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The advent of high precision measurements of neutrinos and their oscillations calls for

accurate predictions of their interactions with nuclear targets utilized in the detectors.

Over the past decade, ab initio methods based on realistic nuclear interactions and

current operators were able to provide accurate description of lepton-nucleus scattering

processes. Achieving a comprehensive description of the different reaction mechanisms

active in the broad range of energies relevant for oscillation experiments required the

introduction of controlled approximations of the nuclear many-body models. In this

review, we give an overview of recent developments in the description of electroweak

interactions within different approaches and discuss the future perspectives to support

the experimental effort in this new precision era.
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1. INTRODUCTION

Understanding neutrino properties and interactions is the main focus of the world-wide
accelerator-based neutrino-oscillation program. The new generation of short [1] and long-
baseline [2] neutrino experiments—such as the Deep Underground Neutrino Experiment
(DUNE)—will address fundamental questions and play a key role in the search of physics beyond
the Standard Model. In particular, the absolute scale of neutrino masses and the presence of charge
parity (CP) violation in the leptonic sector, which may contribute to our understanding of the
matter-antimatter asymmetry of the universe, will be determined. The existence of a fourth (sterile)
neutrino will be investigated, this could explain the excess of electron neutrinos from charged
current quasi-elastic events reported by the MiniBooNe collaboration [3].

Studying neutrino-nucleus interactions in the energy region of interest for oscillation
experiments is a multi-scale problem. In fact, the experiments [4–9] are sensitive to a broad
range of energy where different reaction mechanisms contribute [10, 11]. Quasielastic scattering
is dominant for energies of hundreds of MeVs, in this case the lepton interacts with individual
bound nucleons. In addition to this, there are corrections accounting for coupling of the probe
to interacting nucleons, belonging to a correlated pairs on connected via two-body currents.
For larger values of the energy, a struck nucleon can be excited to a baryon resonance state
and subsequently decays into pions, or give rise to deep-inelastic scattering (DIS) processes.
Constructing a framework able to describe these diverse reaction mechanisms on the same footing
is a formidable nuclear-theory challenge. Nuclear effective field theory (EFT) provides a systematic
way to construct nuclear interactions and currents performing a low-momentum expansion. In
addition, an estimate of the theoretical uncertainty–which will be crucial for the neutrino data
analyses– can be properly assessed. In the last decade there has been a tremendous progress in
the field of nuclear ab initio methods made possible by the increasing availability of computing
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resources and the development of new algorithms. Within these
approaches the nucleus is treated as a collection of nucleons
interacting with each other via two- and three-body forces
obtained within nuclear EFTS. The interaction with external
electroweak probes is described by one- and two-body effective
currents that are consistent with the nuclear potentials [12–17].

Among these ab initio many-body methods, the Green’s
Function Monte Carlo (GFMC) method utilizes quantum
Monte Carlo (QMC) techniques [18] to perform first-principle
calculations of nuclei up to 12C [19, 20]. More recently the
GFMC method has also been applied to the calculation of
the electroweak sum rules and response functions of 4He and
12C, including one and two-body currents [21–23]. In order to
do that, integral transform techniques have been utilized. The
accuracy of the inversion procedure adopted within the GFMC
to obtain the response function from its integral transform has
been compared and benchmarked with the Lorentz Integral
Transform method [24]. The GFMC electroweak responses
computed in the quasielastic sector are virtually exact for low
and moderate values of the momentum transfer. Initial and final
state correlations are fully retained within this approach [25,
26]. In order to extend the predictive power of this approach,
relativistic effects in nuclear kinematics were included [24]
leading to an excellent agreement with electron scattering data
off 4He. However, within this approach it is not possible to access
more exclusive channels, the calculations are fully inclusive. The
inclusion of explicit pion degrees of freedom in the nuclear wave
function [27], necessary to describe the resonance production
region, is extremely complicated and its achievement is still a long
way ahead.

