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This article presents the fractional Laplace transform with the help of new iterative method
(NIM) is extended for an estimated solution of coupled system of fractional order PDEs.
The time fractional Whitham-Broer—Kaup system is taken as a test example where
derivatives are given in the Caputo sense. Numerical results found by the proposed
method are compared with that of ADM, VIM, and OHAM. Numerical consequences
display that the proposed method is reliable and operative for solution of fractional order
coupled system of PDEs. The proposed method shows better accuracy in even two
iterations compared to the methods given above.

Keywords: fractional Whitham-Broer-Kaup equations, coupled system of time fractional PDEs, new iterative
method, fractional calculus (FC), Whitham-Broer-Kaup system, Caputo sense, ADM, VIM and OHAM

INTRODUCTION

As we know that many technical and engineering issues that arises in day-by-day existence are
modeled via mathematical tools form fractional calculus (FC), i.e., fractional calculus can be used
to simulate various real phenomena involving long memory, e.g., using fractional derivative, one
can model HIV/AIDS model based on the effect of screening of unaware infectives [1]. Maximum
problems that arise are non-linear, and it is not usually probable to locate systematic results of
such problems since some researchers introduced new approaches for finding the exact solution of
FPDEs [2]. However, these methods also have some drawbacks, and we cannot use it for any type
of problems. To fulfill these need, researchers introduced many semi analytical techniques such as
HPM [3], HPTM [4], HAM [5], FDM [6], RPSM [7], etc.

NIM was introduced by Daftardar-Gejji and Jafari in 2006 and is also known as the DJ method
for the solution of non-linear equations. This method is the modification of ADM in which the
complex Adomian polynomials are replaced by Jafari polynomials. Therefore, we have no need to
compute tedious Adomian’s polynomial in each iteration.

In this presentation, we have extended the applications of the D] method to a solution of coupled
WBK equations of fractional order using the fractional Laplace Transform. Using the Laplace
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transform for fractional PDEs is effortless compared to the
Riemann Liouvelle integral operator for fractional PDEs as well
as a system of fractional PDEs.

The fractional-order WBK equations describe the propagation
of shallow water waves [8] with different dispersion relations. The
WBK equations are of the form:

Dfu 4 uuy + vy + buy =0

D¥v 4 (uv)y + Aty — bvgy =0,

where u(x, t) denotes the horizontal velocity, v(x, t) is the height
that deviates from the equilibrium position, 4, b are real constants
that are represented in different diffusion powers, and D0 <
a < 1 is the Caputo derivative operator. For « = 1, we get the
usual WBK equations. It is also essential to show that whena = 1
and b = 0, we have fractional order modified Boussinesq (MB)
equation, and when a = 0, b = 15 , we get the fractional order
approximate long wave (ALW) equation. These equations took
the attention of many researchers in recent decades [9-11].

The present paper is divided into five sections. The
Fundamental Theory of Proposed Method section is devoted to
the analysis of the DJ method as well as the implementation
of the Laplace transform for fractional PDEs are given. In the
Application of Laplace Transform with DJ method to Fractional
Whitham-Broer-Kaup Equations section, the application of
Laplace transform to FPDEs are given. In the Results and
Discussion section, the results of the proposed method are
compared with VIM, ADM, and OHAM solutions for time-
fractional WBK, time fractional MB, and time-fractional ALW
equations, while in the Conclusion section, the conclusion of the
work is given.

FUNDAMENTAL THEORY OF PROPOSED
METHOD

New Iterative Method [12-16]

Daftardar-Gejji and Jafari consider the following equation [12]:
Consider the equations of the form:

vi=fi+ (L) +& WL, i=1,2 (1)

wheref; are known functions, ¢;,§; are linear and non-linear
functions of v;. Assuming that equation (1) have a solution of the
series form:

o0
v = Zv,‘,j, i=12. (2)
=0

Since ¢; is linear, so we write it as:

o o0
Si Z (vijov2j) | = Z Gi (vijrv2j) > (3)
=0 =0

Decomposition of non-linear operators is as follows:

o0
D vij | =& (vi0,v20)

