying Equation (10), we acquire the following solutions:

sin h (v (ζ )) = ±csch (ζ ) , or sin h (v (ζ )) = ±isech (ζ ) ,

(11)

and

cos h (v (ζ )) = ±coth (ζ ) , or cos h (v (ζ )) = ±tanh (ζ )!, (12)

where i =
√
− 1.

Set II:
If we substitute r = 1, θ = 1 in Equation (9), we have the

following equation:

v′ (ζ ) = cos h (v), (13)

After simplification in Equation (13), we have the
following solutions:

sin h (v (ζ )) = tan (ζ ) , or sin h (v (ζ )) = −cot (ζ ) , (14)

and

cos h (v (ζ )) = ±sec (ζ ) , or cos h (v (ζ )) = ±tan (ζ ) , (15)

To obtain the different wave solutions of non-linear partial
differential equations (NPDEs), we consider the equation in the
following form:

∁ (ϒ ,ϒt , ϒx, ϒxx, ϒxt , ϒtt , . . .) = 0, (16)

Step I: By using wave transformation ϒ (x, t) = 8(ζ) , ζ =
λ (x− µt) , we first transform Equation (16) into the
following NODE:

H
(

8,8
′
, 8

′′
, 828′, . . .

)

= 0, (17)

Step II: We suppose that Equation (17) has a new ansatz solution
in the following form:

8(v) =
∑

κ = 1

[

Bκ sinh (v (ζ )) + Aκcosh (v (ζ ))
]κ + Å0, (18)

where Å0, Åκ , Bκ , (κ = 1, . . . , n) are constants to be determined
later. The value of can be determined by balancing the highest
order dispersive term with the non-linear term in Equation (17).

Step III: We substitute Equation (18) for the fixed value of
in Equation (17) to obtain a polynomial form of equation in
v
′f sinhg (v) coshι (v) ,

(

f = 0, 1 and g, ι = 0, 1, 2 . . . . . .
)

. We get
the system of algebraic equations by equating the coefficients
of v

′f sinhg (v) coshι (v) to be all zero. We extract the values of
coefficients Å0, Åκ , Bκ , λ, µ by solving the system of algebraic
equations with the help of MAPLE 2016.

Step IV: Substituting the values of Å0, Åκ , Bκ , µ in Equations
(19)–(22), we obtain the following wave solutions to the non-
linear Equation (16):

8(ζ) =
N
∑

κ=1

[

±Bκ isech (ζ ) ± Åκ tanh (ζ )
]κ + Å0, (19)

8(ζ) =
N
∑

κ=1

[

±Bκcsch (ζ ) ± Bκ coth (ζ )
]κ + Å0, (20)

8(ζ) =
N
∑

κ=1

[

Bκ sec (ζ ) + Åκ tan (ζ )
]κ + Å0, (21)
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and

8(ζ) =
N
∑

κ=1

[

Bκ csc (ζ ) − Åκ cot (ζ )
]κ + Å0, (22)

APPLICATION OF EXTENDED ShGEEM TO
EQUATION (1)

In this section, Extended ShGEEM [24–29] is implemented to
Equation (1).

Considering a homogeneous balance between 8′′ and 83 in
Equation (4) yields N = 1. And setting the value of N in
Equations (18)–(22), we obtain

8(v) = B1sinh (v (ζ )) + Å1cosh (v (ζ )) + Å0, (23)

8(ζ) = ±B1isech (ζ ) ± Å1tanh (ζ ) + Å0, (24)

8(ζ) = ±B1csch (ζ ) ± Å1coth (ζ ) + Å0, (25)

8(ζ) = ±B1sec (ζ ) + Å1tan (ζ ) + Å0, (26)

8(ζ) = ±B1csc (ζ ) − Å1cot (ζ ) + Å0, (27)

Substituting Equation (23) together with its derivatives
in Equation (4), we get a polynomial equation in
v
′f sinhg (v) coshι (v) ,

(

f = 0, 1 and g, ι = 0, 1, 2 . . . . . .
)

. Using
some hyperbolic identities, we acquire a system of algebraic
equations by setting the coefficients of v

′f sinhg (v) coshι (v)
equal to zero. After simplifying the system of equations, we
obtain the values of Å0, Åκ , Bκ , ρ, k, λ with the help of Maple
16. Subsisting all the values of Å0, Åκ , Bκ , ρ, k, λ in any of
Equations (24)–(27), we found numerous different types of
soliton solutions of Equation (1).
Result I:

Å0 = 0, Å1 = ±
1

2
ρ,B1 = ±

1

2
ρ,̟ = k2 +

1

2
ρ2 − 2σ 2, (28)

Result II:

Å0 = 0, Å1 = 0, B1 = ±ρ, ̟ = k2 − ρ2 − 2σ 2, (29)

Result III:

σ 2Å0 = 0, Å1 = ±ρ, B1 = 0, ̟ = k2+2ρ2 − 2σ 2, (30)

Result IV:

