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A major subset of solar–terrestrial relations, responsible, in particular, for the driver of

space weather phenomena, is the interaction between the Earth’s magnetosphere and

the solar wind. As one of the most important modes of the solar–wind–magnetosphere

interaction, magnetic reconnection regulates the energy transport and energy release in

the solar–terrestrial relation. In situ measurements in the near-Earth space are crucial

for understanding magnetic reconnection. Past and existing spacecraft constellation

missions mainly focus on the measurement of reconnection on plasma kinetic-scales.

Resolving the macro-scale and cross-scale aspects of magnetic reconnection is

necessary for accurate assessment and predictions of its role in the context of space

weather. Here, we propose the AME (self-Adaptive Magnetic reconnection Explorer)

mission consisting of a cross-scale constellation of 12+ CubeSats and one mother

satellite. Each CubeSat is equipped with instruments to measure magnetic fields and

thermal plasma particles. With multiple CubeSats, the AME constellation is intended to

make simultaneous measurements at multiple scales, capable of exploring cross-scale

plasma processes ranging from kinetic scale to macro scale.

Keywords: cross-scale, constellation, magnetic reconnection, solar-terrestrial relation, CubeSats, mother

satellite, space weather
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INTRODUCTION

Magnetic reconnection is a fundamental process of plasma
transport and energy conversion, with applications in the near-
Earth space, solar plasmas, astrophysical systems, as well as
in the laboratory. Magnetic reconnection regulates the energy
transfer in the solar–terrestrial connection. In the solar corona,
magnetic reconnection explosively releases energy and sets off
solar eruptions such as the coronal mass ejections and solar
flares. In the Earth’s magnetosphere, the dayside and night-side
magnetic reconnection regulates the energy flow and energy
release within the magnetosphere.

Intrinsically, magnetic reconnection is a multi-scale plasma
process, involving global-scale, meso-scale, and kinetic-scale
structure and processes. The “breaking” and “reconnection” of
magnetic field lines occur in a limited region. The consequence
and the impact of reconnection on the near-Earth space,
however, are of a global nature. The Earth’s magnetosphere
is an ideal laboratory for in situ exploration of magnetic
reconnection. Existing spacecraft constellation missions, such
as Cluster and MMS, focused on measurements of magnetic
reconnection on ion and electron kinetic scales. Cross-scale
and macro-scale physics of reconnection, which is crucial
for a precise characterization of its role in the context of
space weather, remains to be explored. Generally, at least
four spacecraft are needed to distinguish between spatial and
temporal variations, and to measure gradients in the observed
system. However, a large number of spacecraft is needed for
multiple-scale measurements. While usage of standard spacecraft
may imply a huge cost for a constellation mission, a CubeSat
Constellation provides a cost-effective approach to achieve
multiple-scale measurements.

With the above considerations, we propose a CubeSat
Constellation “AME” (self-Adaptive Magnetic reconnection
Explorer), which aims to make simultaneous cross-scale in situ
measurements of space plasmas. In this paper, we describe the
science rationale and the proposed mission profile of AME.
The organization of the paper is as follows. The Magnetic
Reconnection in Solar–Terrestrial Relation section presents an
overview of magnetic reconnection in the context of space
weather. The Scientific Rationale for Cross-Scale Constellation
Missions section describes existing constellation missions and
the need for future cross-scale constellation missions. The
Self-adaptive Magnetic Reconnection Explorer section presents
the science opportunity, mission profile, and payload of the
AME mission. The Summary section gives the summary
and conclusions.

MAGNETIC RECONNECTION IN
SOLAR–TERRESTRIAL RELATION

A major part of solar–terrestrial relations, responsible in
particular for space weather phenomena, is the transport
of energy, mass, and momentum into the near-Earth space
during the interaction between the solar wind and Earth’s

magnetosphere. One of the most important modes of the solar–
wind–magnetosphere interactions is magnetic reconnection.
Simply speaking, magnetic reconnection refers to the “cut” and
“reconnection” of magnetic field lines in magnetized plasmas.
This process is usually accompanied with energy conversion
and transport of plasmas of different origins, responsible for
explosive energy release phenomena such as solar flares, CMEs,
and geomagnetic storms (e.g., [1]).

