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Previous work has determined the discrete geometrical invariant (DGI) in 2D space,

which allows the analysis of a pair of random sequences ([r1k, r2k], k = 1,2,…N)

containing an equal number of data points to be reduced to eight “universal” parameters

that present different inter-correlations between the two compared sequences. These

eight parameters can serve as a “universal” platform for comparison of various random

sequences of different natures. In this paper, we derive mathematical expressions for the

DGI in 3D space, which represent three random sequences in the form of a “trajectory” of

an “imaginary” particle in 3D space. The DGI is of the fourth order in 3D space and allows

three random sequences ({r1k, r2k, r3k}, k = 1,2,…N) to be compared with one another.

This unified and “universal” platform identifies (in total) six surfaces and 13 reduced and

compact parameters obtained from 28 basic moments and their intercorrelations up to

the fourth order, inclusively. The transcendental numbers π and E (Euler constant) are

considered as examples of the use of the DGI method, and their 3D images are derived

together with values for the 13 quantitative parameters that differentiate them from each

other. An application of the method, identifying two different classes of earthquake data,

is also presented to illustrate the potentially wide application of the approach to the

identification and classification of nominally random data sequences.

Keywords: discrete geometrical invariant(s) (DGI(s)), compression data and partition function, reduced

differentiation of the transcendental numbers π and E, classification of earthquakes (EQs), “reading” and

calibration of trendless sequences/noise

INTRODUCTION AND FORMULATION OF THE PROBLEM

The statement that any random sequence has a set of deterministic components sounds absurd
and unacceptable. In fact, many researchers claim that one can find true irreproducible random
sequences that cannot be compared or correlated with each other, basing their claim on the theory
of dynamic chaos. This statement is especially important inmodern cryptography, where the search
for cryptographically stable codes remains a real problem [1–3]. From a different point of view,
however, it is important to find fitting functions for complex systems, where the “best fit” model
function is absent. Any fitting function intended to provide a quantitative description of a given
set of data must be expressed in an analytical form and hence can be considered a deterministic
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function. Such a function can be used to fit a given set of
random data, implying the ability to construct a neuro-net and
make predictions for the continuation of the data sequence.
In [4, 5], for example, a “universal” fitting function was found
that represented a segment of the Prony series that can be used
for the fitting of data associated with any quasi-reproducible
experiment. For non-reproducible experiments, one can use the
NAFASS (Nonorthogonal Amplitude-Frequency Analysis of the
Smoothed Signals) approach [6, 7]. There is therefore something
of a contradiction: some researchers claim that it is impossible
to find a fitting function for “true” random sequences, but on
the other hand, research is carried out to find the desired fitting
function for complex systems, where the “best fit” function is
absent. Recently [8, 9], however, it has been shown that the
ideas expressed in the generalization of the Pythagorean theorem
proposed by Babenko [10, 11], which was proved for 2D and
3D figures with different symmetry, can be developed to take
into consideration different random sequences. In this way, a 2D
approach has allowed real data for different types of olive oils
to be compared [8] and Weierstrass-Mandelbrot sequences to be
compared together with other real data, such that the differences
between them could be expressed in terms of different inter-
correlations up to the fourth order, inclusively [9]. The approach
is reminiscent of the universal form of the partition function
proposed by Gibbs in classical/quantum statistical mechanics,
where all microscopic parameters are transformed to a finite and
compact set of thermodynamic variables. A similar formulation
for a pair of random sequences belonging to 2D space is realized
with the help of a discrete geometrical invariant (DGI).

Here we intend to extend the approach of [8, 9] to prove that
the compact form of the discrete geometrical invariant (DGI)
of the fourth order also exists in 3D space. This surface is of
the fourth order and admits the separation of random sequences
in a spherical coordinate system that allows the surface to be
expressed in analytical and visual form. The DGI that we obtain
plays a similar role to the partition function in statistical physics
by allowing the transformation of 3N random data points into
a 13D indication space. We think that the reduced number of
13 parameters (incorporating in itself 28 moments and different
intercorrelations up to the fourth order, inclusive) is sufficient
for classification of the variety of random sequences in 3D
space. Furthermore, the DGI of the fourth order that has been
obtained can be expressed in the form of six surfaces in the 3D
space. These 3D-images facilitate the analysis and classification
of different random sequences of various natures. The main
outcome of this approach is that it creates a “universal” platform
for the classification of different random sequences in one scheme
described by the set of 13 (28) unified parameters.