Å0 = 0, Å1 = 0 , B1 = ±ρ, ρ =
√

k2 − 2σ 2 − ̟ , (31)

Result V:

Å0 = 0, Å1 = ρ ,B1 = 0, ρ =
1

2

√

−2k2 + 4σ 2 + 2̟ , (32)

Result VI:

Å0 = 0, Å1 =
1

2
ρ,B1 =

1

2
ρ, ρ =

√

−2k2 + 4σ 2 + 2̟ , (33)

Result VII:

Å0 = 0, Å1 = ∓
1

2
ρ,B1 = ±

1

2
ρ,̟ = k2 −

1

2
ρ2 − 2σ 2, (34)

Result VIII:

Å0 = 0, Å1 =
1

2
ρ, B1 =

1

2
ρ, ρ =

√

2k2 − 4σ 2 − 2̟ , (35)

Substituting the values of the above given results in Equations
(24)–(27), we get the following solutions.

Case I: Bright Optical Solitons
Substituting the values of the parameters given in Results II and
IV into Equation (24):

V1 (x, t) = ±iρsech
(

ρx− 2tkρ
)

ei(−kx+t(k2−ρ2−2σ 2)+θ), (36)

V2 (x, t) = ±i
√

k2 − 2σ 2 − ̟ sech
(

−2tk
√

k2 − 2σ 2 − ̟

+
√

k2 − 2σ 2 − ̟x
)

× ei(−kx+t̟+θ) (37)

where
(

k2 − 2σ 2 − ̟
)

> 0, for valid solutions.

FIGURE 1 | (A) Bright soliton Equation (36). (B) Contour plot.
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Case II: Dark Optical Solitons
Substituting the values of the parameters given in Results III and
V into Equation (24):

V3 (x, t) = ±ρ tanh
(

−2tkρ + ρx
)

ei(−kx+t(k2+2ρ2−2σ 2)+θ), (38)

V4 (x, t) =

(

1
2

√
−2k2 + 4σ 2 + 2̟

tanh
(

−tk
√
−2k2 + 4σ 2 + 2̟ + 1

2
√
−2k2+4σ 2+2̟x

)

)

ei(−kx+t̟+θ) (39)

where
(

−2k2 + 4σ 2 + 2̟
)

> 0, for valid solutions.

Case III: Combined Dark-Bright Optical
Soliton Solutions
Using the values of the parameters given in Results I and VI into
Equation (24):

V5 (x, t) = ±
1

2
ρ
(

isech
(

ρx− 2tkρ
)

+ tanh
(

ρx− 2tkρ
))

ei
(

−kx+t
(

k2+ 1
2 ρ2−2σ 2

)

+θ
)

, (40)

V6 (x, t) =

(

i
2

√
2̟ − 2k2 + 4σ 2

sech
(

−2tk
√
2̟ − 2k2 + 4σ 2 +

√
2̟ − 2k2 + 4σ 2x

)

)

+
( 1

2

√
2̟ − 2k2 + 4σ 2

tanh(−2tk
√
2̟ − 2k2 + 4σ 2 +

√
2̟ − 2k2 + 4σ 2x)

)

×ei(−kx+t̟+θ). (41)

where
(

2̟ − 2k2 + 4σ 2
)

> 0, for valid solutions.

Case IV: Singular Soliton Solutions
Using the values of the parameters given in Results II, III, IV, and
V into Equation (25):

V7 (x, t) = ±ρcsch(−2tkρ + ρx)ei(−kx+t(k2−ρ2−2σ 2)+θ), (42)

V8 (x, t) = ±ρ coth(−2tkρ + ρx)ei(−kx+t(k2+2ρ2−2σ 2)+θ)(43)

V9 (x, t) = ±
√

k2 − 2σ 2 − ̟ csch(−2tk
√

k2 − 2σ 2 − ̟

FIGURE 2 | (A) Dark soliton solution Equation (38). (B) Contour plot.

FIGURE 3 | (A) Singular solution Equation (43). (B) Contour plot.
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+
√

k2 − 2σ 2 − ̟x) × ei(−kx+t̟+θ) (44)

where
(

k2 − 2σ 2 − ̟
)

> 0, for valid solutions.

V10 (x, t) =

(

1
2

√
2̟ − 2k2 + 4σ 2

coth
(

−tk
√
2̟ − 2k2 + 4σ 2 + 1

2

√
2̟ − 2k2 + 4σ 2x

)

)

×ei(−kx+t̟+θ), (45)

where
(

2̟ − 2k2 + 4σ 2
)

> 0, for valid solutions.