In the near-Earth space, magnetic reconnection regulates
the energy entry and energy release within the magnetosphere.
As illustrated in Figure 1, two primary sites for magnetic
reconnection in themagnetosphere are the sub-solar point on the
dayside and the rear magnetotail on the night-side. The dayside
magnetopause reconnection enables the entry of magnetic flux
and energy from the solar wind into the magnetosphere. This is
the key process of the solar–terrestrial connection. The transfer
of solar wind energy into the near-Earth space is a driver
of geomagnetic activity. The night-side magnetic reconnection
regulates the release of energy within the magnetosphere. The
stretched magnetotail stores the energy from the solar wind.
Magnetic reconnection releases the stored energy explosively
within the magnetosphere and drives geomagnetic storms and
substorms [3–5], producing various space weather effects such
as enhanced relativistic electron fluxes in the radiation belts,
increase in the ionospheric scale height, induced currents on
ground power transmission lines, and bright auroras.

SCIENTIFIC RATIONALE FOR
CROSS-SCALE CONSTELLATION
MISSIONS

Magnetic reconnection is a spectacular example of a physical
system dominated by multi-scale physics. In the large-scale
region outside the site of where magnetic field lines “reconnect,”
the so-called MHD (magnetohydrodynamic) approximation
applies. Plasma elements connected at one time by a single
magnetic field line remain connected at subsequent times. The
magnetic field lines appear to be “frozen-in” with the plasma
motion. Magnetic reconnection is possible only where the MHD
approximation breaks down, which happens in a thin non-MHD
layer of electron-kinetic scales.

Understanding the nature of reconnection relies on the
knowledge of both large-scale and kinetic-scale plasma
properties. In the context of solar–terrestrial relation, one
of the most important questions for reconnection is how
much of the incoming solar wind plasma reconnects and
flows into the magnetosphere, vs. how much of it flows
around the magnetosphere without reconnecting [6]? This is
substantially equivalent to the question of what determines the
rate of magnetic flux transfer into the Earth’s magnetosphere
(reconnection rate). Whether the reconnection rate is
determined primarily by the properties of the non-MHD
layer in the reconnection site or, on the contrary, by the global
dynamics and boundary conditions that govern the large-scale
plasma flow is a question debated since the earliest studies
of reconnection and still not conclusively settled. Another
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FIGURE 1 | Magnetic reconnection in the magnetosphere during southward magnetic field in the solar wind. Reconnection sites are indicated by two box areas. The

LMN coordinate system represents the local normal boundary coordinate system for reconnection at different locations: L is the direction of the reconnecting

magnetic field line, M is tangential to the normal and in the direction of the electric current, and N is the normal direction to the boundary layer. The figure is modified

from Figure 1 of Burch et al. [2] under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

important question of reconnection is what determines the
reconnection onset. Since the initial theoretical studies of
large-scale reconnection [e.g., [7]], it is expected that the onset
and evolution of the reconnection process becomes governed
not only by the physics of the diffusion region but also by the
large-scale external magnetic fields and plasmas. The onset of
reconnection must involve special conditions in thin current
sheets—otherwise, it would occur all the time, which it does
not. Similarly, the cessation of reconnection must involve
interactions with a changing external environment; otherwise,
it would continue forever. To date, we know neither what
these conditions are nor where and when they occur, but it
is exceedingly likely that their occurrence is shaped by the
large-scale regions separated by the reconnecting layers.

In the near-Earth space, existing constellation missions such
as Cluster, THEMIS, and MMS have fulfilled their science goals
with four or five spacecraft placed at key positions or key
separation distances from each other. The characteristic scales of
previous and existing constellationmission in themagnetosphere
are summarized in Figure 2. Cluster initially addressed plasma
processes at the ion-scale and then measured two scales at the
same time with two spacecraft separated from a few kilometers
up to a few tens of thousands of kilometers. In such a case,
however, the 3-D tetrahedron scale was lost with only four
spacecraft. THEMIS addressed the storm and substorm process,
and showed that magnetic reconnection in the near-Earth region
was responsible for the initiation of magnetic energy release and
the subsequent energy transport to the inner magnetosphere
and ionosphere [3, 4]. The three inner THEMIS spacecraft

