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In this article, the fractional (3+1)-dimensional nonlinear Shrödinger equation is analyzed

with kerr law nonlinearity. The extended direct algebraic method (EDAM) is applied to

obtain the optical solitons of this equation with the aid of the conformable derivative.

Optical solitons are investigated for this equation with the aid of the EDAM after the

nonlinear Shrödinger equation transforms an ordinary differential equation using the wave

variables transformation.
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INTRODUCTION

Over the past few decades, there have been many studies on optical solitons [1–10]. The nonlinear
wave process can be viewed in several scientific fields, such as optical fiber, quantum theory,
plasma physics, fluid dynamics [11, 12], etc. Solitons are one pulse forms which are created due
to the proportion between nonlinearity and wave stage speed dispersal impacts in the system. The
envelope soliton, which holds both fast and slow vibrations, performs for nonlinearity proportions
with the wave group dispersal impacts in the physical systems. The envelope soliton is controlled by
a small field adjusted wave package whose dynamics are controlled via the nonlinear Schrödinger
equation (NSE) [1–12]. The analytical solutions of these NPDEs plays a significant part in the
analysis of nonlinear phenomena. Over the past few decades, numerous methods were developed
to obtain analytical solutions of NPDEs such as the inverse scattering method [13], the Sine—
cosine function method [14], the tanh-expansion method, and the Kudryashov-expansion method
[15], etc.

There has also been considerable interest and significant theoretical improvements in fractional
calculus, applied in many fields, and in fractional differential equations and its applications [16–
25]. Nonlinear fractional partial differential equations (FPDEs) are a special type of NPDEs.
Several studies have discussed these equations. Additionally, FPDEs are significant in several
analyses because of the iterative reporting and the probability explanation process in water wave
hypothesis, nonlinear optics, fluid dynamics, plasma physics, optical fiber, quantum mechanics,
signal processing, and so on. Several researchers have investigated the wave solutions of NPDEs
with the aid of somemathematical algorithms. Besides, one advantage of the conformable fractional
derivative is that it is easy to apply [26–34].
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The conformable derivative of order α ∈ (0, 1) is defined as
the following expression [28]

tD
α f (t) = lim

ϑ→0

f (t + ϑt1−α)− f (t)

ϑ
, f :(0,∞) → R.

A few properties for the conformable derivative are given by
[28, 31].

a)tD
αtη = ηtα−η, ∀α ∈ R,

b)tD
α(fg) = ftD

αg + gtD
α f ,

c)tD
α(fog) = t1−αg′(t)f ′(g(t)),

d)tD
α(

f

g
) =

gtD
α f − ftD

αg

g2
.

Recently, there have been about the conformable model of
fractional computations [25–33].

The (3+1)-dimensional dependent NLSE is given by:

iqt + ∇2q+ λF(
∣

∣q
∣

∣

2
)q = 0. (1.1)

in [10–12], there are analyzed symmetry reductions for the
(3+ 1)-dimensional NLSE.

Then, Equation (1.1) can be scripted for fractional (3+1)-
dimensional NLSE with conformable derivatives as:

iDα
t q+ ∇2q+ λF(

∣

∣q
∣

∣

2
)q = 0, t > 0, 0 < α ≤ 1. (1.2)

where F is a real-valued function and has the fluency of the

complex function F(
∣

∣q
∣

∣

2
)q :C → C. When the F(

∣

∣q
∣

∣

2
)q is k

times continuously differentiable, the following situation can
be written,

F(
∣

∣q
∣

∣

2
)q ∈

∞
∪

m,n=1
Ck((− n, n)× (−m,m);R2).

For Kerr law nonlinearity, Equation (1.2) is converted to

iDα
t q+ ∇2q+ λ

∣

∣q
∣

∣

2
q = 0, t > 0, 0 < α ≤ 1. (1.3)

In (1.3), the first expression describes the evolution condition,
the second expression, describes the dispersal in x, y, and z
directions while the third expression describes nonlinearity.
Solitons are the consequence of an attentive adjust between
dispersal and nonlinearity.

In this work, we analyze the fractional (3+1)-dimensional
nonlinear Shrödinger’s equation with the aid of a conformable
derivative operator to find solitons using the extended direct
algebraic method (EDAM) [8, 26].

This method is a powerful in solving nonlinear evolution
equations and it can be applied to solve the above mentioned
equations. This has led to the innovation of many modern
techniques to solve these equations. There are several advantages
and disadvantages of this modern method. Although a
closed type soliton solution can be found with the aid of
this process, the disadvantage of this method is that this
technique cannot calculate the conserved quantities of nonlinear
evolution equations.

DESCRIPTION FOR THE EXTENDED
DIRECT ALGEBRAIC METHOD

Suppose the general nonlinear partial differential equation,

U(q, q
(α)
t , qx, qy, qz , q

(2α)
t , qxx, , ...) = 0. (2.1)

where q = q(x, y, z), U is a polynomial in q = q(x, y, z, t) and the
x, y, z, t define the partial fractional derivatives.

