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The current investigation deals with the inclusion of solid particles in the flow of a

non-Newtonian incompressible fluid passing through a symmetric, curved channel

admitting flexible walls and exhibiting wavy characteristics for the passage of fluid.

This analysis reflects the disease of white particles occurring in the flow of urine. The

problem formulation is structured under the constraints of lubrication approach. The

flow is considered to be laminar and steady by transforming the unsteady coordinates

into wave frame coordinates. The governing equations have been formulated with the

help of similarity transformations. The solution of boundary value problems has been

handled by perturbation procedure. The analytical solutions for fluid and particulate phase

velocities, mean flow rates, and pressure gradient profile have been presented, while a

numerical treatment has been carried out for pressure rise. Analyses of fluid velocity and

particulate suspension velocity, pressure gradient, and pressure rise curves under the

variations of material parameters have been discussed by graphs. It is observed from

this investigation that solid particles are curtailing the velocity and pressure of the liquid.

It is also procured that the curvature of the channel also reduces the movement of the

fluid and that the particulate suspension is occurring at the bottom of the container. It

is very considerable that the increase in peristaltic pumping causes a decrease in the

solid particle concentration. This theoretical analysis can help in curing the diseases like

urinary tract infections (UTIs). The analysis may also be pertinent to the flow of other

physiological liquids and industrial solicitation where peristaltic pumping is concerned.

Keywords: analytical solution, eyring-powell model, pumping phenomenon, solid particles, two-phase flow

INTRODUCTION

Peristaltic flows are produced by spreading waves along the exorable membranes of a conduit.
These flows provide an efficient means for fluid transport and are therefore used in the physical
simulation. In clinical and medical contexts, peristaltic flows are meant for the blood transport
within tiny blood vessels or fabricated blood instruments. Fluid trapping and material reflux are
the two wonderful aspects of peristaltic passages. They describe the development and flow of
free transport, called bolus supply. These two factors are of major importance, as they can be
responsible for blood circulation and transport of viruses. From the point of view of mechanical
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engineering, these phenomena highlight the complexity of the
chosen apparatus, but also encourage the fundamental study of
such flows. Studies of peristaltic phenomena have been reported
in Bhatti et al. [1], Hussain et al. [2], and Riaz [3].

It is noticed that the instant flow studies are congested to
Newtonian fluids. The non-Newtonian behavior of fluids is of
greater concern in many areas of science and technology. In
applications for electroosmosis, for example, test accumulation,
discovery, blending, and division of different natural and
synthetic species on a chip coordinated with fluidic siphons and
valves, the liquid rheological conduct for the most part should
be considered. Major comprehension of the non-Newtonian
job in fluid transport through microchannels is imperative in
accurately foreseeing the exhibition and qualities of microfluidic
gadgets. Numerous specialists have researched the entry of non-
Newtonian liquid through peristaltic component [4, 5].

The progression of particles in a liquid is a part of multiphase
mechanism. Such studies are significant in different physical
issues, for example, sedimentation, barometril aftermath, powder
innovation, vaporized filtration, fluidization [6], debris and lunar
streams, and so forth. Moreover, with the assistance of the
continuum hypothesis of blends, it is anything but difficult to
look at different assorted subjects, for example, the rheology
of blood [7], dissemination of proteins, demeanor of particles
in a respiratory tract, and swimming of microorganisms [8].
Besides, molecule portrayal is likewise a significant part in a
generation of molecule, preparing, taking care of, producing, and
in differentmodern scientific applications [9].Molecule portrayal
is an essential and starting approach that aids in a procedure
concerning solid particles. Such a depiction not only includes
the natural static parameters—for example, volume, morphology,
recision, dimensions, and so on—but also their dynamic frame
of mind related to the liquid stream for example maximum
speed and drag constant. Yao et al. [10] considered the multi-
phase course across the penetrable porous passage with walls
impact. He prepared the perturbation solutions by considering
the slip boundary conditions and observed that the slip limit
condition essentially improved the speed of the liquid and a
reduction of slip factor will in general increase the speed through
a channel. Additionally, with an augmentation in volume
portion thickness, liquid axis speed climbs. Mekheimer and Abd
Elmaboud [11] evaluated the viscous fluid and particle mixture
in uniform and non-uniform inlets for peristaltic concept and
exact solutions are structured. Kamel et al. [12] explored the
wave stream of molecule liquid adultration considering a planar
channel having boundary slip and exhibited an arrangement
utilizing perturbation technique. Lozano et al. [13] presented
the peristaltic flow of incompressible Newtonian fluid with alike,
solid particles of spherical shape distribution. They have found
that the pressure in the wrinkled part of the ureter is enhanced
accordingly with larger particle volume fraction.