were measuring fluid scales (Earth radii), while the other two
spacecraft were at 10 and 20 RE away down the tail, covering
the global scale. However, the five THEMIS probes were not
in the form of a tetrahedron. Again, ion and electron scales
could not be measured simultaneously, and the kinetic processes
were not studied using multi-spacecraft. More recently, MMS
focused on reconnection process at the electron scale with the
four spacecraft in a tetrahedron shape and in the range of 7–
50 km [2]. The electron diffusion region could be thus recognized
and appropriately studied (e.g., [8–10]).

The next step forward to advance the physics of reconnection
is, therefore, to measure simultaneously the electron-scale and
ion-scale processes in the reconnection layer and their effect
on the magnetosphere at fluid and global scales. It is timely
to embark now on the questions of how the reconnection
microphysics shapes the large-scale space environment and how
the latter feeds back on the former. Answering this question
requires a multi-scale observational approach.

A cross-scale mission allows putting magnetic reconnection
process into the context of solar–terrestrial relation. Such
a mission will answer how reconnection facilitates energy
conversion on large scales and how this conversion couples
to the dynamics of the small electron diffusion region. It can
further address the critical question of why reconnection operates
in small bursts at times and in large eruptions at others. It
will furthermore shed light on the puzzle of whether large
eruptions are a collection of small bursts occurring together, or
whether they are a different, organized, type of reconnection
altogether [11]. Understanding when and how these disruptions
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FIGURE 2 | Schematic showing the spatial scales of past magnetosphere constellation missions and proposals since year 2000.

occur is also critical to predict the harmful effects on the
space environment, which are collectively referred to as “space
weather” [12].

THE SELF-ADAPTIVE MAGNETIC
RECONNECTION EXPLORER (AME)
MISSION

Mission Overview
Previous and existing constellation missions of space plasma, for
instance, Cluster [13], MMS [8, 14], and THEMIS [15], consist
of four to five identical spacecraft. In principle, four spacecraft
are needed to distinguish spatial and temporal variation at one
specific scale. Such a constellation mission can provide detailed
measurements at a single spatial scale. Owing to the limited
number of spacecraft in previous constellations, however, the
connection of pace plasma process across multiple scales cannot
be fully explored.

The proposed self-Adaptive Magnetic reconnection Explorer
(AME) mission consists of a base satellite and a constellation of
12 small CubeSats. The basic concept of the mission is to employ
a constellation of spacecraft to take simultaneous measurements
at differential spatial scales, exploring processes and structures
from kinetic-scale to macro-scale in space plasmas. The AME
mission proposal is currently in the stage of pre-phase A in the
Strategic Priority Research Program on Space Science II, Chinese
Academy of Sciences. In Table 1, we present a summary of the
AME mission profile.

Scientific Objectives
The scientific rationale for cross-scale constellation missions
has been well-described in the previous section. With the
achievement of previous constellationmission at individual scale,
many fundamental questions of magnetic reconnection remain
to be explored. With all the above considerations in mind,

TABLE 1 | AME mission profile overview.

AME mission summary

Main scientific objectives 1. Understand the cross-scale connection of the

multiple-scale processes of magnetic reconnection,

ideally to the point of predicting when, where and

how fast magnetic reconnection occurs in the

context of solar–terrestrial coupling 2. Provide

understanding of cross-scale coupling in

fundamental space plasma process such as in

turbulence structures and waves

Payloads CubeSats:

Magnetometer, thermal ion/electron detector for

each of the 12 CubeSats

Mother satellite:

Magnetometer, thermal ion/electron detector,

high-frequency plasma wave analyzer, energetic

particle detector, AC-electric field measurement

Spacecraft platform CubeSats: a heritage from WN5000 Subsat

Mother satellite: Platform has been designed, with a

propulsion system and a Subsat-ejection mechanism

Mass budget CubeSats: 12 × 67 kg

Base satellite: 605 kg

Dry mass: 1,409 kg

Total mass with propellant: Option # 1, 2,084 kg;

Option # 2, 2,495 kg

Mission duration >4 years

Orbit and Launcher Launcher: CA-3A

Spacecraft mass load: ∼2,200 kg

Orbit, Option # 1: Phase 1, 1.2Re × 10Re; Phase 2,

1.2Re × 22 Re

Option # 2: 10Re × 22Re orbit

we propose the following science objective for the cross-scale
AME mission.