• Assume the traveling wave transformation:

q(x, y, z, t) = v(φ), φ = x cos ξ + y cos κ + z cosχ +Q
tα

α
,

(2.2)
where cos2 ξ + cos2 κ + cos2 χ = 1.

With the aid of (2.2) wave transformation, Equation (2.1) is
changed into an ordinary differential equation for v(φ) :

B(v, vφ , vφφ , vφφφ , ...) = 0. (2.3)

where the sub-indices define the ordinary derivatives with
respect to φ.

• Suppose the solution of Equation (2.3),

v(φ) =
M

∑

j=0

ajG
j(φ), (2.4)

where aM 6= 0 and G(φ) can be satisfied as follows:

G′(φ) = ln(E)(f G2(φ)+ gG(φ)+ h), E 6= 0, 1, (2.5)

where f , g, h are arbitrary constants.
• M is obtained by balancing between the highest order

derivatives and the nonlinear terms in Equation (2.3).
• First, Equation (2.4) and Equation (2.5) are placed into

Equation (2.3). Then each coefficient of the polynomials
are synchronized to zero ve algebraic equations of aj (j =
1, 2, ...,M), Q and f , g, h are obtained.

• The obtained system is solved and parameters aj (j =
1, 2, ...,M) and Q are found. Thus, solutions of Equation (2.3)
are found.

Where a few specific solutions of Equation (2.3) are given by;

1) When 9 = g2 − 4hf < 0 and f 6= 0,

G1(φ) = − g
2f

+
√
−9
2f

tanE(
√
−9
2 φ),

G2(φ) = − g
2f

+
√
−9
2f

cotE(
√
−9
2 φ),

2) When 9 = g2 − 4hf > 0 and f 6= 0,

G3(φ) = −
g

2f
+

√
9

2f
(− tanhE(

√
9φ)± i

√
1� sec hE(

√
9φ)),

G4(φ) = −
g

2f
+

√
9

2f
(− cothE(

√
9φ)±

√
1� csc hE(

√
9φ)),
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3) When fh > 0 and g = 0,

G5(φ) =
√

h
f
(tanE(2

√

hfφ)±
√

1� secE(2
√

hfφ)),

G6(φ) =
√

h
f
(− cotE(2

√

hfφ)±
√

1� cscE(2
√

hfφ)),

4) When fh < 0 and g = 0,

G7(φ) = −
√

− h
f
tanhE(

√

−hfφ),

G8(φ) = −
√

− h
f
cothE(

√

−hfφ),

5) When g = 0 and f = h,

G9(φ) =
1

2
(tanE(

h

2
φ)− cotE(

h

2
φ)).

6) When g = 0 and f = −h,

G10(φ) = −
1

2
(tanhE(

h

2
φ)+ cothE(

h

2
φ)).

7) When g2 = 4hf ,

G11(φ) = −2h
gφ ln(E)+ 2

g2φ ln(E)
.

8) When g 6= 0 and h = 0,

G12(φ) = −
1g

f (coshE(gφ)− sinhE(gφ)+ 1)
,

Remark. The generalized trigonometric and hyperbolic
functions are defined as Ghosh and Nandy [13];

sinE(φ) = 1Eiφ−�E−iφ

2i , cosE(φ) = 1Eiφ+�E−iφ

2 ,

tanE(φ) = −i1Eiφ−�E−iφ

1Eiφ+�E−iφ , cotE(φ) = i1Eiφ+�E−iφ

1Eiφ−�E−iφ ,

secE(φ) = 2
1Eiφ+�E−iφ , cscE(φ) = 2i

1Eiφ−�E−iφ

sinhE(φ) = 1Eφ−�E−φ

2 , coshE(φ) = 1Eφ+�E−φ

2 ,

tanhE(φ) = 1Eφ−�E−φ

1Eφ+�E−φ , cothE(φ) = 1Eφ+�E−φ

1Eφ−�E−φ ,

sec hE(φ) = 2
1Eφ+�E−φ , csc hE(φ) = 2

1Eφ−�E−φ .

where φ is an independent variable, 1 6= 0 and � 6= 0 are called
deformation parameters.

SOLUTIONS OF TIME FRACTIONAL
(3+1)-DIMENSIONAL NLSE WITH KERR
LAW NONLINEARITY USING
CONFORMABLE DERIVATIVES

Now, suppose the wave variable transform:

q(x, y, z, t) = ei(a(x cos ξ+y cos κ+z cosχ)+w tα

α
)v(φ),

φ = x cos ξ + y cos κ + z cosχ + Q tα

α
,

(3.1)

By placing Equation (3.1) into Equation (1.3) and taking
the properties of conformable time fractional derivatives into
account, the following nonlinear equation is obtained,

v′′(φ)+ λv(φ)3 − (a2 + w)v(φ) = 0, (3.2)

with Q = −2a.
Suppose the solution of Equation (3.2) is expressed as a finite

series. We can write this solution as follows,

v(φ) = M

k=0
akG

k(φ) (3.3)

where G(φ) satisfies Equation (2.5), φ = x cos ξ + y cos κ +
z cosχ + Q tα

α
and ak for k = 1,M are values to be described.