Experimental work demonstrates that there is no check on
basic speed for a liquid coursing through a curved channel. If the
channel is straight, the loss of the head increases suddenly as the
speed reaches its base value. The head loss varies below the basic
frequency of the speed, but over it approximately as the following
energy. But, through a curved channel, there is no impression

of such an unexpected change at any speed of the stream. One
plausibility is thatmovement through a curved channel is stream-
lined at speeds much more noteworthy than the basic for a
straight channel, however testing seems to indicate that the basic
speed is less in a curved channel than in a straight one. The
mathematical examination of the peristaltic flow of hyperbolic
tangent liquid in a curved channel has been explored by Nadeem
and Maraj [14]. Narla et al. [15] have disclosed the peristaltic
transport of Jeffrey nanofluid in curved channels. They discussed
the dissemination of velocity, temperature, and nanoparticles
fixation for different parameters overseeing the stream with the
concurrent impacts of Brownian movement and thermophoretic
dispersion of nanoparticles.

The urinary mechanism explains the homeostatic regulation
of water and ion content in the blood and the disposal of waste
products of metabolism. The kidneys receive blood from the
renal artery, process it, and return the processed blood to the
body through the renal vein. Urine produced in the kidneys
passes into the urethra. Under normal conditions, peristalsis
in the upper urinary tract begins with the origin of electrical
activity at pacemaker sites located in the proximal part of the
urinary collecting system. This electrical activity spreads distally,
triggering the mechanical event of peristalsis and renal pelvic and
ureteral contractions, which push urine from the kidney into the
bladder [16]. Urine is expelled through the urethra into the outer
body. Likoudis and Roos [17] studied the fluid flow in the ureter
under lubrication approximation and focused their analysis on
the pressure profile in the contracted part. Griffiths [18] studied
the ureter with a one-dimensional lubrication approach and
emphasized the relationship between low and high flow rates,
pressure fields, and peristaltic contractions. Peristaltic flow in
the ureter presents as an important application of peristalsis;
the parameters are reasonably known, and the fluid being
transported is fundamentally non-neutron and incompressible.
Geometrically, however, the problem is complex. Peristaltic
waves in the ureter can occur in multiple forms, either isolated
or periodic, with complete occlusion throughout the cycle.
Although the ureter itself is a tubular duct, the configuration
of the lumen during peristalsis can be altered because its inner
layer is made up of mucosa lined by the transitional epithelium.
In this study, the geometry of having a two-dimensional curved
shape is considered as it is of immense importance in the sense
of applications.

As far as we could possibly know, no endeavor is made
for peristaltic system of Eyring—Powell tensor within the sight
of solid particles coursing through a curved channel. This
examination is uncovered to fill this void in the literature and
present the analytical and numerical examination of the model
chosen. Right off the bat, we have transformed the conservation
of mass and momentum into segment structure of velocity field
and afterward changed over them by presenting wave outline.
After this progression, physical demonstrated conditions have
been diminished into a dimensionless structure by receiving
some new dimensionless parameters. We have assembled the
problem more comprehensively by lubrication constraints. To
assess the nonlinear coupled differential conditions, perturbation
strategy is applied on Eyring–Powell parameter A. The outflows
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FIGURE 1 | Schematic diagram of the problem.

of liquid and particulate suspensions, stream rates, pressure
slope, and pressure rise have been revealed. At last, physical
ailments have been outlined in different diagrams under the
changing estimations of appropriate parameters.