=0
00 j j j—1 j—1
G Do v ) vk | =& D vie Y vk |
j=1 k=0 k=0 k=0 k=0
oo
=Y G (4)
j=0
J J
where Gig = & (v1,0,v20) and Gij = & [ X vig X vax | —
k=0 k=0

k=0
Hence, equation (1) is equivalent to:

j—1 j—1
& (Z Vik Z VZ,k) ,j=>1. i=12
k=0

o o o0
Z vij =fi+ Z Gi (vijovry) + Z Gij- (5)
=0 =0

j=0
Further, the recurrence relation is defined as follows:
vio = fi

Vi1 = Gi (v1,0,v20) + Gio»
viz = 6i (i1, v21) + Gt (6)

The kth-order approximation is given by:

k—1
V; = Z l),'J.
j=0

For convergence analysis, we refer to Daftardar-Gejji and Jafari
[13] where explanatory example is solved.

Laplace Transform and Fractional Partial
Differential Equations [4]

Consider the following equations:

Dfvi(x, t) + cvilx, 1) + &vilx, 1) = 0, ™)

O<a<l,
with ICs.

vi(x,0) = fi(x). (8)

where ¢ is the linear operator, £ is the non-linear operator, and
D¢ vi(x, t) is the Caputo fractional derivative of a function v;(x, t),
which is defined as:
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t
Divite ) = I(n—a) /((t
0

(mn—1<a<nmneN).

)

Using the property of Laplace transform for Caputo fractional

derivatives is:

L[DYv;i] = s”L[vi(x, t)] — Zvik(x, 0F)se— 1k,

n—1

k=0

(10)

Taking the Laplace transform on both sides of equation (10)

we get:

LID{vi(x, )] + L{gvi(x, )] + LIEvi(x, t)] = 0. (11)

Using equation (10), we have:

1 1 1
LiviCe )] = —vi(x, 0) = S Llgvilx, ] — ZL[Evilx ). (12)

Taking the inverse Laplace transform on both sides of equation
(12), we get:

TABLE 1 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at « = 1 for WBK equation.

(x,1)

Absolute error
of ADM [17]

Absolute error
of VIM [18]

Absolute error
of OHAM [19]

Absolute error of
2nd-order NIM

0.1,0.1)
0.1,0.3)
(0.1,0.5)
(0.2,0.1)
(0.2,0.3)
(0.2,0.5)
(0.3,0.1)
(0.3,0.3)
(0.3,0.5)
(0.4,0.1)
(0.4,0.3)
(0.4,0.5)
(0.5,0.1)
(0.5,0.3)
(0.5,0.5)

1.04892 x107*
9.64474 x107°
8.88312 x107°
4.25408 x107*
3.91098 x107*
3.60161 x107*
9.71922 x107*
8.93309 x 107
8.22452 x 107
1.75596 x107°
1.61430 x107°
1.48578 x107°
2.79519 x107°
2.56714 x107°
2.36184 x107°

1.23033 x107*
3.69597 x107*
6.16873 x107*
1.19869 x107*
3.60098 x10~*
6.01006 x 10~
1.16789 x1074
3.50866 x 107
5.85610 x 107
1.13829 x107*
3.41948 x107*
570710 x107*
1.10936 x107*
3.33274 x107*
5.56235 x107*

1.07078 x107*
3.04565 x107*
4.81303 x107*
1.04388 x107*
2.97260 x10~*
4.70138 x107*
1.01776 x107*
2.90150 x107*
4.59590 x10™*
9.92418 x107°
2.83229 x107*
4.49118 x107*
9.67808 x107*
2.76492 x107*
4.38895 x10~*

1.67111 x107'?
451196 x107""
2.08888 x10710
1.57879 x107'2
4.26227 x10~ "
1.97328 x1071°
1.49181 x107'?
4.02799 x107 "
1.86481 x1071°
1.41043 x107'?
3.80803 x 107"
1.76298 x1071°
1.33388 x107'?
3.60145 x107""
1.66734 x10710

TABLE 2 | Second-order DJ solution for u(x, ) in comparison with ADM, VIM, and OHAM solutions at & = 1 for MB equation.