DESCRIPTION OF THE ALGORITHM AND
BASIC FORMULAS

In this section, we present the necessary “algebra” for derivation
of the desired DGI of the fourth order in 3D space including three
random sequences ({r1k, r2k, r3k} k= 1,2,. . .N).

We start from the fourth-order expression:
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Here, the upper indices of the coefficients of the right-hand side
indicate an arbitrary point M(y1, y2, y3) in the 3D space and its
order, having three arbitrary Cartesian coordinates (y1, y2, y3)
combined with the same number of random sequences rik, (i =
1,2,3). The lower indices indicate the corresponding power-law
exponents. This set of combinations is not complete; we omit

the combinations D
(1,2)
3,1 ,D

(1,3)
3,1 ,D

(2,3)
3,1 in order not to increase the

number of additional parameters too much. As necessary, these
three combinations can be imbedded into expression (1) or can
be considered separately. The calculations given below show that
there are in total 28 different parameters that incorporate: 3 first
moments, 6 second moments and their pair correlations, 10 third
moments and their inter-correlations and, finally, 9 moments of
the fourth order and their correlations. As will be shown below,
these parameters can be unified into 13 compact parameters
that are sufficient for analysis and classification of three basic
random sequences having 3N data points initially. We propose
that this reduced 13D indication space is sufficient for many
practical purposes.

The desired fourth order invariant is obtained from
the formula:

1

N
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In order to decrease the number of parameters and obtain
a compact expression that does not depend on them, we
use the condition that all linear terms in expression (2) are
equal to zero. This condition allows the desired invariant to
be found in the compact form and the realization of the
reduction procedure of 10 moments and inter-correlations of
the third order to three combinations only. If one avoids this
condition, the desired invariant loses its closed form. Besides,
this requirement allows three conditions between parameters
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FIGURE 1 | Three distributions of the “ideal” noise obtained for the

transcendental number π. They are compressed by the factor b = 20 and

contain only 1,000 data points. They form three initial random sequences that

can be transformed into three 3D-surfaces for identification of their differences

and formation of a specific “fingerprint”.

The ratios R(1,2), R(1,3), and R(2,3), which play an important role
in this work, satisfy the linear system of algebraic equations:

[4Q122 − Q233] · R
(1,2) + [4Q133 − Q223]

·R(1,3) − 2Q123 · R
(2,3) = 4Q111

[4Q112 − Q133] · R
(1,2) − 2Q123 · R

(1,3)

+ [4Q233 − Q113] · R
(2,3) = 4Q222

−2Q123 · R
(1,2) + [4Q113 − Q122] · R

(1,3)

+ [4Q223 − Q113] · R
(2,3) = 4Q333

(4)

Here, we introduce the following definitions for the 10
correlations of the third order:

Qαβγ = 1
N

N
∑

k=1

(rαk − 〈rα〉) ·
(

rβk −
〈

rβ
〉)

·
(

rγ k −
〈

rγ
〉)

≡

≡
〈

1rα1rβ1rγ
〉

, α,β , γ = 1, 2, 3.

(5)

We do not give the solutions of equation (4) in the explicit form
because the final expressions look cumbersome. The equation
system (4) plays a key role in the construction of the desired
invariant because it allows 10 correlations of the third order to
be reduced to three basic correlation parameters R(1,2), R(1,3),
and R(2,3). It is interesting to realize their symmetrical properties
relative to the input random sequences. If all three compared
sequences coincide with each other (r1k = r2k = r3k, k =

1,2,. . .N), then R(1,2) = R(1,3) = R(2,3) = R, and solving (4) gives
R = 1 (the case of spherical symmetry). If only two sequences
coincide with each other, r1k = r2k 6= r3k, i.e., the case of
cylindrical symmetry, the coupled linear system (4) is reduced
to a couple of linear equations relative to the variables R(1,2) 6=
R(1,3) = R(2,3). The number of triple correlations equals four in

FIGURE 2 | This is the first 3D surface formed by the curve y1(ϕ,θ). The scale

for the angles ϕ [OX axis] and θ [OY axis] is given in the discrete numbers of

the visible data points. Each angle is digitized as ϕj = 2π·(j/10), θj = π·(j/10),

and j = 0,1,…,10.