Science objective # 1. Understand the cross-scale connection
of the multiple-scale processes of magnetic reconnection, ideally
to the point of predicting when, where, and how fast magnetic
reconnection occurs in the context of solar–terrestrial coupling.
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The investigation of fundamental aspects of reconnection,
such as when, where, and how fast it occurs, requires the
understanding of the cross-scale coupling and the global aspect
of reconnection. Answers to these questions are necessary for
quantitative prediction of the role of reconnection in the context
of space weather. Magnetic reconnection is usually studied
in LMN (local-normal-boundary) coordinate system (see the
description of LMN in Figure 1). In the following, we specify the
science questions in this LMN coordinate.

Magnetic reconnection occurs in the thin current layer
associated with magnetic field shear. However, magnetic field
shear does not necessarily imply magnetic reconnection is
occurring. Current layers without signatures of magnetic
reconnection abound in space plasmas. Predicting when
reconnection occurs relies on the understanding on the sequence
of processes related to reconnection onset. Figure 3 shows
the observational signals related to the onset of magnetic
reconnection. These signatures of reconnection are considered to
be detected in the LN plane in the LMN coordinate system.

At the largest spatial and time scales, the upstream conditions
are considered to affect the pre-condition of onset. The upstream
plasma beta (the ratio of particle pressure to magnetic pressure),
combined with the magnetic field shear angle, is believed to be
an important parameter to determine if reconnection can occur
for a certain current layer (e.g., [16]). On a smaller scale, the
thinning of the current layer to an ion-scale is considered as a pre-
onset signal in reconnection models. The thinning of the current
sheet enhances the free energy for reconnection to occur. Thin
current sheets can be unstable to a variety of plasma instabilities,
including the lower-hybrid drift instability and the collisionless
tearing mode instability (e.g., [17–19]). In addition, thin current
layers down to the ion scale are also favorable for introducing
two-fluid effects and fast reconnection (e.g., [20]). On ion scales
to macro scale, the formation of diverging ion outflows from the
reconnection site is the most definite signal for the occurrence of
magnetic reconnection (e.g., [21, 22]). On the ion kinetic scale
to the meso scale, the Hall fields and current, which have been
also interpreted as an kinetic Alfven mode [23–25] or whistler
mode [26], are considered as a key element for fast collisionless
reconnection [20, 27]. On the electron kinetic scale, off-diagonal
terms of the electron pressure tensor are expected to be related
to the reconnection electric field [28, 29]. Similarly, off-diagonal
terms of the ion pressure tensor are considered to balance the
reconnection electric field on the ion-scale as well (e.g., [30–32]).
Kinetic signals of reconnection at the electron-scale also include
the crescent-like distributions, as was recently observed by the
MMS mission (e.g., [8]). As described above, processes related to
the reconnection onset occur at multiple scales. It would require
a cross-scale constellation mission to resolve the relation and the
time sequence of these processes. Such cross-scale measurements
can be directly compared with particle-in-cell (PIC) and MHD-
PIC simulation models (e.g., [33–35]).

In simple terms, the reconnection site where magnetic field
lines “reconnect” takes the shape of an “X-line” along the
direction of the electric current (in the M direction in LMN
coordinate system). The extent of the “X-line” characterizes the
spatial scale of reconnection in space. On the largest scale, a case

study in the solar wind indicates that the X-line can be as large
as several hundred Re [36]. Measurements in the magnetosphere
suggest that the X-line of magnetopause reconnection may
extend from several Re to tens of Re along the magnetopause
[37, 38]. The magnetopause X-line may also appear patchy or
of limited extent as inferred from in situ and ground-based
measurements ([39] JGR; [40]). Compared with existing in situ
multipoint missions, a cross-scale constellation would havemuch
larger spatial coverage in terms of number of measurement
points. As illustrated in Figure 4, such a constellation would
allow systematic investigations of the spatial characteristics of
the X-line.