The short-time approximation (STA) method has been
recently proposed to overcome some of the limitations of
GFMC [28]. In particular, this approach allows to compute
both the inclusive and exclusive response of nuclei in the high-
energy (short-time) limit–corresponding to the Fermi energy
and above– utilizing realistic nuclear interactions and currents.
In the STA the full ground-state dynamics is retained while
the hadronic final state is factorized at the two-nucleon level,
this approximation is expected to be valid at high-energy and
momentum transfer. It allows to account for the final state
interactions of the pairs involved in the interaction vertex and
to incorporate two-nucleon correlations and currents as well as
their interference, which are known be sizable in the GFMC
results [22–26]. While keeping consistently two-body physics
and ensuing quantum interference contributions, the STA is not
expected to accurately model the correct physics for low-lying
excitations or collective behavior like giant resonances. A good
agreement with the GFMC electromagnetic responses of 4He is
observed after enforcing the correct threshold behavior. Since the
STA involves only two active nucleons, it suitable to be improved
and include relativistic currents and kinematics as well pion
production channels.

In the past years, the framework based on the impulse
approximation (IA) and realistic spectral-functions (SFs) has
been largely utilized to describe electron-nucleus scattering data
in the limit of moderate and high momentum transfer [29, 30].
This scheme combines a realistic description of the initial target

state with a fully-relativistic interaction vertex and kinematics.
This is achieved factorizing the hadronic final state in terms
of a free nucleon state and enclosing all the information on
nuclear structure in the SF. The latter does not depend on
the momentum transfer and can be computed within non-
relativistic nuclear many-body approaches. In this review we
consider two nuclear SFs, derived within the correlated basis
function (CBF) formalism [31] and the self-consistent Green’s
function (SCGF) theory [32, 33]. These two approaches utilize
different nuclear forces and involve different approximations in
each of the SF calculations. Within the factorization scheme
lepton-nucleus scattering is rewritten as an incoherent sum
of elementary processes involving individual nucleons. This
framework has been extended and generalized to include two-
nucleon emission processes induced by relativistic meson-
exchange currents [34] and applied to calculate the electroweak
inclusive cross sections of carbon and oxygen [35, 36]. In
order to tackle the resonance production region, the electroweak
pion production amplitudes generated within the dynamical
coupled-channel (DCC) model [37–39] have been included in
the IA formalism. The results obtained convoluting the DCC
elementary amplitudes with the CBF SF will also be reported.

In this review, we present lepton-nucleus interaction results
obtained within different many-body methods. In section 2 we
outline the formalism and define the electroweak cross sections,
nuclear interactions and currents. In section 3 we discuss the
integral transform techniques utilized in the GFMC to obtain
the nuclear response functions. Sections 4 and 5 are devoted
to the STA and extended factorization scheme, respectively. We
present recent results obtainedwithin each of the aforementioned
approaches for different nuclei. In section 6 we state out
conclusions and discuss future directions.

2. FORMALISM

We consider the scattering of an initial electron of four-
momentum k = (E, k) off a nucleus A at rest; in the final
state only the outgoing electron with momentum k = (E′, k′) is
detected. The inclusive double differential cross section for this
process can be written in Born Approximation as

( d2σ

dE′d�′

)

e
=
α2

Q4

E′

E
LµνR

µν (1)

where α ≃ 1/137 is the fine structure constant and �′ is the
scattering solid angle in the direction specified by k′. The energy
and themomentum transfer are denoted byω and q, respectively,
with Q2 = −q2 = q2 −ω2. The lepton tensor is fully determined
by the lepton kinematical variables. It can be written neglecting
the electron mass as

Lµν =
1

EE′
(kµk

′
ν + k′µkν − gµν k · k

′) . (2)

The hadronic tensor describes the transition between the initial
and final nuclear states |90〉 and |9f 〉, with energies E0 and Ef .
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For nuclei of spin-zero, it can be written as

Rµν(q,ω) =
∑

f

〈90|J
µ†(q,ω)|9f 〉〈9f |J

ν(q,ω)|90〉δ(E0 + ω − Ef ) . (3)

where we sum over all hadronic final states and Jµ(q,ω) is the
nuclear current operator whose structure will be discussed in
detail in section 2.1. For inclusive processes, the cross section
of Equation (1) only depends on the two response functions,
RL(q,ω) and RT(q,ω), which describe the interactions with a
virtual photon longitudinally (L) and transversely (T) polarized.
It is given by