FIGURE 3 | Here we display the surface formed by the curve y2(ϕ,θ). The

scale for the angles ϕ [OX axis] and θ [OY axis] is given in the numbers

corresponding to the discrete data points (j = 0,1,..10).

this case (Q111, Q113, Q133, Q333).

[4Q111 − Q133] · R
(1,2) + [4Q133 − 3Q113] · R

(1,3) = 4Q111

−2Q123 · R
(1,2) + 2 [4Q113 − Q111] · R

(1,3) = 4Q333
(6)

The two unknown parameters R(1,2), R(1,3) from (6) can be
expressed in an explicit form.
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FIGURE 4 | Here we display the surface formed by the curve y3(ϕ,θ). The

scale is similar to that of the previous figures.

TABLE 1 | The comparison of the 13 basic parameters that correspond to the

trans-numbers π and E.

Parameter definition Trans-number π Trans-number E

<r1> 0.49858 0.49959

<r2> 0.95417 0.9529

<r3> 0.04474 0.04367

R(1,2) 8.0119 2.6854

R(1,3) 6.2287 2.7388

R(2,3) 40.133 −3.3575

M0,0 −0.02353 0.00311

M1,1 −0.19443 0.00503

M2,2 −0.16048 0.0045

M0,1 0.04525 −0.0178

M0,2 0.03694 −0.02339

M1,2 0.13709 −0.00428

I −2.8159E-4 −1.3277E-5

After all average transformations are made in expression (2),
the final expression for the DGI in 3D space takes the form:

K4(Y1,Y2,Y3)+ K2(Y1,Y2,Y3) = I (7)

This equation describes a 3D surface in terms of relative variables,
Y1, Y2, Y3. As in Nigmatullin and Vorobev [9] and Babenko [10],
we note that the expression for the constant I is found from the
condition that 2I is a constant expression including all quadruple
correlations figuring in the left-hand side. This condition leads to
the following expression for I:

I = Q1111 + Q2222 + Q3333 + R(1,2) (Q3312 − 2Q1122)+

+R(1,3) (Q2213 − 2Q1133) + R(2,3) (Q1123 − 2Q2233) .
(8)

FIGURE 5 | Three distributions of the initial “ideal” noise obtained for the

transcendental number E, with the initial sequence compressed by the factor

b = 20 and containing only 1,000 data points. They form three initial random

sequences that can be transformed into three 3D-surfaces for identification of

their differences and formation of a specific “fingerprint.” Visually, this noise

looks like the “ideal” noise depicted in Figure 1.

FIGURE 6 | This figure corresponds to the surface Z = y1(ϕ,θ) for the

trans-number E. The scale for the angles ϕ [OX axis] and θ [OY axis] is given in

the numbers of the visible data points. Each angle is digitized as X Axis = ϕj =

2π·(j/10), Y Axis = θj = π·(j/10), j = 0,1,…,10.

Here the correlations of the fourth order can be presented in the
following compact form:

Qαβγ δ =
1
N

N
∑

k=1

(rαk − 〈rα〉) ·
(

rβk −
〈

rβ
〉)

·
(

rγ k −
〈

rγ
〉)

·(rδk − 〈rδ〉) ≡

≡
〈

1rα1rβ1rγ 1rδ
〉

, α,β , γ , δ = 1, 2, 3.

(9)
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FIGURE 7 | This figure corresponds to the surface Z = y2(ϕ,θ) for the

trans-number E. The scale for the angles ϕ [OX axis] and θ [OY axis] is kept

the same. Each angle is digitized as X Axis = ϕj = 2π·(j/10), Y Axis = θj =

π·(j/10), j = 0,1,…,10. This figure should be compared with Figure 3, where

the same surface Z=y2 (ϕ,θ) for the trans-number π is shown.

FIGURE 8 | Here we display the surface formed by the curve y3(ϕ,θ). The

scale and axes notations are similar to previous figures.