MODELING AND FORMATTING OF THE
PROBLEM

Let us assume the creeping transport through a curved
passage with small solid particles. We have adopted curvilinear
cylindrical coordinates in a three-dimensional curved passage
where R̄ and X̄ rays are selected to be normal and parallel to
the flow, respectively. Moreover, the surfaces of the container
are supposed to be flexible and executing sinusoidal waves
propagating at the lower and upper surfaces at a fixed pace “c.”

The boundary of the panel is expressed mathematically as

H̄
(

X̄, t̄
)

= ã+ b̃cos

(

2π

λ̃
(X̄ − ct̄)

)

. (1)

The symbols, like ã and b̃, represent the radius of the channel
and wave amplitude, accordingly. Moreover, λ̃ is the wavelength,
and t̄ executes time characteristics (see Figure 1). Here, we write
the continuity andmomentum conservation relations of the fluid
and particle phases.

Fluid Phase
For fluid phase, the physical conservation laws of mass
and momentum can be described in component form as

∂

∂R̄

(

(R1 + R̄)U2f

)

+ R1
∂U1f

∂X̄
= 0, (2)

ρ (1− C)

(

∂U2f

∂t
+ U2f

∂U2f

∂R
R1 +

U1fR1

R1 + R

∂U2f

∂X
R1 −

U1f
2
R1

R1 + R

)

= − (1− C)
∂P

∂R

+µs (1− C)

(

R1

R1 + R

∂

∂R

((

R1 + R
)

τ 11
)

+
R1

R1 + R

∂τ 21

∂X
R1 −

R1

R1 + R
τ 22

)

+ CS
(

U2p − U2f

)

, (3)

ρ (1− C)

(

∂U1f

∂t
+ U2f

∂U1f

∂R
R1 +

U1fR1

R1 + R

∂U1f

∂X
R1 +

U2fU1fR1

R1 + R

)

= (1− C)

(

−
R1

R1 + R

∂P

∂X
+

µsR1

R1 + R

∂τ 22

∂X
+

µs

R1 + R

(

R1 + R
) ∂τ 12

∂R
+ τ 12

)

+ CS
(

U1p − U1f

)

, (4)

where C is the partial volume fraction parameter,µs is the solvent
viscosity, U1f and U2f represent the fluid velocities, τ ij exhibits
the stress tensor components whose general form is defined
as [19]:

τ̄ = µ ∂iVi +
1

β
sinh−1

(

∂iVi

l

)

, (5)

where ∂i Vi gives the gradient tensor of velocity vector, the
dynamic viscosity is measured by µ, and flow constants are
represented by β and l.

Particulate Phase
For particle phase, the above defined equation will take the
following form:

∂U1p

∂R
+

R1

R1 + R

∂U2p

∂X
+

U1p

R1 + R
= 0, (6)

ρpC

(

∂U2p

∂t
+ U2p

∂U2p

∂R
+

U1pR1

R1 + R

∂U2p

∂X
+

U1p
2
R1

R1 + R

)

= −C
∂P

∂R
+ CS

(

U2f − U2p

)

, (7)

ρpC

(

∂U1p

∂t
+ U2p

∂U1p

∂R
+

U1pR1

R1 + R

∂U1p

∂X
+

U2pU1pR1

R1 + R

)

= −C
R1

R1 + R

∂P

∂X
+ CS

(

U1f − U1p

)

. (8)

In above relations, ρp, U2p, U1p, and S represent the density of
solid particles, their velocities and drag coefficient, respectively.
The drag coefficient term and the empirical expression for the
suspension viscosity are defined as [1]

S =
4.5µ′

0

R20
λ̄(C), µs =

µ′
0

1− m̄C
,

λ(C) =
4+

(

8C − 3C2
)1/2

+ 3C

4+ 9C2 − 12C
,

m = 0.70e

[

249
100C+

1107
T

exp
(

−
169
100C

)

]

.