( d2σ

dE′d�′

)

e
=

(

dσ

d�′

)

M

[

AL RL(|q|,ω)+ AT RT(|q|,ω)
]

, (4)

where the lepton kinematical factors are given by

AL =
( q2

q2

)2
, AT = −

1

2

q2

q2
+ tan2

θ

2
, (5)

and

(

dσ

d�′

)

M

=

[

α cos(θ/2)

2E′ sin2(θ/2)

]2

(6)

is the Mott cross section depending on the scattering angle θ .
The extension to neutral- and charge-current electroweak

processes is straightforward. Let us consider the scattering of a
neutrino (νℓ) or an anti-neutrino (ν̄ℓ) off a nuclear target. In
analogy with the electromagnetic case, we denote by k = (E, k)
and k = (E′, k′) the momentum of the initial and outgoing
lepton; the double-differential cross section can be written as [40,
41]

( dσ

dE′d�′

)

νℓ/ν̄ℓ
=

G2

4π2
k′E′ LµνR

µν , (7)

where G = GF and G = GF cos θc for neutral current (NC)
and charge current (CC) processes, respectively, with cos θc =
0.97425 [42] and for the Fermi coupling constant we use GF =
1.1803 × 10−5 [43]. The leptonic tensor contains an extra-
contribution proportional to the Levi Civita

Lµν =
1

EE′
(kµk

′
ν + k′µkν − gµν k · k

′ ± iǫµρνσ k
ρk′ σ ) , (8)

where the + (−) sign is for νℓ (ν̄ℓ) initiated reactions. The
hadronic tensor is the same as Equation (3) but the current
operator will have a vector and axial component, its explicit
expression will be given in section 2.1. We perform the
Lorentz contraction of the leptonic and hadronic tensor of
Equation (7), yielding

( dσ

dE′d�′

)

ν/ν̄
=

G2
F cos

2 θc

4π2

k′

2Eν

[

L̂CCRCC + 2L̂CLRCL

+L̂LLRLL + L̂TRT ± 2L̂T′RT′

]

. (9)

Taking the three-momentum transfer along the z axis and the
total three-momentum in the x − z plane, we can define q and
Q as

q = k− k′ = (ω, q) , q = (0, 0, qz)

Q = k+ k′ = (�,Q) , Q = (Qx, 0,Qz) , (10)

and write the leptonic kinematical factors as

L̂CC = �2 − q2z −m2
ℓ, L̂CL = (−�Qz + ωqz)

L̂LL = Qz
2 − ω2 +m2

ℓ, L̂T =
Qx

2

2
− q2 +m2

ℓ

L̂T′ = �qz − ωQz , (11)

with m2
ℓ = k′ 2 the mass of the outgoing lepton. The

five electroweak response functions correspond to different
components of the hadro tensor

RCC = R00, RCL = −
1

2
(R03 + R30)

RLL = R33, RT = R11 + R22

RT′ = −
i

2
(R12 − R21) . (12)

Note that electron and neutrino scattering cross sections are
written in a similar fashion as a contraction of the leptonic
and the hadronic tensor. This analogy will become even more
apparent in section 2.1 where we introduce the explicit expression
of the current operators and use the conserved vector current
(CVC) hypothesis to connect the vector part of the electroweak
current with the electromagnetic one. For this reason, any model
of neutrino-nucleus scattering has to be capable of describing
electron-scattering cross sections first [44].

2.1. Nuclear Hamiltonian and Current
Operator
The internal structure of nuclei and their reactions can be
described within non-relativistic many body approaches utilizing
an Hamiltonian in which the nucleons are the only active degrees
of freedom. Its general expression is given by

H =
∑

i

p2i
2mN

+
∑

i<j

vij +
∑

i<j<k

Vijk , (13)

where pi is the momentum of the i-th nucleon having mass
mN , while the potentials vij and Vijk model the nucleon-nucleon
(NN) and three-nucleon (3N) interactions, respectively. A model
of NN interaction has to be constrained by the large number
of NN scattering data available. Currently, very accurate results
have been obtained from both phenomenological approaches and
chiral effective field theory able to accurately fit these data.