Case V: Combined Singular Solitons
Substituting the values of the parameters given in Results I and
VI into Equation (25):

V11 (x, t) = ±
(

1

2
ρcsch

(

−2tkρ + ρx
)

−
1

2
ρ coth

(

−2tkρ + ρx
)

)

×ei(−kx+t(k2+ 1
2 ρ2−2σ 2)+θ), (46)

V12 (x, t) =













1
2

√
−2k2 + 4σ 2 + 2̟

×csch
(

−2tk
√
−2k2 + 4σ 2 + 2̟ +

√
−2k2 + 4σ 2 + 2̟x

)

+ 1
2

√
−2k2 + 4σ 2 + 2̟

× coth
(

−2tk
√
−2k2 + 4σ 2 + 2̟ +

√
−2k2 + 4σ 2 + 2̟x

)













×ei(−kx+t̟+θ), (47)

where
(

−2k2 + 4σ 2 + 2̟
)

> 0, for valid solutions.

Case VI: Singular Periodic Wave Solitons
Substituting the values of the parameters given in Result VII into
Equations (26), (27):

V13 (x, t) =
1

2
ρ
(

± sec
(

−2tkρ + ρx
)

∓ tan
(

−2tkρ + ρx
))

ei(−kx+t(k2− 1
2 ρ2−2σ 2)+θ), (48)

FIGURE 4 | (A) Combined singular solution Equation (47). (B) Contour plot.

FIGURE 5 | (A) Singular periodic soliton Equation (50). (B) Contour plot.
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V14 (x, t) =

























1
2

√
2k2 − 4σ 2 − 2̟

× sec
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

+ 1
2

√
2k2 − 4σ 2 − 2̟

× tan
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

























×ei(−kx+t̟+θ), (49)

where
(

2k2 − 4σ 2 − 2̟
)

> 0, for valid solutions.
Substituting the values of the parameters given in Result VIII

into Equations (26), (27):

V15 (x, t) =
1

2

(

±ρ csc
(

−2tkρ + ρx
)

± ρ cot
(

−2tkρ + ρx
))

ei(−kx+t(k2− 1
2 ρ2−2σ 2)+θ), (50)

V16 (x, t) =











1
2

√
2k2 − 4σ 2 − 2̟

csc
(

−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x

)

− 1
2

√
2k2 − 4σ 2 − 2̟

cot(−2tk
√
2k2 − 4σ 2 − 2̟ +

√
2k2 − 4σ 2 − 2̟x)











×ei(−kx+t̟+θ), (51)

where
(

2k2 − 4σ 2 − 2̟
)

> 0, for valid solutions.

GRAPHS AND DISCUSSIONS

In this section, we presented some of our obtained solutions in
the following figures.

Solutions V1, V2 of Equation (1) depict the bright optical
soliton solutions. Figure 1 represents the 3D surface of the bright
soliton solution of Equation (36) with a contour plot for given
parametric values ρ = 0.5, θ = 0.5, σ = 0.5, k = 0.5.

Solutions V3, V4 of Equation (1) show the dark optical soliton
solutions. Figure 2 represents the 3D surface of the dark optical
soliton solution of Equation (38) with a contour plot for given
parametric values ρ = 0.5, θ = 0.5, σ = 0.5, k = 0.5.

Figures 3, 4 represent the singular and combined singular
soliton solutions of Equation (1), obtained from solutions of
V8 and V12[Equations (38), (47)] for ρ = 0.065, θ = 1, σ =
0.09, k = 0.095 and ̟ = 0.05, θ = 5, σ = 0.05, k = 0.09.

Solutions V13, V14, V15, V16 of Equation (1) represent the
singular periodic wave solutions. Figure 5 illustrates the 3D
surface of the singular periodic wave solution of Equation (50)
with a contour plot for given parametric values ρ = 2.5, θ =
0.2, σ = 0.2, k = 7.5. For convenience, some other figures are
not reported.

COMPARISONS

In Cheemaa and Younis [22], Nadia Cheema and Muhammad
Younis investigated the traveling wave solutions of NLSE

by applying the extended Fan sub-equation method. The
obtained solutions V3, V4,V8, V10,V11, V12, V15, V16 in this
paper are equivalent to the solutions q1, q2, q6, q15, q16.
found in Cheemaa and Younis [22] for non-linear
Schrödinger’s equation. The extended Sinh–Gordon equation
expansion method provides a large variety of optical soliton
solutions [24–29]. By means of the extended Sinh–Gordon
equation expansion method, we found some new more
generalized exact solutions. Therefore, these new exact
solutions are not reported before for this equation in
the literature.

CONCLUSIONS

We have implemented the extended Sinh–Gordon equation
expansion method to solve the non-linear Schrodinger equation
for exact optical soliton solutions. The types of solutions
we reported include singular periodic wave solutions, bright,
dark, combined bright-dark, singular, and combined singular
soliton solutions. The non-linear Schrodinger equation is one
of the very major equations arising in the field of optic
fibers. Its new solutions are expected to help engineers and
scientists working in the field. It is worth mentioning that
the solutions obtained by us are more generalized. That is,
we have recovered not only many already existing solutions
but also many unreported solutions. These new solutions are
expected to help scientists working in the fields of optic fiber
to understand the phenomenon governed by the non-linear
Schrodinger equation. All the solutions have been verified for
their exactness. Wherever the reported solutions have been
recovered, they have been compared with their counterparts in
the literature.
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