(1)

Absolute error
of ADM [17]

Absolute error
of VIM [18]

Absolute error
of OHAM [19]

Absolute error of
2nd-order NIM

0.1,0.1)
(0.1,0.3)
(0.1,0.5)
(0.2,0.1)
0.2,0.3)
(0.2,0.5)
0.3,0.1)
(0.3,0.3)
(0.3,0.5)
(0.4,0.1)
(0.4,0.3)
(0.4,0.5)
(0.5,0.1)
(0.5,0.3)
(0.5,0.5)

8.16297 x10~/
7.64245 x1077
7.16083 x 1077
3.26243 x107°
3.05458 x107°
2.86226 x107°
7.33445 x107°
6.86758 x107°
6.43557 x107°
1.30286 x107°
1.22000 x107°
1.14333 x107°
2.03415 x107°
1.90489 x107°
1.78528 x107°

6.35269 x107°
1.90854 x10™*
3.18549 x 107
6.18930 x107°
1.85945 x1074
3.10352 x 107
6.03095 x107°
1.81187 x107*
3.02408 x107*
5.87746 x107°
1.76574 x107*
2.94707 x107*
5.72867 x107°
1.72102 x1074
2.87241 x107*

6.35267 x107°
1.90854 x107*
3.18548 x107*
6.18931 x107°
1.85945 x107*
3.10352 x107*
6.03098 x107°
1.81187 x107*
3.02408 x107*
5.87749 x107°
1.76574 x107*
2.94708 x107*
5.72865 x 107
172102 x107*
2.87240 x107*

457301 x107"°
1.23478 x107 "
571662 x 107"
4.32265 x1071°
1.16698 x 107"
5.40272 x10~ "
4.08618 x107'®
1.10335 x 107"
5.10809 x10~""
3.86524 x107'8
1.04358 x10~ "
4.83143 x 107"
3.65707 x107'®
9.87438 x 10712
45715 x107 "
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DY u+ uuy + vy + buy, =0,
Dfv 4 (uv)y + Aty — by, = 0. (14)

Vi t) = vi(x,0) L—I[S%L[gvi(x, 01l

- L—l[siaL[svi(x, Hll. (13)

Now, we apply a new iterative technique that was derived in the
New Iterative Method section.

APPLICATION OF LAPLACE TRANSFORM

WITH DJ METHOD TO FRACTIONAL

WHITHAM-BROER-KAUP EQUATIONS

Problem 3.1: Time Fractional WBK Equation

Subject to ICs

u(x,0) = A — 2Bk coth(k§&),
v(x,0) = —2B(B + b)k>csch®(k§),

(15)

where 8 = Va+ b€ = x+ cand A, ¢, k, are any constants.
For o« = 1, the exact solution of the system is as follows:

TABLE 3 | Second-order DJ solution for u(x, t) in comparison with ADM, VIM, and OHAM solutions at o« = 1 for ALW equation.

(x,1) Absolute error Absolute error Absolute error Absolute error of
of ADM [17] of VIM [18] of OHAM [19] 2nd-order NIM
(0.1,0.1) 8.02989 x107° 3.17634 x107° 3.17634 x107° 1.20348 x10~1°
(0.1,0.3) 7.38281 x107° 9.54273 x107° 9.54269 x107° 3.25026 x 1072
(0.1,0.5) 6.79923 x107° 1.59274 x10~* 1.59274 x10~* 1.50478 x10~ "
(0.2,0.1) 3.23228 x107° 3.09466 x107° 3.09465 x107° 1.13895 x 1013
(0.2,0.3) 2.97172 x107° 9.29725 x107° 9.29723 x107° 3.07447 x101?
(0.2,0.5) 2.73673 x107° 1.55176 x107* 155176 x10™* 1.42339 x10~ "
(0.3,0.1) 7.32051 x107° 3.01549 x107° 3.01549 x107° 1.07747 x10~ 18
(0.3,0.3) 6.73006 x107° 9.05935 x107° 9.05932 x107° 2.90939 x107'?
(0.3,0.5) 6.19760 x107° 1.51204 x10~* 1.51204 x10~* 1.34695 x10~ 1"
(0.4,0.1) 1.31032 x1074 2.93874 x107° 2.93874 x107° 1.02029 x107®
(0.4,0.3) 1.20455 x107* 8.82871 x107° 8.82870 x107° 2.75424 x10712
(0.4,0.5) 1.10919 x107* 1.47354 x1074 1.47354 x107* 1.27514 x107 "
(0.5,0.1) 2.06186 x10~* 2.86433 x107° 2.86432 x107° 9.66033 x10~ "
(0.5,0.3) 1.89528 x107* 8.60509 x107° 8.60506 x107° 2.60846 x10~1?
(0.5,0.5) 1.74510 x107* 1.43620 x107* 1.43620 x10~* 1.20763 x10~ "