The Argonne v18 is a finite, coordinate space NN potential
that has been fit to the full Nijmegen phase-shift database and
to low energy scattering parameters and deuteron properties.
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It can be written as a product of radial functions and spin-
isospin operator

vij =
∑

p=1,...,18

vp(rij)O
p
ij (14)

where rij = |ri−rj|. The first 14 operators are charge independent
(corresponding to the older Argonne v14 model)

O
p=1,...,14
ij =

[

1, σ i · σ j, Sij, L · S, L2, L2σ i · σ j, (L · S)2
]

,

×
[

1, τ i · τ j

]

(15)

where σ and τ are the Pauli matrices operating over the
nucleon spin and isospin degrees of freedom, respectively,
Sij = 3σ i · r̂ijσ j · r̂ij − σ i · σ j is the tensor operator, Lij =
1
2i (ri − rj) × (∇i − ∇j) is the relative angular momentum,

and Sij = 1
2 (σ i + σ j) is the total spin. The terms p =

15 . . . 18 are included in the formulation of the Argonne potential
to account for small violations of charge symmetry [45]. In
addition to the NN interactions, also phenomenological 3N
interactions have been developed. In particular the Illinois 7
(IL7) interaction is expressed as a sum of a two-pion-exchange
P-wave term (Fujita-Miyazawa), a two-pion-exchange S-wave
contribution, a three-pion-exchange contribution, and a 3N
central interaction [46]. These phenomenological NN and 3N
interactions were successfully utilized in QMC calculations of
nuclear properties, neutron drops, and neutron-star matter [18,
47–50].

In the last decades there has been a tremendous progress
in development of chiral EFT interactions as proven by
the availability of a number of different potentials [13, 51–
54]. However, it is only recently with their formulation in
coordinate space that the application of chiral forces within
QMC approaches became possible. These new local potentials
have been computed up to N2LO with consistent 3N terms in
Gezerlis et al. [55, 56], the1-isobar degrees of freedomwere fully
accounted for in the derivation of Piarulli et al. [57, 58].

In analogy with the nuclear Hamiltonian, the current operator
can be expressed as a sum of one- and two-body terms

Jµ =
∑

i

jµ(i)+
∑

i<j

jµ(ij)+ . . . (16)

The one-body electromagnetic current is given by

j
µ
EM = ū(p′)

[

F1γ
µ + iσµνqν

F2

2mN

]

u(p) , (17)

where p and p′ are the initial and final nucleon momentum. The
isoscalar (S) and isovector (V) form factors, F1 and F2, are given
by combination of the Dirac and Pauli ones, F1 and F2, as

F1,2 =
1

2
[FS1,2 + FV1,2τz] (18)

where τz is the is the isospin operator and

FS1,2 = F
p
1,2 + Fn1,2, FV1,2 = F

p
1,2 − Fn1,2 . (19)

The Dirac and Pauli form factors can be expressed in terms of the
electric and magnetic form factors of the proton and neutron as

F
p,n
1 =

G
p,n
E + τG

p,n
M

1+ τ
, F

p,n
2 =

G
p,n
M − G

p,n
E

1+ τ
(20)

with τ = Q2/4m2
N . Therefore, the electromagnetic current can

be schematically written as J
µ
EM = J

µ
γ ,S + J

µ
γ ,z where the first is

the isoscar term and the second is the isovector multiplied by the
isospin operators τz . The one-body charge and current operator
are obtained from the non-relativistic reduction of the covariant
operator of Equation (17) including all the terms up to 1/m2

N in
the expansion. It leads to the following expression for isoscalar
charge, transverse (⊥) and longitudinal (‖) to q component of
the current operator

j0γ ,S =
GS
E

2
√

1+ Q2/4m2
N

− i
2GS

M − GS
E

8m2
N

q · (σ i × pi)

j⊥γ ,S =
GS
E

2mN
p⊥i − i

GS
M

4mN
(q× σ )i

j
‖
γ ,S =

ω

|q|
j0γ ,S . (21)

Note that the last relation has been obtained from current
conservation relation discussed in Equation (30). Analogously
to Equation (19), the isoscalar and isovector component of the
electric and magnetic form factors are written as