After simple algebraic transformations, the fourth order term
K4(Y1, Y2, Y3) figuring in (7) can be expressed as:

K4 (Y1,Y2,Y3) =
3

∑

i=1
Y4
i + R(1,2)

(

Y2
3 · Y1 · Y2 − 2Y2

1Y
2
2

)

+

+R(1,3)
(

Y2
2 · Y1 · Y3 − 2Y2

1Y
2
3

)

+R(2,3)
(

Y2
1 · Y2 · Y3 − 2Y2

2Y
2
3

)

.

(10)

The coefficients R(1,2), R(1,3), R(2,3) are found from equation
system (4). The variables Y1,2,3 defining the coordinates of the
unknown point M (Y1, Y2, Y3) relative to the gravity center of

FIGURE 9 | The recorded signal corresponding to the EQ-1. After

compression by a factor of 5 (b = 5) the reduced signal contains 140 data

points only.

FIGURE 10 | Three curves y1,2,3(j) that were calculated with the help of

expression (19) and correspond to the EQ-1 signal in 3D—DGI projection

space. All 13 quantitative parameters are collected in Table 2.

the random sequences are expressed as:

Yi = yi − 〈ri〉 , 〈ri〉 =
1
N

N
∑

k=1

rik. (11)

The complete quadratic form figuring in (7) can be written as:

K2 (Y1,Y2,Y3) =

3
∑

α<β=1

MαβYαYβ . (12)
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FIGURE 11 | Three curves corresponding to the projections of the EQ-2

signal. As one can notice this signal is different to the signal shown in

Figure 9. Therefore, the usage of the y1,2,3(j) projections helps to differentiate

them, at least qualitatively.

FIGURE 12 | Comparison of this figure with Figure 10 allows a preliminary

conclusion about the statistical similarity of the EQ-1 with EQ-3 to be made,

i.e., the corresponding projections y1,2,3(j) are very similar to each other.

The six matrix coefficients Mαβ mixing the correlations of the
second and third orders, accordingly, can be presented as:

M11 = 6Q11 − 2Q22R
(1,2) − 2Q33R

(1,3) + Q23R
(2,3),

M22 = 6Q22 − 2Q11R
(1,2) + Q13R

(1,3) − 2Q33R
(2,3),

M33 = 6Q33 + Q12R
(1,2) − 2Q11R

(1,3) − 2Q22R
(2,3),

M12 = (−8Q12 + Q33)R
(1,2) + 2Q12R

(1,3) + 2Q13R
(2,3),

M13 = 2Q23R
(1,2) + (−8Q13 + Q22)R

(1,3) + 2Q12R
(2,3),

M23 = 2Q13R
(1,2) + 2Q23R

(1,3) + (−8Q23 + Q11)R
(2,3).

(13)

The constraints defined by equation set (4) allow the surface
(7) to be separated into spherical coordinates when it is written

FIGURE 13 | Plots for y1,2,3(j) of the EQ-4 signal. In spite of their quantitative

difference the EQs-1, 3, 4 have the same statistical nature.

FIGURE 14 | The projections y1,2,3(j) of the EQ-5 have quite different behavior

to those of EQ-1, 3, 4, 6, and the nature of this signal should be analyzed

separately.

relative to the initial variables Y1,2,3. Introducing the notations

y1 = 〈r1〉 + R (ϕ, θ) cos (ϕ) sin (θ) ,
y2 = 〈r2〉 + R (ϕ, θ) sin (ϕ) sin (θ) ,
y3 = 〈r3〉 + R (ϕ, θ) cos (θ) ,
0 ≤ ϕ < 2π , 0 ≤ θ < π , R ≥ 0,

(14)

and then inserting these variables into expression (7), one can
obtain the equation for the radial distance R(ϕ, θ):

R4 (ϕ, θ) P4 (ϕ, θ) + R2 (ϕ, θ) P2 (ϕ, θ) = I (15)

From equation (15), it is easy to find the positive root for the
desired radial distance R(ϕ, θ):

R (ϕ, θ) =





√

P22 (ϕ, θ) + 4I · P4 (ϕ, θ) − P2 (ϕ, θ)

2 · P4 (ϕ, θ)





1/2

(16)
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FIGURE 15 | The behavior of these projections y1,2,3(j) corresponding to EQ-6

are, in spite of their differences in amplitudes, similar to EQs-1,3,4. Therefore,

this analysis of the different EQs enables them to be classified as similar or

different.