TABLE 4 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at o« = 1 for WBK equation.

x,t) Absolute error Absolute error Absolute error Absolute error of
of ADM [17] of VIM [18] of OHAM [19] 2nd-order NIM
(0.1,0.1) 6.41419 x107° 1.10430 x107* 5.86860 x107° 3.28081 x107'?
(0.1,0.3) 5.99783 x107° 3.31865 x 1074 3.04565 x 1074 8.85812 x 10~
(0.1,0.5) 5.61507 x107° 554071 x1074 3.08812 x107* 4.10099 x1071°
0.2,0.1) 1.33181 x1072 1.07016 x107* 5.56884 x107° 3.07768 x107 2
0.2,0.3) 1.24441 x1072 3.21601 x107* 2.97260 x107* 8.30963 x 107"
(0.2,0.5) 1.16416 x1072 5.36927 x 107 2.92626 x107* 3.84706 x 10710
(0.3,0.1) 2.07641 x1072 1.03737 x107* 5.28609 x107° 2.88849 x10~1?
(0.3,0.3) 1.93852 x1072 3.11737 x107* 2.90150 x10~* 7.79908 x 10"
(0.3,0.5) 1.81209 x1072 5.20447 x10~* 2.77382 x1074 3.6107 x10~10
(0.4,0.1) 2.88100 x 1072 1.00579 x107* 5.01929 x107° 2.71246 x1071?
(0.4,0.3) 2.68724 x1072 3.02245 x107* 2.83229 x1074 7.32356 x 107"
(0.4,0.5) 2.50985 x 1072 5.04593 x 1074 2.63019 x107* 3.39055 x1071°
(0.5,0.1) 3.75193 x1072 9.75385 x107° 476741 x107° 2.54828 x107'?
(0.5,0.3) 3.49617 x1072 2.93107 x1074 2.76492 x107* 6.88039 x 10~
(0.5,0.5) 3.26239 x1072 4.89335 x1074 2.49480 x107* 3.18537 x1071°
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u(x,t) = A — 2Bk coth(k(¢ — At)),
v(x, t) = —2B(B + b)k*csch?(k(€ — A1)).

(16)

Applying Laplace transform and inverse Laplace transform to

equation (3.1), we have:

u(x, t) = u(x,0)

L7 g (s Dt ) v ) - b 1)1,

v(x,t) = v(x,0) +L—1[SiaL[— ((u(x, OV(x, 1),

=+ auxxx(x, t) - bvxx(x) t))]]

(17)

Now, using the basic idea of the DJ method discussed in the
Fundamental Theory of Proposed Method section, we have:

uy = A — 2Bk coth(k&),

vo = —2B(B + b)k*csch? (k&), (18)
B —2Bk2t* ) csc W2 (k(x + ¢))
= I'(l+a) ’ (19)

" 4Bk 1Y csc h?(k(x + ¢))(—(b + B)A coth(k(x + ¢))

T T+a)
— (a+ b — BYKQ2 + 3csc B (k(c + X)), (20)

TABLE 5 | Second-order DJ solution for v(x, t) in comparison with ADM, VIM, and OHAM solutions at o« = 1 for MB equation.