Now suggesting the following lab and wave
framework transformations
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x = X − ct, r = R, uf , p = U1f , 1p − c, vf , p = U2f , 2p, p = P. (9)

In new frame of reference, Equations (3), (4), (7), and (8)
transformed into the subsequent form

ρ (1− C)

(

vf
∂vf

∂r
R1 +

(

uf + c
)

R1

R1 + r

∂vf

∂x
R1 −

(

uf + c
)2
R1

R1 + r

)

= − (1− C)
∂p

∂r
R1

+µS (1− C)

(

R1

R1 + r

∂

∂r
((R1 + r) τ11) +

R1

R1 + r

∂τ21

∂x
R1 −

R1

R1 + r
τ 22

)

+ CS
(

vp −
(

vf
))

, (10)

ρ(1− C)ρf

(

vf
∂uf

∂r
R1 +

(

uf + c
)

R1

R1 + r

∂uf

∂x
R1 +

vf
(

uf + c
)

R1

R1 + r

)

= (1− C)

(

−
R1

R1 + r

∂p

∂x
+

µsR1

R1 + r

∂τ 22

∂x
+

µs

R1 + r

(

(R1 + r)
∂τ 12

∂r
+ τ 12

))

+ CS
(

up − uf
)

, (11)

ρρC

(

vp
∂vp

∂r
+

(

up + c
)

R1

R1 + r

∂vp

∂x
−

(

up + c
)2
R1

R1 + r

)

= −C
∂p

∂r
+ CS

(

vf − vp
)

, (12)

ρρC

(

vp
∂up

∂r
+

(

up + c
)

R1

R1 + r

∂up

∂x
+

vp
(

up + c
)

R1

R1 + r

)

= −C
R1

R1 + r

∂p

∂x
+ CS

(

uf − up
)

, (13)

Now we introduce the following dimensionless quantities for
further simplification

uf , p =
uf , p

c
, vf , p =

vf

cδ
, h =

H

ã
, p =

ã2

λ̃cµs

p,

Re =
ρãc

µs
, y =

r

ã
, x =

2πx

λ̃
, k1 =

R1

ã
,

h′ =
H′

ã
, ϕ =

b̃

ã
, τij =

ã

µc
τ ij, B =

1

βµl
,

A =
Bc2

6l2ã2
, δ =

2π ã

λ̃
,N1 =

Sã2

µs
. (14)

Injecting the above revealed factors, Equations (10) through
(13) become

Reδ (1− C)

(

vf
∂vf

∂y
+

k1vf

k1 + y
δ
∂vf

∂x
−

(

uf + 1
)2

k1 + y

)

= − (1− C)
∂p

∂y

+ (1− C)

(

δ

k1 + y
τ11 + δ

∂τ21

∂x
− δ

τ22

k1 + y

)

+ δCN1

(

up − uf
)

, (15)

Re (1− C)

(

vf
∂uf

∂y
+ δ

k1
(

uf + 1
)

k1 + y

∂uf

∂x
−

vf
(

uf + 1
)

k1 + y

)

= − (1− C)
k1

k1 + y

∂p

∂x

+ (1− C)

(

δ
k1

k1 + y

∂τ22

∂x
+

1

k1 + y

∂

∂y

((

k1 + y
)

τ12
)

)

+ N1C
(

up − uf
)

, (16)

ReδC

(

δ2vp
∂vp

∂y
+

δ2

λ

k1

k1 + y
vp

∂vp

∂x
−

up + 1

k1 + y

)

= −C
∂p

∂y
+ CN1δ

(

vp − vf
)

, (17)

ReC

(

δvp
∂up

∂y
+

1

λ

k1
(

up + 1
)

k1 + y

∂up

∂x
+ δ

vp
(

up + 1
)

k1 + y

)

= −C
k1

k1 + y

∂p

∂x
+ N1C

(

uf − up
)

. (18)

Now inserting assumptions of long wavelength (δ ≈ 0) and low
Reynolds number (Re ≈ 0), we arrive at

∂p

∂y
= 0, (19)

−
∂p

∂x
+

1

k1

∂

∂y

((

k1 + y
)

τ12
)

+

N1C
(

k1 + y
)

(

up − uf

)