TABLE 2 | The comparison of the 13 basic parameters that correspond to the

EQs-1–6.

Parameter

definition

EQ-1 EQ-2 EQ-3 EQ-4 EQ-5 EQ-6

<r1> −0.00685 −0.54278 −0.02754 0.53838 −0.56875 0.51126

<r2> 0.15427 −0.03818 0.13593 1.0115 −0.06519 1.0299

<r3> −0.16776 −1.07100 −0.19439 0.03459 −1.07987 −7.7699E-4

R(1,2) −11.675 1.41378 0.64384 0.81474 −1.79039 0.54332

R(1,3) −2.6388 0.28944 1.08751 1.3083 1.06854 1.1826

R(2,3) −1.6658 4.21355 0.55153 −0.07425 1.41171 0.13465

M0,0 5.2946 8.14784 0.32308 1.9778 12.24669 4.8296

M1,1 4.5826 −11.39183 0.59027 8.2579 9.36705 13.466

M2,2 0.43886 1.68236 0.65184 4.1815 4.74627 5.2402

M0,1 11.17 2.12666 −0.09848 −4.1677 25.24948 −2.6723

M0,2 −1.1022 10.16391 −0.80483 −7.2016 −17.47757 −9.7788

M1,2 −2.463 −28.90426 0.00492 4.5317 −19.20899 4.0414

I 1.1754 −2.82897 0.04084 5.2987 4.35078 15.882

The EQs having similar statistical nature are in bold.

The polynomials P2,4(ϕ, θ) in equations (15) and (16) are defined
by the following expressions:

P4 (ϕ, θ) = cos4 (ϕ) sin4 (θ) + sin4 (ϕ) sin4 (θ)

+cos4 (θ)+

+R(1,2)
[

sin (ϕ) cos (ϕ) sin2 (θ) cos2 (θ)

−2 · sin2 (ϕ) cos2 (ϕ) sin4 (θ)
]

+

+R(1,3)
[

sin2 (ϕ) cos (ϕ) sin3 (θ) cos (θ)
−2 · cos2 (ϕ) sin2 (θ) cos2 (θ)

]

+

+R(2,3)
[

sin (ϕ) cos2 (ϕ) sin3 (θ) cos (θ)
−2 · sin2 (ϕ) sin2 (θ) cos2 (θ)

]

.

(17a)

P2 (ϕ, θ) = M11cos
2 (ϕ) sin2 (θ) +M22sin

2 (ϕ) sin2 (θ)

+M33cos
2 (θ)+

+M12 sin (ϕ) cos (ϕ) sin2 (θ)

+M13 cos (ϕ) sin (θ) cos (θ)
+M23 sin (ϕ) sin (θ) cos (θ) .

(17b)

Here thematrix parametersMαβ (α,β= 1,2,3) are defined by (13).
Expressions (14), (16), and (17) completely determine the

desired DGI in 3D space. There are other DGIs admitting
the existence of other variables associated with the constants,
D
(1,2)
3,1 ,D

(1,3)
3,1 ,D

(2,3)
3,1 , that we have omitted here. However, we

stress that only the nullification of the linear terms allows
structure (7) to be constructed, which leads finally to the
closed parameterization of type (14), which includes other
combinations of spherical polynomials P2,4(ϕ, θ).When the cubic
and linear terms are included in the invariant of the fourth order
(2), the closed structure of equation (14) cannot be constructed
in the compact form. Concluding this section, we should stress
that one has three surfaces (14); however, expression (16) admits
the existence of a solution when the radicand becomes negative.
It corresponds to the condition I<0 in expression (16). In this
case, in addition to expression (14), one can have three additional
3D surfaces:

Y1 = Im (R (ϕ, θ)) cos (ϕ) sin (θ) ,
Y2 = Im (R (ϕ, θ)) sin (ϕ) sin (θ) ,
Y3 = Im (R (ϕ, θ)) cos (θ)
0 ≤ ϕ < 2π , 0 ≤ θ < π , R ≥ 0, Im (R (ϕ, θ)) > 0.