GS
E,M = G

p
E,M + Gn

E,M , GV
E,M = G

p
E,M − Gn

E,M . (22)

The isovector contribution to the current J
µ
γ ,z is obtained by

replacing GS
E,M → GV

E,Mτz . The electroweak interactions of
a neutrino or anti-neutrino with the hadronic target can be
induced by both CC and NC transitions. The current operator
is written as a different combination of vector and axial
terms. Note that in both cases the Conserved Vector Current
(CVC) hypothesis allows to relate the vector form factor to the
electromagnetic ones

J
µ
CC =Jµγ ,z + Jµa,z

J
µ
NC =− 2 sin2 θW J

µ
γ ,S + (1− 2 sin2 θW)Jµγ ,z + Jµa,z , (23)

where θW is the Weinberg angle (sin2 θW = 0.2312 [42]). The
fully relativistic expression of the axial one-body current operator
reads

j
µ
A = ū(p′)

[

− γ µγ5FA − qµγ5
FP

mN

]

u(p) . (24)

For CC processes the axial and pseudo-scalar form factors can be
written as

FA = FAτ±, FP = FPτ± , (25)

with τi,± = (τi,x ± τi,y)/2 being the isospin raising-lowering
operator.

Frontiers in Physics | www.frontiersin.org 4 April 2020 | Volume 8 | Article 116

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rocco Electroweak Interactions Within ab initio Methods

The dipole parametrization for the axial form factor is
routinely adopted in most of the calculations, it reads

FA =
gA

(1+ Q2/m2
A)

2
, (26)

where the nucleon axial-vector coupling constant is assumed
to be gA = 1.2694. The impact of the Q2 dependence
of the axial form factor on neutrino-nucleus cross-section
predictions has been discussed in Aguilar-Arevalo et al. [59] and
Bernard et al. [60]. The validity of the dipole parametrization
has been questioned and in these regards both lattice-QCD
calculations [61] and the so called “z-expansion” analysis [62]
has been recently proposed. The pseudo-scalar form factor is
obtained by using Partially Conserved Axial Current (PCAC)
arguments to write it in terms of the axial one

FP =
2m2

N

(m2
π + Q2)

FA . (27)

For NC transitions, we report the non-relativistic reduction of the
charge- and axial-current operator [63] (for brevity we neglect
order 1/m2

N terms)

j0a,z(i) = −
GA

4mN
τi,zσ i · (q+ pi) , ja,z(i) = −

GA

4mN
σ iτi,z .

(28)

The CC non-relativistic current is obtained by substituting in
the non-relativistic isovector term j

µ
γ ,z and j

µ
a,z of Equation (28),

τi,z/2 → τi,± and adding a pseudoscalar contribution

j
µ
a,PS =

GA

m2
π + Q2

τi,±q
µ
σ i · q . (29)

The electromagnetic current must satisfy the continuity equation

∇ · J+ i
[

H, J0
]

= 0 (30)

which links the two-body exchange current operator to the NN
interaction and leads to separate continuity equations for the
one- and two-body current operators. Chiral EFT formulations
allow to construct electroweak currents which are fully consistent
with the nuclear forces entering the hamiltonian. The gauge
invariance of the theory implies that the nuclear current
operators satisfy the continuity equation with the potentials order
by order of the chiral expansion. The calculation of the two-
body electromagnetic currents has been the subject of extensive
study carried out by different groups [64–68]. Another important
advantage of chiral EFT consists on having connected three-
nucleon interaction and the two-nucleon axial current; their
derivation up to one-loop is reported in Krebs et al. [69]
and Baroni et al. [70] while the 1-full expression obtained
consistently with the nuclear forces of Piarulli et al. [57, 58] can
be found in Baroni et al. [71].

The majority of the results that will be presented in this
review have been obtained utilizing the aforementioned AV18

FIGURE 1 | Feynman diagrams of the 1 contribution to two-body currents.