(1− C) k1
= 0, (20)

up = uf −
1

N1

k1

k1 + y

∂p

∂x
, (21)

where the stress component τ12 for Eyring–Powell fluid is found
as [19]

τ12 = − (1+ B)

(

ufy +
1+ uf

k1 + y

)

+ A

(

ufy +
1+ uf

k1 + y

)3

. (22)

After proper substitution, Equation (22) becomes

−
dp

dx
+

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

ufy +
1+ uf

k1 + y

)

+ A

(

ufy +
1+ uf

k1 + y

)3
))

+
N1C

1− C

(

k1 + y

k1

) (

−
1

N1

k1

k1 + y

∂p

∂x

)

= 0. (23)
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We apply no-slip at the walls and the corresponding boundary
conditions are manufactured as

Uf

(

H′
)

= 0 and Uf

(

−H′
)

= 0. (24)

In dimensionless form, using wave frame, we have

uf
(

h′
)

= −1 and uf
(

−h′
)

= −1, (25)

where dimensionless form of the channel height in wave frame is
disclosed as±h′ = ± (1+ ϕ cos x) .

METHODS AND RESULTS

This section has produced regular perturbation solutions for
small values of A. So, we will use the following series expansion
as a proposed solution for uf

uf =
∑∞

i= 0
Aiui. (26)

The system generated by equating coefficients of exponent A0

dp

dx
+

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

u0y +
1+ u0

k1 + y

)))

+
N1C

1− C

(

k1 + y

k1

)

(

up − u0
)

= 0, (27)

with corresponding B.Cs

u0
(

h′
)

= −1 and u0
(

−h′
)

= −1 (28)

and the first order system (comparing coefficients of A1) is
achieved as

1

k1

∂

∂y

(

(

k1 + y
)

(

− (1+ B)

(

u1y +
1+ u1

k1 + y

)

(29)

+

(

u0y +
1+ u0

k1 + y

)3
))

N1C

1− C

(

k1 + y

k1

)

+
(

up − u1
)

= 0,

with

u1
(

h′
)

= 0 and u1
(

−h′
)

= 0. (30)

After handling the above obtained problems by executing built-
in commands of the computer software, Mathematica, we finally
get the following results

u0 = −1+
k1(−h′2 + y2) dp/dx

2(1+ B) (C − 1) (k1 + y)
. (31)

u1 =
k31
(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3k31
((

h′ − k1
)

k21
(

h′ + k1
) (

k1 + y
) ((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3

−

k31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

. (32)

Hence,

uf = −1+
k1
(

−h′2 + y2
) dp

dx

2 (1+ B) (−1+ C)
(

k1 + y
)

+
Ak31

(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(

dp

dx

)3

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3Ak31
((

h′ − k1
)

k21
(

h′ + k1
) (

k1 + y
)

((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3
)

−

Ak31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2
.

(33)

From Equation (21), we get the solution of particulate velocity,
up, which is displayed below

up = −1+
k1
(

−h′2 + y2
) dp

dx

2 (1+ B) (−1+ C)
(

k1 + y
)

+
Ak31

(

−h′
(

h′ − y
) (

h′ + y
) (

h′2
(

k1 + y
)

− k21
(

3k1 + y
)))

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(

dp

dx

)3

−
1

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

(3Ak31

(

(

h′ − k1
)

k21
(

h′ + k1
)

(

k1 + y
) ((

h′ − y
)

log
(

−h′ + k1
)

+
(

h′ + y
)

log
(

h′ + k1
)))

(

dp

dx

)3
)

−

Ak31
(

2h′ log
(

k1 + y
))

(

dp
dx

)3

2(1+ B)4(−1+ C)3h′
(

h′ − k1
) (

h′ + k1
) (

k1 + y
)2

−
k1

dp
dx

(

k1 + y
)

N1
.