A central question of magnetic reconnection is how fast
it occurs [41, 42]. The meaning of “how fast reconnection
occurs” includes at least two elements, the magnetic topology
changes and the energy conversion. This is illustrated in Figure 5.
In the scale of the reconnection diffusion region, the change
in magnetic topology allows the mixture of plasmas from
different origins. On the global-scale, magnetic flux transfer
produced by magnetic reconnection is a crucial element in the
global evolution of the magnetosphere [43]. Energy conversion
occurs in a limited diffusion region in the Sweet–Parker model
and also in the extended ion exhaust region downstream.
In the Petschek model, the diffusion is limited, and energy
conversion mostly occurs in switch-off shock at the boundary
[42]. Recent observations suggest that coherent structures, for
instance reconnection fronts and flux ropes, play an important
role in energy conversion following reconnection onset [44,
45]. These coherent structures occur over a wide range of
spatial scales. A cross-scale constellation mission can study
the relation between different energy conversion processes at
different scales.

Science objective #2. Provide understanding of cross-scale
coupling in fundamental space plasma process such as in
turbulence, structures, and waves.

In addition to studying magnetic reconnection, a cross-
scale constellation can provide multi-scale investigations on a
variety of phenomena in space plasmas, including, but not
limited to, turbulence, shock waves, current sheets, Kelvin
Helmholtz instability, various types of discontinuities, flux ropes,
dipolarization fronts, fast ion busty bulk flows, plasma waves, etc.

Turbulence and coherent structures universally exist in
space plasmas. Kinetic-scale turbulence is strongly coupled
to dissipative processes such as magnetic reconnection and
shocks [46–48]. One form of turbulence in space plasmas
is flow eddies. Recent MMS spacecraft provide detailed
observation of electron-scale vortices [49, 50] and larger-scale
flow vortices [51].

Current sheets (CSs) are widely spread in space plasmas and
play an important role in storage and release of magnetic energy
in the magnetosphere. Multiple-scale physics is a key ingredient
of the formation of CSs. Observations and theoretical analysis
revealed that multiple current–layer structures could formwithin
a CS (e.g., [52–54]).

Kelvin–Helmholtz instability (KHI) often occurs on the
Earth’s magnetopause. Rolled-up K.-H. waves and the mixing
of magnetosheath and magnetospheric were observed as Cluster
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FIGURE 3 | Science questions of AME mission. Schematic of the scales of physical processes in the reconnection onset problem. This includes but not limited to

upstream conditions, solar wind/external perturbation, current sheet thinning, reconnection outflows, Kinetic Alfven Waves (KAW)/Hall signals, micro-instabilities,

kinetic signals of electron/ion distributions.

FIGURE 4 | Science questions of AME mission. Spatial scales of magnetic reconnection X-line.

was skimming the magnetopause around the apogee (e.g., [55]).
Such a large-scale structure as K.-H. waves would require cross-
scale simultaneous measurements, with spacecraft at fluid scale,
ion scale, and electron scale in order to be further understood
(e.g., [56–58]).

The bursty bulk flow (BBF) in the magnetotail and the
associated dipolarization front exhibit a multiple-scale nature,
as revealed by multiple spacecraft measurements. At MHD
scale, flow patterns of BBFs participate in the large-scale
magnetosphere–ionosphere coupling process (e.g., [59, 60]). At
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FIGURE 5 | Science questions of AME mission. Spatial scales of physical processes in the energy conversion and topology changes in reconnection.

ion scale and electron scale, kinetic signatures of dipolarization
fronts have been resolved by Cluster [61], THEMIS [62], and
MMS (e.g., [63, 64]).

Plasma waves in the magnetosphere occur over a broad range
of temporal and spatial scales. They can contribute to particle
acceleration, scattering, and energy transport, which can modify
magnetic reconnection and plasma boundaries. Plasma waves
of a variety of scales are frequently observed in relation to
reconnection, ranging from low-frequency kinetic Alfvén waves
(KAW), to intermediate-frequency lower hybrid and whistler-
mode waves, electrostatic broadband and solitary waves, as well
as the high-frequency upper hybrid, Langmuir, and electron
Bernstein waves [65].