1)

Absolute error
of ADM [17]

Absolute error
of VIM [18]

Absolute error
of OHAM [19]

Absolute error of
2nd-order NIM

0.1,0.1)
(0.1,0.3)
(0.1,0.5)
(0.2,0.1)
(0.2,0.3)
(0.2,0.5)
(0.3,0.1)
0.3,0.3)
(0.3,0.5)
(0.4,0.1)
(0.4,0.3)
(0.4,0.5)
(0.5,0.1)
(0.5,0.3)
(0.5,0.5)

5.88676 x107°
5.56914 x107°
5.27169 x107°
118213 x1074
1.11833 x1074
1.05858 x10™*
1.78041 x107*
1.68429 x107*
1.59428 x107*
2.38356 x107*
2.25483 x107*
2.13430 x107*
2.99162 x107*
2.83001 x107*
2.67868 x 107

1.65942 x107°
4,98691 x107°
8.32598 x107°
1.60813 x107°
4.83269 x107°
8.06837 x107°
1.55880 x107°
4.68440 x107°
7.82068 x107°
151135 x107°
4.54174 x107°
7.58243 x107°
1.46569 x107°
4.40448 x107°
7.35317 x107°

1.65942 x107°
4.98691 x107°
8.26491 x10~*
1.60812 x107°
4.83269 x107°
7.94290 x107*
1.55880 x107°
4.68439 x107°
7.63646 x107*
1.51135 x107°
454174 x107°
7.34471 x107*
1.46569 x107°
4.40448 x107°
7.06678 x107*

250213 x107 '8
6.99872 x 1072
3.24016 x 107"
2.43233 x1071®
6.56712 x107'2
3.04035 x 107"
2.28336 x107®
6.16531 x 1072
2.85432 x 107"
2.14485 x107'®
5.79099 x 1072
268103 x10~""
2.01559 x107"°
5.44208 x 10712
2.51949 x107 "

TABLE 6 | Second-order DJ solution for v(x, t) in comparison with second-order ADM, VIM, and OHAM solutions at « = 1 for ALW equation.

(1)

Absolute error
of ADM [17]

Absolute error
of VIM [18]

Absolute error
of OHAM [19]

Absolute error of
2nd-order NIM

0.1,0.1)
(0.1,0.3)
(0.1,0.5)
(0.2,0.1)
0.2,0.3)
(0.2,0.5)
0.3,0.1)
(0.3,0.3)
(0.3,0.5)
(0.4,0.1)
(0.4,0.3)
(0.4,0.5)
(0.5,0.1)
(0.5,0.3)
(0.5,0.5)

481902 x107*
450818 x 107
422221 x107*
9.76644 x 107
9.13502 x 10~
8.55426 x 107
1.48482 x107°
1.38858 x107°
1.30009 x107°
2.00705 x107°
1.87661 x107°
1.75670 x107°
2.54396 x107°
2.37815 x107°
2.22578 x107°

8.29712 x107°
2.49346 x107°
416299 x107°
8.04063 x107°
2.41634 x107°
4.083419 x107°
7.79401 x107°
2.34220 x107°
3.91034 x107°
7.55675 x107°
2.27087 x107°
3.79121 x107°
7.32847 x107°
2.20224 x107°
3.67658 x107°

8.29711 x107°
2.49345 x107°
4.16298 x107°
8.04063 x107°
2.41634 x107°
4.08418 x107°
7.79400 x107°
2.34219 x107°
3.91084 x107°
7.55675 x107°
2.27087 x107°
3.79121 x107°
7.32846 x107°
2.20224 x107°
3.67658 x107°

6.71962 x107
1.81427 x107'2
8.39947 x10712
6.30876 x 1074
1.70328 x107'?
7.88563 x 1072
592521 x107 4
1.59992 x107'?
7.40708 x107'2
5.56907 x1074
1.50359 x107'2
6.96112 x107'2
5.23618 x 1074
1.41377 x107'?
6.54527 x10712
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up = !
(T'(1 + @)2I'(1 + 2a)T(1 + 3a)
(k(x + ) 4BK* " A2(D(1 4 200))% + (—20(a + b* — BYK? 422 —
(4(a + b* — BHK® + 22) cos h(2k(x + )T (1 + ))’T'(1 + 3a))),
(21)