(34)

Mathematical form of total mean volume flow rate due to fluid
and particles is recognized as

Q = Qf + Qp, (35)

where
Qf = (1− C)

∫

uf dy, (36)

Qf =
4 (1+ B) (−1+ C) h′ − h′

(

h′ − 2k1
)

k1
dp
dx

+ 2k1
(

−h′2 + k21
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B)
(37)

and Qp = C

∫

updy, (38)
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Qp =
4 (1+ B) (−1+ C) Ck1

dp
dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1
+

C
(

−4 (1+ B) (−1+ C) h′
)

4 (1+ B) (−1+ C) N1

−4
(

h′
(

h′ − 2k1
)

k1
dp
dx

+ 2
(

h′ − k1
)

k1
(

h′ + k1
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

)

4 (1+ B) (−1+ C)
. (39)

Hence, we conclude

Q =
4 (1+ B) (−1+ C) h′ − h′

(

h′ − 2k1
)

k1
dp
dx

+ 2k1
(

−h′2 + k21
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1

+
4 (1+ B) (−1+ C) Ck1

dp
dx

(

log
(

k1
)

− log
(

h′ + k1
))

4 (1+ B) (−1+ C) N1
+

C
(

−4 (1+ B) (−1+ C) h′
)

4 (1+ B) (−1+ C) N1
+

−4
(

h′
(

h′ − 2k1
)

k1
dp
dx

+ 2
(

h′ − k1
)

k1
(

h′ + k1
) dp

dx

(

log
(

k1
)

− log
(

h′ + k1
))

)

4 (1+ B) (−1+ C)
. (40)

FIGURE 2 | Change of velocity uf for k1 when

Q = 1, x = 1, φ = 0.1, N1 = 0.9, B = 0.02, A = 0.01, C = 0.12.

FIGURE 3 | Change of velocity uf for N1 when

Q = 1, x = 1, φ = 0.1, k1 = 8, B = 0.02, A = 0.01, C = 0.12.

FIGURE 4 | Change of velocity up for k1 when

Q = 1, x = 1, φ = 0.1, N1 = 2, B = 0.02, A = 0.05, C = 0.01.

FIGURE 5 | Change of velocity up for N1 when

Q = 1, x = 1, φ = 0.1, k1 = 9, B = 0.02, A = 0.1, C = 0.9.
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FIGURE 6 | Change of pressure gradient for k1 when

Q = 1, φ = 0.1, N1 = 1, B = 0.01, C = 0.12.

FIGURE 7 | Change of pressure gradient for N1 when

Q = 1, φ = 0.1, k1 = 1, B = 0.01, C = 0.12.

From the above described Equations (35) through (40), we can
find the value of pressure gradient dp/dx, which is achieved as
shown below:

dp

dx
=

4 (1+ B) (−1+ C)
(

h′ + Q
)

N1

4 (1+ B) (−1+ C) Ck1
(

log
(

k1
)

− log
(

h′ + k1
))

+ k1

1
(

h′
(

h′ − 2k1
)

+ 2
(

h′ − k1
) (

h′ + k1
) (

log
(

k1
)

− log
(

h′ + k1
)))

N1
.

(41)

GRAPHICAL ANALYSIS

In the above section, we have solved the obtained governing
equations for velocity, pressure gradient, and pressure rise
by regular perturbation technique. The observing systems of
differential equations have been handled on a mathematical
software, Mathematica, via built-in DSolve commands. Themore

FIGURE 8 | Change of pressure rise for k1 when

φ = 0.1, N1 = 0.05, B = 0.1, C = 0.1.

FIGURE 9 | Change of pressure rise for N1 when

φ = 0.1, k1 = 1, B = 0.1, C = 0.15.

clarified results can be shown by plotting the graphs of above-
obtained important quantities to see the effect of various physical
parameters on them. The graphs will give a clearer picture of what
is happening to the velocity, pressure gradient, and pressure rise
when changes are made to the values of affecting parameters. To
imagine these theoretical aspects, we have plotted the profiles of
velocities uf and up against the radial coordinate y in Figures 2–

5, the pressure gradient
dp
dx

vs. the coordinate x in Figures 6,
7, and pressure rise along the flow rate Q in Figures 8, 9. The
trapping bolus mechanism has been provoked in Figures 10,
11. It is observed from Figures 2, 3 that when we increase the
numerical values of curvature parameter, k1, and solid particle
concentration,N1, the fluid velocity, uf , is decreasing its height in
most part of the channel for both the parameters expect the lower
part where the velocity is showing almost a constant behavior
with k1. They are usually included in systems that allow solids to
settle to the bottom of the channel without any interruption. This
is showing the physical fact that when channel is more curved
and there are some solid particles placed in front of fluid flow,
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FIGURE 10 | Trapping variation for fluid phase when N1 = 3, φ = 0.04, Q = 1, B = 0.1, A = 0.1, C = 0.03. (A) k = 3.1, (B) k = 3.2, and (C) k = 3.3.