Studies of structures and waves from four-point
measurements usually rely on the assumption of linear
interpolation and laminar structure at scales of spacecraft
separation [66]. Studies of turbulence usually need to apply
Taylor’s hypothesis or equivalent assumptions to convert
timescale to spatial scales. With a cross-scale constellation
mission, some assumptions of the four-point/single-point
analysis method can be relaxed or replaced. New multi-point
analysis method, such as non-linear interpolation [67], may be
applied to shed new insights in studies of turbulence, structures,
and waves.

Scientific Payload
The magnetometer and thermal plasma (ion/electron) detectors
are embarked on the main spacecraft and all the 12 CubeSats. In
addition to these three payloads, a high-frequency plasma wave
analyzer, an energetic particle detector, and a DC electric field
instrument are employed on the main spacecraft.

The Magnetometer (MAG)
The vector magnetometer measures the three-dimensional
magnetic field vector in the frequency range from DC to 40Hz.

The configuration of MAG sensor and its deployable boom are
shown in Figure 6. The MAG is a heritage from the payload for
the CAS-ESA joint SMILEmission. Its specifications are shown in
Table 2. The range of measurement for MAG is from−12,800 nT
to +12,800 nT. The noise level is 0.1 nT (RMS). The mass of the
MAG instrument, itself (without the deployable boom), is around
3.2 kg, and the boom is 5.7 kg. Its power is 5.0 W.

25 ev−30 keV Thermal Plasma
(Ion/Electron) Detector
The thermal plasma (ion/electron) detector measures the three-
dimensional particle distribution and its correspondingmoments
in the range of 5 eV−30 keV. The instrument includes two
electrostatic analyzers, which take measurements for ions and
electrons, respectively. The payload has a heritage from the light
ion analyzer (LIA) for the CAS-ESA joint SMILE mission. The
configuration of one electrostatic analyzer and electronic box is
shown in Figure 7. The specifics of the plasma (ion/electron)
detector are presented in Table 3. The energy resolution is 10%.
The energy range is 5 eV−30 keV. The angle range of the detector
is 360◦ in the azimuthal direction and 90◦ in the elevation
direction. To make a measurement of the full 45 solid space,
either a spinning spacecraft or two identical sensors are needed.
For a time cadence of 0.5 s, the data rate for each instrument is 48
kbps. The mass and power for each instrument is 3 kg and 6.0W,
respectively. The investigation to miniaturize the plasma detector
is underway.

Electric Field Measurement
The double-probe electric field instrument uses the potential
difference between two conducting spheres separated by booms
to measure the electric field. The electric field is obtained by
dividing the potential difference by the length between the
probes. Since the main spacecraft is not spinning, and the length
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FIGURE 6 | Configuration of MAG: (Top) the MAG sensor; (Bottom) boom.

TABLE 2 | Summary of the performance of MAG.

Mass 0.2 kg per sensor (2x)

2.2 kg E-box

0.4 kg harness

5.7 kg boom and release mechanism

Mass allocation 10.4 (+20%)

Power 5.0 W

Measurement

range

±12,800 nT in orbit

±64,000 nT for ground tests

Resolution 24 bit

Noise 0.1 nT (RMS)

Sample rate 40 Hz

Data rate 6 kbps

of the boom is limited (10m for each boom), only the AC-electric
field is measured as required. Spinning mother spacecraft and
longer electric field boom will also be considered to implement
accurate measurements of Dc and low-frequency electric fields.
The specifications of the electric field measurement areas follow.
The dynamic range of the electric field measurement is ±1,000
mV/m. The electric field resolution is 15 µV/m. The frequency
band of the measurement is from 10Hz to 5 kHz. The range of
the voltage on the probe is −100 V∼ + 100V. The resolution of
the voltage on the probe is 3mV. The mass and power is 1.5 kg

FIGURE 7 | The configuration of the thermal plasma (ions) detector, including

the sensor and the electronic box.

TABLE 3 | Summary of the performance of thermal plasma (ion/electron) detector.