Solid, thick, and dashed lines represent nucleons, deltas, pions, respectively

while the wavy line correspond to the vector boson.

potential and related semi-phenomenological currents. The spin
and isospin dependence of the NN potential leads to a non-
vanishing commutator with the non-relativistic one-body charge
operator. In order to satisfy the continuity equation, the so-
called “model-independent” two-body currents jMI(ij) have to
be introduced; their longitudinal part is directly constrained by
the NN interaction while their transverse components are not
uniquely defined. The main contributions comes from the one-
pion and one-rho exchange current operator, their expression
is well-known and reported in Rocco et al. [72], Dekker et
al. [36] and Schiavilla et al. [73] both in their relativistic and
non-relativistic formulation.

In addition to the model-independent two body currents a
significant contribution comes from model dependent terms in
which the exchange of a pion is followed by the excitation of
a 1-resonance in the intermediate state. Due to the transverse
nature of this current, its expression is model dependent. In fact,
the form of the vector part is not determined from current-
conservation constraints [74].

Analogously to the one-body case, the two-body CC operator
is the sum of a vector and axial component. The relativistic
expression of the two-body current operator we present in
this work has been obtained following the parametrization of
Ruiz Simo et al. [75] where the pion-production amplitudes of
Hernandez et al. [76] are coupled to a second nucleonic line.
Starting from the vector component of j

µ

CC, the electromagnetic
current operators can be obtained using the CVC hypothesis.
Adopting the momentum variables specified in Figure 1, the
expression of the CC1-current reads

(j
µ
1)CC =

3

2

fπNN f
∗

m2
π

{

5(k2)(2)

[(

−
2

3
τ (2)

+
IV

3

)

±
FπNN(k2)FπN1(k2)(j

µ
a )(1) −

(2

3
τ (2) +

IV

3

)

±

× FπNN(k2)FπN1(k2)(j
µ

b
)(1)

]

+ (1 ↔ 2)

}

(31)
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where k2 = p′ − k′ is the momentum of the π exchanged in the
two depicted diagrams, f ∗ = 2.14 and

5(k) =
γ5/k

k2 −m2
π

, (32)

FπN1(k) =
32
πN1

32
πN1 − k2

, (33)

FπNN(k) =
32
π −m2

π

32
π − k2

, (34)

with 3πN1 = 1150 MeV and 3π = 1300 MeV. In the above
equations, 5(k) describes the pion propagation and absorption,
while the πNN and πN1 couplings depend on the form factors
FπN1(k) and FπNN(k), respectively, accounting for the off-
shellness of the π and 1. The operator (IV )± = (τ (1) × τ (2))±
with ± → x ± iy raises-lowers the isospin components. In
Equation (31), j

µ
a and j

µ

b
denote the N → 1 transition vertices

of the left and right diagrams, respectively. They are expressed as

jµa = (jµa )V + (jµa )A ,

(jµa )V =
CV
3

mN

[

kα2Gαβ (p1)
(

gβµ/q− qβγ µ
)]

γ5 ,

(jµa )A = CA
5

[

kα2Gαβ (p1)g
βµ

]

(35)

where k is the momentum of the initial nucleon, q is the
momentum transfer and p1 = q + k, yielding p01 = e(k) + ω.
For the left diagram we have

j
µ

b
= (j

µ

b
)V + (j

µ

b
)A ,

(j
µ

b
)V =

CV
3

mN
γ5

[(

gαµ/q− qαγ µ
)

Gαβ (p1)k
β
2

]

,

(j
µ

b
)A = CA

5

[

gαµGαβ (p1)k
β
2

]

. (36)

where p is the outgoing nucleon four-momentum and p1 =
p− q. The vector and axial form factors, denoted by CV

3 and CA
5 ,

are obtained from general principles and experimental results as
discussed inHernandez et al. [76] where their explicit expressions
is also reported. In the above equations all nucleons are on the

mass-shell with the time component p0 =
√

m2
N + Ep 2. For

the 1-propagator we adopted the Rarita-Schwinger convention
where Gαβ (p1) = Pαβ (p1)/(p

2
1 −M2

1) is proportional to the
spin 3/2 projection operator

Pαβ (p1) = (/p1 +M1)
[

gαβ −
1

3
γ αγ β −

2

3

pα1p
β

1

M2
1

+
1

3

pα1γ
β − p

β

1γ
α

M1

]

. (37)

In order to account for the possible decay of the1 into a physical
πN we replace its real mass M1 = 1,232 MeV entering the
denominator of the free propagator, i.e., p21 − M2

1, by M1 −
iŴ(p1)/2 [72, 77]. The decay width Ŵ(p1)/2 is not a constant but
explicitly depends upon the energy, its expression can be found
in Dekker et al. [72].