With the aid of balance v′′(φ) with v(φ)3 in Equation (3.3), is
foundM = 1.

We can write the solution of Equation (3.3) in the
following form:

v(φ) = a0 + a1G(φ), (3.4)

First, Equation (3.4) and Equation (2.5) are placed into the
Equation (3.2). Then each coefficient of the G(φ) synchronized
to zero ve from algebraic equations and the following values
are found:

a0 = ig ln(E)√
2λ

, a1 = i
√
2f ln(E)√

λ
,

w = −a2 − 1
2 (g

2 − 4fh) ln2(E).
(3.5)

The solutions of Equation (1.3) are found as follows; (ϒ =
ei(a(x cos ξ+y cos κ+z cosχ)−(a2+ 1

2 (g
2−4fh) ln2(E)) t

α

α
) and 9 = g2 −

4hf )

1) When 9 < 0 and f 6= 0, the singular periodic solutions are
obtained as follows

q1 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(− g

2f
+

√
−9
2f

tanE(
√
−9
2 φ))),

q2 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(− g

2f
+

√
−9
2f

cotE(
√
−9
2 φ))),

2) When 9 > 0 and f 6= 0, the singular soliton solutions are
obtained as follows

q3 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(− tanhE(

√
9φ)

±i
√

1� sec hE(
√

9φ))),

q4 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(− cothE(

√
9φ)

±
√

1� csc hE(
√

9φ))),

3) When g = 0 and fh > 0, the singular periodic solutions are
obtained as follows

q5 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(
√

h
f
(tanE(2

√

hfφ)

±
√

1� secE(2
√

hfφ)))),

q6 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(
√

h
f
(− cotE(2

√

hfφ)

±
√

1� cscE(2
√

hfφ)))),
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4) When g = 0 and fh < 0, the singular and dark soliton
solutions are obtained as follows

q7 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(−

√

− h
f
tanhE(

√

−hfφ))),

q8 = ϒ(
ig ln(E)√

2λ
+ i

√
2f ln(E)√

λ
(−

√

− h
f
cothE(

√

−hfφ))),

5) When g = 0 and f = h, the singular periodic solution is
obtained as follows

q9 = ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(
1

2
(tanE(

h

2
φ)− cotE(

h

2
φ)))),

6) When g = 0 and f = −h, the combined soliton solution is
obtained as follows

q10=ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(−

1

2
(tanhE(

h

2
φ)+cothE(

h

2
φ)))),

7) When g2 = 4hf , the rational solution is obtained as follows

q11 = ϒ(
ig ln(E)
√
2λ

+
i
√
2f ln(E)
√

λ
(−2h

φ ln(E)g + 2

g2φ ln(E)
)),

8) When h = 0 and g 6= 0, the singular soliton is obtained
as follows

q12 = ϒ(
ig ln(E)
√
2λ

+

i
√
2f ln(E)
√

λ
(−

1g

f (coshE(gφ)− sinhE(gφ)+ 1)
)),

GRAPHICAL EXPRESSION OF THE
SOLUTIONS

In this section we draw 2D and 3D graphics for some of the
solutions obtained in the previous section. We obtained these

graphics using Matlab. In Figures 1, 2, we show some numerical
models and q1 and q4. 3D plots are drawn for −10 ≤ x ≤ 10,
−10 ≤ t ≤ 10. 2D plots are drawn for x = 0.1.

The above graphics were drawn for h = 1, f = 2, g = 1,E =
2.7, a = 0.5, λ = 2, ξ = κ = π

2 ,α = 0.8,1 = � = 1 in (a) and
for h = 1, f = −1, g = 0,E = 2.7, a = 0.5, λ = 2, ξ = κ =
π
2 ,α = 0.8,1 = � = 1 in (b).

We obtained the sum of solutions found for the fractional
(3+1)-dimensional NLSE with kerr law nonlinearities via the
conformable fractional derivative operator. In addition, we
presented some graphics of solutions in Figures 1, 2.

CONCLUSION

In this article, the EDAM is applied to find new soliton
solutions for the (3+1)-dimensional NLSE with kerr law

FIGURE 2 | The 2D graphic of the (3+1)-dimensional NLSE with kerr law

non-linearities for a different value of α.

FIGURE 1 | The surface and 2D graphic for the (A) |q1|2, (B) |q7|2.
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nonlinearities, with the aid of the conformable fractional
derivative operator. The dark, bright, and combined optical
solitons are obtained. There are 12 different situations in
these solutions. The existence of solutions obtained from
these functions are all stipulated through limitation states
that are also listed in addition to the solutions. Some
interesting figures are also presented in Figures 1, 2. The
method applied in this article is appropriate to investigate
several problems that are face in the fields of engineering
and science.
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