Measurement Particle 3-D velocity distribution functions

Energy range 0.005–30 keV/q

Energy resolution (1E/E) ≤0%

Angle range (azimuth) 360◦

Angle range (elevation) 90◦

Angular resolution (AZ × EL) Azimuth: 30◦ coarse, 7.5◦ fine

Elevation: ≤6◦

Mass 3.0 kg

Power 6 W

Data rate >48 kbps

and 2.5W for each pair of the probes. The study of the possibility
to employ a third pair of booms in the direction perpendicular to
the spacecraft plane is underway.

High-Frequency Plasma Wave Analyzer
The high-frequency plasma wave analyzer employ a tri-axial
search-coil magnetometer (SCM) to measure the 3D wave
magnetic field vector in the frequency range from 10Hz to
10 kHz. The noise level is of the designed SCM and is <5
× 10−3nT/√Hz at 10Hz, 2.5 × 10−4nT/√Hz at 200Hz, 5

× 10−5nT/√Hz at 2 kHz, 6 × 10−5 nT/√Hz at 10KHz.
The waveform provided by the SCM, together with electric
field data provided by the double-probe measurement, is
processed inside the digital signal processor of the high-
frequency plasma wave analyzer. A deployable boom would
be necessary to avoid perturbations from the spacecraft on
the measurements.

Energetic Particle Measurement
The energetic particle detector measures the energy spectra and
the pitch angle of the energetic protons and electrons. The
energetic particle detector includes three sets of sensors and one
electronic box. Each set of sensors include one proton sensor
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FIGURE 8 | The configuration of the main spacecraft and the CubeSats of the AME mission.

FIGURE 9 | The spacecraft product tree of the main spacecraft and CubeSats.

and one electron sensor. The energy range of the measured
proton is 50 keV−4 MeV, the field-of-view is 40◦, and the
energy resolution is 20%. The energy range of the electrons
is 50 keV−400 keV, the field-of-view is 30◦, and the energy
resolution is 20%.

Spacecraft, Orbit, and Launcher
The spacecraft configuration is shown in Figure 8. The left
side shows the configuration of the combination of the AME
constellation fleet. The 12 CubeSats are installed at the top of the
main spacecraft. A release mechanism will deploy each CubeSat
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FIGURE 10 | The configuration of the spacecraft orbit in option # 1.

FIGURE 11 | The configuration of the spacecraft orbit in option # 2.

when the spacecraft reaches the nominal orbit. The design of the
CubeSats is shown in the middle top of the figure. The dimension
of each CubeSat before (after) the deployment is 484mm ×
225mm× 226mm (484mm× 1,025mm× 226mm). The main

spacecraft dimensions, after unfolding solar panels, are 8,964mm
× 2,554mm× 2,801 mm.

The spacecraft product tree is presented in Figure 9.
The main spacecraft includes the Platform (PLF) consisting
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FIGURE 12 | The mass budget of the AME mission.

of six sub-systems. The structure sub-system includes the
structure components, the solar panel mechanism and additional
components. The power sub-system includes the batteries, the
power control unit (PCDU), and the solar array and harness. The
thermal sub-system includes the heaters, thermistor, heat pipe,
multi-layer insulation (MLI), white and black paint, and radiator.
The onboard data handling (OBDH) sub-system include the
global position system (GPS) and solid state memory unit
(SMU). The telemetry, tracking, and commanding (TT&C)
sub-subsystem includes the transponder, high-power amplifier
(HPA), and antenna. The TT&C system is responsible for
uploading the telemetry commands, downloading all telemetry
data, and ranging and tracking of the satellite. We rely on the
inter-satellite communication system to transmit science data
from CubeSats to the mother satellite. All the data are then
transmitted from the mother satellite to ground stations via a
high-gain antenna and a Ka band transmitter. The TM and TC
data rate are 8,192 and 2,000 bps, respectively. For the inter-
satellite communication system, a broad-beam UHF antenna
and a UHF transmitter are essential. The main specifications for
the UHF antenna are frequency, 436 MHz; bandwidths, 1f ≥
2 MHz; gain, G ≥ −3 dBi (within Beam range); polarization
mode, linear. The specifications for the UHF transmitter are
frequency, 436 MHz; output power, >6W; data rate, 4 kbps;
carrier modulation, OQPSK; data coding, differential coding
of the NRZ-L type; channel coding, convolutional coding (7,
1/2), of constraint length 7 and ratio 1/2. The configuration of
UHF antenna and transmitter is feasible and has been widely
used for inter-satellite communication missions, for instance,
xx-6 and Kuai Xiang mission at the Innovation Academy for
Microsatellites. The Attitude and Orbit Control System (AOCS)
sub-system includes the reaction wheels, the sun sensor, star
tracker, Fiber Gyro, and propulsion system. The average power
for the platform and payload of the main satellite is 200 and