3. INTEGRAL TRANSFORM TECHNIQUES

Evaluating the hadronic tensor of Equation (3) is highly non-
trivial as it requires to sum over the entire excitation spectrum of
the nucleus and to include one- and two-body current operators.
Integral transform techniques are extremely useful in reducing
the problem to a ground-state one instead of explicitly evaluating
each transition amplitude |90〉 → |9f 〉. We consider the
convolution of the response function with a smooth kernel

Eαβ (q, σ ) =

∫

dωK(σ ,ω)Rαβ (q,ω) =

∑

f

〈90|J
†
α(q)|9f 〉K(σ ,Ef − E0)〈9f |Jβ (q)|90〉 , (38)

using the closure property
∑

f |9f 〉〈9f | = 1 a generalized sum

rule depending on a continuous parameter σ can be obtained

Eαβ (q, σ ) = 〈90|J
†(q)K(σ ,H − E0)Jβ (q)|90〉 . (39)

With an appropriate choice of the kernel K, the right-hand
side of the above equation can be accurately computed within
different ab-initio methods. In order to retrieve the energy
dependence of the response function, the integral transform has
to be accurately inverted.

3.1. Lorentz Integral Transform Technique
The kernel used to compute the integral transform is a Lorentzian

K(σ ,ω) =
1

(ω − σ ∗)(ω − σ )
(40)

where σ is a complex parameter, generally defined for
convenience as

σ = E0 + σR + iσI . (41)

For simplicity we leave the Lorentz indices implicit and rewrite
Equation (39) substituting the Lorentz kernel as

E(q, σI , σR) = 〈90|J
†(q)

1

H − E0 − σR + iσi
1

H − E0 − σR − iσi
J(q)|90〉 = 〈9̃|9̃〉 , (42)

implying that the Lorentz Integral Transform (LIT) of the
response function is given by the norm of the |9̃〉 state. This
state is determined by solving a Schrödinger-like equation for a
quantum mechanical bound system

(H − E0 − σR − iσI)|9̃〉 = J(q)|90〉 (43)

for different values of σI and σR. In order to obtain the response
function, one first computes Ē(q, σI , σR) and then inverts it
numerically. This second step is highly non-trivial and belongs to
the class of so-called “ill-posed” problems. The devised method
consists on: (i) making an ansatz to write down the expression of
the response function as a function of a set of parameters ci (ii) the
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corresponding LIT is computed using this parametrization of the
nuclear response function (iii) the parameters ci are determined
from a least-squares fit of the LIT computed in (ii) with the
one calculated at the beginning, Ē(q, σI , σR). A more detailed
discussion of the inversion procedures utilized can be found in
Efros et al. [78] and Reiss et al. [79].

A very accurate determination the electromagnetic responses
of light nuclei has been achieved, for different values of q,
combining the LIT method with the hyperspherical harmonic
(HH) formalism [80–82]. This expansion method has been
successfully utilized to study nuclear, atomic and molecular few-
body systems; the wave function of the system is expanded in a
series of products of HH basis functions and hyperradial basis
functions allowing for a correct description of the large distance
components. The predictive power of the HH approach is limited
to relatively light mass number, to overcome this limitation the
Couple Cluster (CC) theory has been recently combined with the
LIT approach to tackle medium and large mass nuclei [83, 84].
The photoabsorption cross sections of 16,22 O and 40 Ca and
electromagnetic sum rules have been recently computed using
the LIT-CC approach in Simonis et al. [85].