FIGURE 11 | Trapping variation for particulate phase when N1 = 3, φ = 0.04, Q = 1, B = 0.1, A = 0.1, C = 0.03. (A) k = 3.1, (B) k = 3.2, and (C) k = 3.3.

the velocity lowers, which is very much in agreement with the
true experimental and physical facts. Figures 4, 5 are plotted for
velocity of solid particles, up, with the variation of parameters k1
andN1. From these figures, it is captured that the velocity of solid
particles, up, is showing almost a similar character as we have
measured in the graphs of fluid velocity, uf , but the height of
the parabolic path of velocity is less than that of fluid velocity,
which admits that the velocity of particulate phase is less than
that of the fluid phase. This is because the increase in curvature
will slow down the particle’s movement and because the large
amount of particles will affect the motion and suppresses the
fluid. Figures 6, 7 have been drawn to estimate the behavior of

pressure gradient
dp
dx

for different values of curvature parameter,
k1 and N1. It is very obvious from these figures that pressure
gradient profile is decreasing with the increasing magnitudes of
both the parameters, and maximum change in axial pressure is
depicted at the central part of the channel as compared to the
both side corners. Figures 8, 9 shows the variation of pressure
rise quantity, 1p, against the flow rate parameter, Q, to find
the influence of k1 and N1. These two plots can be divided into
two portions, namely Region-I

(

1p > 0, η < 0
)

and Region-II
(

1p < 0, η > 0
)

, and we can observe that point of intersection

of all the lines is almost, the origin. In Region-I, it can be seen
that pressure rise curves are showing inverse behavior with the
variation of k1, but in Region-II, the situation is completely
opposite (see Figure 8). From Figure 9, it is quite clear that 1p
rises proportionally to the increasing values of N1 in Region-I,
while in Region-II, the curves are showing inverse relation.

The most important phenomenon of peristaltic flows is
circulating bolus trapping. The scenario is mentioned in
Figures 10, 11. Figure 10 is developed for fluid phase under the
variation of curvature parameter, k1. It is measured here that
boluses expand against the increasing values of curvature, which
shows that curvature affects the bolus shape directly. Figure 11
also depicts the same results for particulate phase streamlines,
but, in this case, the number of boluses has been reduced to one.

CONCLUSIONS

In the above study, we have obtained the analytical solutions
of peristaltic flow Eyring–Powell fluid model in a curved two-
dimensional channel in the presence of solid particles. This
study can contribute to the curing of diseases like urinary
tract infections (UTIs). The problem is maintained simple

Frontiers in Physics | www.frontiersin.org 8 May 2020 | Volume 8 | Article 109

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Riaz and Sadiq Particle–Fluid Suspension of a

under the implementation of lubrication approach. Analytical
solutions have been achieved by applying the perturbation
technique. The graphs have been plotted to show the behavior
of some prominent quantities under the variation of pertinent
parameters. From all of the above discussion, the following key
points have been measured:

1. It is noted that both the curvature of the channel and the
presence of solid particles slow the flow velocity, as compared
with the flow in a straight channel and without solid particles.

2. It is observed that the curvature of the channel also affects the
solid suspension velocity in the same manner as fluid velocity.

3. It is noticed that pressure gradient curves are getting lower as
we increase the curvature of the channel and the amount of
solid particles.

4. It is seen that the curvature of the channel decreases the
peristaltic pressure on the negative side of the flow rate
domain and increases on the other side.

5. It is examined from the above analysis that solid particles affect
the pressure rise curves in quite the opposite manner when
compared to the curvature parameter.
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