(2BK 2% coth(k(x + c)) csc h*

vy = BE*?% csc ho(k(x + )

1
[ﬁl"(l ST 3a)23+2a3k2taA csc h(k(x + ¢))

r(% + a)(16(a + b* — B>k cosh(k(x + ¢))

+2(a + b* — B)kcosh(3k(x + ¢))
+(b 4+ B)A(2 sinh(k(c + x)) + sinh(3k(x + ¢))))

2 2\7.2

—3(b+ B)A% + 2(4(13b — 7B)(a + b* — B*)k?

+(b + B)A?) cosh(2k(x + ¢)) + (4(b — B)(a + b* — B*)k?
+(b 4 B)A?) cosh(4k(x + ¢))

+4(a + b* — BY)kr(10 sinh(2k(x + ¢)) + sinh(4k(x + ¢))))].

Three terms approximate the solution for equation (14):

U= ug+ uy + uy,
v=1vy+ v+ . (23)

We take k = 0.1,A = 0.005,a = b = 1.5andc = 10 in the
above problem.
Problem 3.2: Time Fractional MB Equation

Dfu+ uuy + vy =0,
D?V + (uv)y + g = 0, (24)

Subject to ICs

u(x,0) = A — 2k coth(k¢&),
v(x,0) = —2k? csc h2 (k). (25)

where § = x + cand k, A, ¢ are arbitrary constants.
For o = 1, the exact solution of the system is as follows:

u(x,t) = A — 2k coth(k(& — At)),
v(x, 1) = —2k% csc K2 (k(§ — At)). (26)

According to the D] method described in the Fundamental
Theory of Proposed Method section, we have:

u(x,t) = u(x,0) + L7 ! [S%L[— (u(x, Dux(x, 1) + ve(x, )11,

v(x,1) = v(x,0) + L [S%L[— ((ux, DV D) + e D)1,

(27)
so that
uy = A — 2k coth(k(x + ¢)),
vo = —2k* csc W2 (k(x + ¢)), (28)
2 2.0 2
"= - k“t*Acsch (k(x+C)), (29)
r(l+a)

4131t ) coth(k(x + ¢)) csc 2 (k(x + ¢))

b= . (30)

'+ o)

b — 26312932 csc b (k(x + ¢)) 4k2t* coth(k(x + ¢))(T'(1 + 2a))?
2o I(1+2a) (D1 +a))’T(1 + 30)
— sinh(2k(x + ¢))}, (31)

4k 12422 csc h* (k(x + ¢))
V) =
a4+ 2«)
2k21% (3 4 2 cosh(2k(x + ¢))) esc B2 (k(x + ) (T'(1 + 2a))?

{—2 — cosh(2k(x + ¢)) +

}.(32)
(P(1 +@)’I (1 + 3a)
Three terms approximate the solution for equation (25):
U =ug + up + uy,
v=vy+ v+ . (33)
Problem 3.3: Time Fractional ALW Equation
o 1
Dtu—i—uux—i—iuxx—i—vxzo,
1
D?V + (uv), — EVxx =0, (34)
subject to Ics
u(x,0) = A — kcoth(k&),
v(x,0) = —k% csc h2(kE). (35)

where £ = x 4 cand A, ¢, k are arbitrary constants.
For o = 1, the exact solution of the system is as follows:
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FIGURE 2 | 2D curves for u(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.
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u(x, t) = & — kcoth(k(§ — At)),

v(x, 1) = —k? csc W2 (k(& — A1)). (36)

According to the D] method described in the Fundamental
Theory of Proposed Method section, we have:

2k* 12902 cse h* (k(x + ¢))
V) =
'+ 2a)
+ :
(M1 + ) T + 3a)
(3 4 2 cosh(2k(x + ¢))) esc K2 (k(x + )T (1 + 2a))?)}.