180W, respectively. The average power for the platform and
payload of each CubeSat satellite is 67 and 30W, respectively.

Two of the spacecraft orbits are envisaged to fulfill the science
requirement to measure the reconnection near the dayside
magnetopause and in the night-side magnetotail. The orbit
option # 1 is shown in Figure 10.

Option #1 includes a dayside phase of 2 years and a night-
side phase of 2 years. In the first dayside phase of the mission,
the perigee is 1.2Re, the apogee is 10Re in the dayside, and
the inclination is 23.5◦. In the night-side phase, the perigee is
1.2Re, the apogee is 22Re in the night-side, and the inclination
is 23.5◦. Option # 2 is an optional orbit that can measure the
magnetopause reconnection near the perigee and magnetotail
reconnection at the apogee. Option #2 is shown in Figure 11.
The parameter of the orbit is as follows. The perigee is 10Re, the
apogee is 22Re, and the inclination is 23.5◦.

The main satellite and the 12 CubeSats form multiple
tetrahedrons around the main satellite. The baseline option
of the satellite formation (formation #1) is to divide the 12
CubeSats into three four-satellite groups. Each four-satellite
group forms a tetrahedron at a specific scale. The three tetrahedra
have three different scales, at 1–10 km (electron scale), 100–
1,000 km (ion scale), and 1–3Re (macro scale). Another optional
formation (formation #2) is to divide the 12 CubeSats into four
three-satellite groups. Each group of three CubeSats, together
with the main spacecraft, forms a tetrahedron. The fleet forms
four tetrahedron at 1–10 km (electrons scale), 100 km (ion
scale), 1,000–10,000 km (meso scale), and 3–5Re (macro scale).
In either formation, the configuration of each tetrahedron is
self-adjustable to form a suitable configuration in the LMN
coordinate system. The input for adjusting the configuration is
based on either real-timemeasurement data or advance planning.
The propulsion system of the CubeSats will have sufficient fuel to
maintain and adjust the tetrahedral formation.
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The mass budget of the mission is shown in Figure 12.
The platform (PF) part of the main satellite is 529 kg. The
payload (PLM) part of the main satellite is 76 kg. The mass of
each CubeSat is 67 kg, including 26 kg of payload and 9.5 kg of
propulsion system. The total dry mass for the main satellite and
the 12 CubeSats is 1,409 kg. The Launcher is Long March CZ-
3A, which has the capacity to carry a spacecraft mass of 2,200 kg
with a maximum envelope of 3,350 ∗ 8,887mm. Including the
propellant, the total mass for launch is 2,084 kg for option # 1
and 2,495 kg for option # 2. The launch site is expected to be at
Xichang. The ground stations are Sanya and Miyun.

SUMMARY

A cross-scale constellation mission allows investigating the
global-scale consequences of magnetic reconnection in the near-
Earth space and its coupling to the micro-scale physics in the
reconnection layer. Such a constellationmissionmakes it possible
to put the investigation ofmagnetic reconnection into the context
of solar–terrestrial relations and space weather.

A constellation of four spacecraft is needed to make
measurements at one specific scale. Amultiple-scale constellation
thus requires a large number of spacecraft. To provide a cost-
effective approach to achieve such multiple-scale measurements,
we propose the AME Constellation consisting of 12 small
CubeSats surrounding a base satellite. This constellation enables
simultaneous space plasma measurements at different spatial
scales ranging from kinetic-scale to macro-scale. In this paper,

we have described the scientific rationale and the profile of the
proposed AME mission. This is a logical next step forward to
advance the understanding of reconnection in the context of
solar–terrestrial relations.
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