(18)

Expression (18) will be helpful also in cases where it is
necessary to have an additional source of information for
separation of the given random sequences from each other.
If this information is redundant and not necessary, one can
consider only the modulus of the radial distance |R (ϕ, θ)| =
√

Re (R (ϕ, θ))2 + Im (R (ϕ, θ))2. In this paper, in order to
decrease the number of figures, we consider only expression (14),
having in mind only the real part of the radial distance R(ϕ, θ).

APPLICATION THE DGI METHOD FOR
DIFFERENTIATION OF THE
TRANS-NUMBERS π AND E

In order not to overload this paper with a large number of figures,
we consider the 3D structure of two famous transcendental
numbers: (a) π = 3.141492653689793238462643. . . and (b) Euler
constant E = 2.718281828459045235360287. . . . Each of these
numbers containing 60,000 data points is combined into a set
of normalized triads. These 20,000 triads are transformed to an
“ideal” noise in accordance with the following procedure: (a)
the integer part is omitted; (b) each three digits of the infinite
sequence form a normalized number in the interval [0,1] after
division by 1,000. For example, the number of π forms the
following sequence of numbers falling into the interval [0,1].
π = 3.141 492 653 689 793 238 462 643 → 0.141, 0.492,
0.653, 0.689, 0.793, 0.238, 0.462, 0.643,. . . Normalized triads
for E are obtained similarly. Then we apply the procedure of
reduction to three incident points. This procedure is described
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in previous papers [12, 13]. It allows three types of noise to
be obtained from a sequence, i.e., sequences of group-localized
maximal [Yup(x)], minimal [Ydn(x)], andmean values [Ymn(x)],
correspondingly. After application of the reduction procedure
to three incident points (the compression parameter b = 20,
i.e., we compress twenty points in the sequence to their mean,
maximum, and minimum values), each local set {b1, b2,. . . ,
b20} is reduced to three incident points {max(b), min(b), and
mean(b)}, giving the desired three sequences. We want to stress
also that these three remarkable points are invariant relative to
all possible permutations inside the chosen local set {b}. They
are shown for the trans-number π in Figure 1 and contain
1,000 data points only. Relationship (14), as a “fingerprint,” gives
three surfaces for the real part of the radial distance R(ϕ, θ),
and, similarly, it can contain three additional surfaces for the
imaginary part of the radial distance, implying that Im R(ϕ, θ)
> 0, when the radicand in (16) becomes negative. As has been
mentioned above, we omit these surfaces for simplicity. Finally,
for the identification of the chosen trans-number π, we have
three 3D surfaces and a minimum number of 13 parameters
(three parameters identify the gravity center <ri> (i = 1,2,3),
three parameters R(1,2),(1,3),(2,3) associated with the reduced triple
correlations calculated from the linear system (4), six parameters
from (13) identifying the correlation of the second order, and,
finally, the value of the invariant I from relationship (8). This
13D indication and reduced space is in most cases sufficient for
finding the differences between compared random sequences. In
Figures 2–4, we show the three desired surfaces corresponding
to trans-number π for the real values of the radial distance
R(ϕ,θ) > 0. The 13 parameters identifying these surfaces are
given in Table 1. Similarly, we realize the same procedure for
E (see Figures 5–8 for details). The comparison of the reduced
parameters given in Table 1 for the two trans-numbers clearly
demonstrates their difference. These differences are seen in the
values of the parameters and even in their signs. It is not yet clear
which parameter is the most sensitive to a possible perturbation
(possible attack of the given “ideal” noise). The analysis of these
possible perturbations form the subject of further work.

DGI ANALYSIS OF EARTHQUAKE (EQ)
SIGNALS

Close analysis of the method we have proposed allows a
simplified version of the DGI presentation to be obtained, where
by applying a similar digitization to the corresponding angles
ϕj = 2π·j/N and θj = π·j/N (j = 0,1,. . . , N), we obtain specific
“projections” of all three surfaces onto the plane j/N. In this case,
we have three deterministic curves y1,2,3(j) that are defined as:

y1
(

j
)

= 〈r1〉 + R
(

ϕj, θj
)

cos
(

ϕj

)

sin
(

θj
)

,

y2
(

j
)

= 〈r2〉 + R
(

ϕj, θj
)

sin
(

ϕj

)

sin
(

θj
)

,
y3

(

j
)

= 〈r3〉 + R
(

ϕj, θj
)

cos
(

θj
)

,

ϕj = 2π
(

j
N

)

, θ = π

(

j
N

)

, Rj ≥ 0, j = 0.1...,N.