{—2 — cosh(2k(x + ¢))

2toc

u(x, t) = u(x,0) (42)
1 1
+L7! [STL[_(L’(X’ Dux(x, 1) + vx(x, £) + Euxx(x» 1, Three terms approximate the solution for equation (26):
1, 1 1
v(x, 1) = v(x,0) + L 1[57L[—((u(x, OV(x, 1) — EVxx(x» 1]
(37) u = ug+ uy + uy,
v=vy+ v+ va. (43)
So that
Values of the parameters are taken to be same as problem 3.1.
ug = A — kcoth(k(x + ¢)),
vo = —k? csc K2 (k(x + ©)), (38)
0 RESULTS AND DISCUSSION
The DJ method is experienced upon the fractional WBK,
20 2
Uy = _k £74 esc b (k(x + C)), (39) MB, and ALW equations. Mathematical 7 have been used for
M1 +a) most computations.
Tables 1-3 show the estimation of absolute errors of the
2K31% ) coth(k(x + ¢)) csc B2 (k(x + ¢)) second-order DJ solution with ADM, VIM, and second-
vi=-— I'(l+a) > (40)  order OHAM solutions for u(x,t) of fractional WBK, MB,
and ALW equations at « = 1, respectively. Tables 4-6
shows the estimation of absolute errors of second-order DJ
= —— K222 csc kA (k(x + ©)) solution with ADM, VIM, and second-order OHAM solutions
1+ 2a) for v(x,t) of fractional WBK, MB, and ALW equations at
2k2t% coth(k(x + 0))(I'(1 + 2a))? . a = 1, respectively. The tabulated results show that the
2 — sinh(2k(c + x))},(41) d-ord imate solutions by the DJ method
(T(1 + )’ T(1 + 3) second-order approximate solutions by the DJ method are
bR ks oo
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FIGURE 3 | 2D curves for v(x, t) part of (A) WBK equation, (B) MB equation, (C) ALW equation at x = 1.

Frontiers in Physics | www.frontiersin.org 8

May 2020 | Volume 8 | Article 104



Nawaz et al.

Application of New lIterative Method

25 x10-15 | - i
i W uit i
Sud Ut m vit) ]
2 x10-16 ‘
vt P25 il ,‘,'
i
6 x10-16 i ¥
15x10-16F !
D"
15 st
4. x10
x Lx10-18 !
<
At /
) 5 sy
2.x10°16 s.x10-17f v
1
e & ar,=" Qur/_//
e 'u\‘t\‘ NI P L
;
AaY) ‘.O_LMM. I . > I 02 04 t 06 08 10
2 t 06
—-16 I-.
12x10 aui ;
mv(t) .'
1.x10716 4
o ]
Al
h
8.x10717 ). )
e
6.x10-17 A
1}
4x10717 Al
AN
A
2.x10717 '
- . = 44
(T ,"‘ Fivd :’a'— ~
02 04 t 06 08 10

FIGURE 4 | Absolute error curves for coupled (A) WBK equation, (B) MB equation, (C) ALW equation at x = 50.

closer to exact solutions than those of ADM, VIM, and
OHAM solutions.

Figures 1A-C show the coupled surface of the second-
order approximate solution by NIM for u(x,t) and v(x,t),
part of WBK, MB, and ALW equations at « = 1,
respectively. Figures2, 3 show the 2D plots of the second-
order approximate solution by NIM for u(x,t) and v(x,t) of
WBK, MB, and ALW equations at x = 1 and different
values of «, respectively. Figures 4A-C show the absolute
error graph for the coupled WBK, MB, and ALW equation
at x = 50.

It is clear from 2D figures that as the value of « increases to 1,
the approximate solutions tend closer to the exact solution.

CONCLUSION

The D] method converges rapidly to the exact solution
at lower order of approximations for the WBK system.
The results obtained by the proposed method are very
encouraging in assessment with ADM, VIM, and OHAM.
As a result, it would be more appealing for researchers to
apply this method for solving systems of non-linear PDEs
in different fields of science especially in fluid dynamics
and physics. The accurateness of the technique can more
be improved by taking higher-order estimation of the
proposed method.
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