(19)

These three functions can serve for identification and
quantitative description of the given random/deterministic

sequences. The compact number of parameters that determine
the behavior remains the same and is equal to 13. The authors
decided to apply this simplified analysis to the differentiation
and recognition of available EQ data. It is known that the direct
quantitative description of EQ perturbations itself represents
an unsolved and complex problem. Recently, one of us (RRN),
together with other geophysicists, was able to apply the NAFASS
approach for describing the envelopes of a set of EQs [14].
However, in many cases, it is not sufficient. It is desirable to
have a unified quantitative platform that enables a comparison
of various EQs recorded from different sources. The approach
proposed here can serve as a promising tool for the solution
of this problem. Referring a potential reader to the reference
[14], the authors decided to compare six randomly taken EQ
signals recorded from one source (selected EQ signals were
obtained from Karagay Bulak station, the Kyrgyz Republic).
We are not going to consider this problem in detail, as,
for us, it is important only to demonstrate the possibility
of applying the DGI approach [expressed in its simplest
form (19)] to this complex phenomenon as a quantitative
description and possible classification of the complex
EQ signals.

The applied algorithm remains partly the same as was
used for the trans-numbers above. We reduced the chosen
EQ signal to three signals, again selecting their sequences {in
terms of the localized maximal [Yup(x)], mean [Ymn(x)], and
minimal [Ydn(x)] values}, correspondingly. The compression
factor b = 5. A typical triple EQ signal compressed by a
factor of five is shown in Figure 9. Application of expressions
(19) allows the desired y1,2,3(j) projections (j = 1,2,. . .N =

50) to be calculated. These three functions, associated with
specific projections of three surfaces on the common plane,
can be considered to be the quantitative identifiers of the
given EQ-1 signal. These function-projections are shown in
Figure 10. Similarly, one can calculate other EQ signals (2–6).
Their corresponding projection functions, together with their
signals, are depicted in Figures 11–15, and their parameters
are collected in Table 2. Preliminary analysis of these figures
allows it to be concluded that the functions y1,2,3(j) for the
EQs-1, 3, 4, 6 have the same statistical nature. The other
two EQs-2, 5, are different and should be analyzed separately.
Therefore, even the simplified version of the DGI approach,
realized in a planar projection, allows a naive user (i.e.,
one not having any specialized geophysical education) to
differentiate the EQs and select those that are similar with close
statistical characteristics. It implies that this routine work can
be realized with the help of a computer program containing the
DGI algorithm.

DISCUSSION AND CONCLUSIONS

In this paper, the authors propose an extension of the
DGI approach realized previously for 2D space. It allows
the comparison of three random sequences characterizing
a complex object (having, in general, a 3D structure) and
the transformation of it into six surfaces for its reliable
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identification and classification with other objects. Each surface
has 13 compact parameters (derived from 28 moments
and their inter-correlations), that allow it to be used as
a general platform for the comparison of different random
or deterministic sequences. We stress again that the DGI
transformation is similar to the partition function used in
the statistical mechanics. The same compression of the 3N
data points initially present in the given sequences by the
proposed DGI approach derived for 3D space allows them
to be transformed to 13 (28) statistical parameters for their
quantitative description.

Examples, associated with the classification of the famous
transcendental numbersπ and E and randomly taken EQ signals,
have been presented in order to convince a skeptical reader
to approach this work from a wide perspective and to see in
it a general method that will undoubtedly find a wide field
of application in the solution of different problems associated
with the quantitative analysis of different random and even
deterministic functions. The framework of the paper does not
allow the authors to present other interesting possibilities for the
proposed DGI method. They do hope that potential researchers

will quickly understand its nature and potential power for
application in the natural sciences and modern engineering.
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