3.2. Green’s Function Monte Carlo
The Green’s Function Monte Carlo (GFMC) is an ab-initio
method that allows to predict with high accuracy the structure
and low-energy transitions of A ≤ 12 nuclei [19]. This method is
utilized to project out the ground state starting from a trial wave
function |9T〉

|90〉 ∝ lim
τ→∞

exp[−(H − E0)τ ]|9T〉 ,

where E0 is a parameter used to control the normalization and
τ is the imaginary time. Recently, exploiting integral transform
techniques accurate predictions for the electromagnetic response
functions of 4He and 12C in the quasielastic sector have been
obtained. The inclusion of two-body currents yields to a very
good agreement between GFMC predictions and experimental
data [23, 25]. The integral transform of Equation (38) is evaluated
using a Laplace kernel and denoted as Euclidean response. Its
inelastic contribution is obtained as

Eαβ (q, σ ) =

∫ ∞

ω+
el

dωRαβ (q,ω)e
−ωσ , (44)

where ωel is the energy of the recoiling ground state. Using the
closure property, the sum over the final states can be removed,
the inelastic Euclidean responses can be written as the following
ground-state expectation value

Eα(|q|, σ )=〈90|J
†
α(q)e

−(H−E0)τ Jβ (q)|90〉 − |Fα(q)|
2e−σωel

(45)

where Fα(q) is the longitudinal elastic form factor and the
nucleon form factors entering in the current operator are
evaluated at the quasielastic peak Q2

qe = q2 − ω2
qe.

In order to obtain the response function the Laplace transform
has to be inverted. This is achieved exploiting maximum

entropy techniques, as described in Lovato et al. [25] and
in the supplemental material of Lovato et al. [86]. The LIT-
HH and GFMC results for the longitudinal electromagnetic
responses of 4He have been recently compared to benchmark the
inversion procedure used in the two approaches. The calculations
presented are based on the AV18 and IL7 combination of two-
and three-nucleon potential for the GFMC method and AV18
and UIX for the LIT-HH [45, 87]. The results are displayed
in Figure 2 for |q| = 300 and 500 MeV, the (red) dashed and
solid (blue) lines corresponding to the LIT-HH and GFMC
predictions, respectively, are found in good agreement and
correctly reproduce the experimental data taken from Carlson
et al. [88]. The small discrepancies between the two curves have
been discussed in Rocco et al. [24] and they do not originate from
the inversion techniques utilized in the two approaches.

Because of the non-relativistic nature of the GFMC approach,
it can be safely applied to compute electroweak responses in the
high momentum transfer region relevant for neutrino-nucleus
scattering. Relativistic corrections are in both one- and two-body
current operators up to order 1/m2

N as discussed in Carlson and
Schiavilla [63] for the one-body case. However, the quantum
mechanical framework is non-relativistic; an attempt of including
relativistic corrections in the kinematics has been recently carried
out in Rocco et al. [24]. The strategy consists on performing
the calculation in a reference frame that minimizes nucleon
momenta in the final state.

In electron-nucleus scattering processes, the quasielastic
region is dominated by a one-nucleon knock-out and this
condition is satisfied by the active nucleon Breit (ANB) frame
in which the target nucleus has a momentum −A q/2. In this
reference frame the momentum of the nucleons in the initial
state is about −q/2 while the one of the emitted particle is ≃
q/2. The momentum of the final state is higher in all the other
reference frames like for example the laboratory (LAB) system
where the emitted knocked-out nucleon has a momentum of
about q. Therefore, the ANB system can be utilized to minimize
relativistic corrections.

In order to compare with experimental data measured in the
LAB system, the results from the ANB need to be boosted back
to the LAB frame. The solid blue and red curves in Figure 3

performing the calculation of the longitudinal electromagnetic
response of 4He at |q| = 700 MeV in the LAB and ANB frame,
respectively, and boosting back to the LAB frame using Lorentz
transformation. The two curves peak in different positions and
have different strengths, this frame dependence of the results is a
clear indication that relativistic effects are sizable for these values
of q.

Relativistic effects in the kinematics can be included
employing the two-fragment model of Efros et al. [89] which
presents strong analogies with the procedure used to determine
NN potentials. In this case, the relative momentum of the two-
nucleon system p12 is determined in a relativistic fashion and
utilized to solve the Schrödinger equation with a non-relativistic
kinetic energy E12 = p212/2µ12, µ12 being the reduced mass.

The two-fragment model relies on the assumption that the
dominant reaction in the quasielastic region consists on the
break-up of the nucleus into a knocked-out nucleon with
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FIGURE 2 | Longitudinal electromagnetic response functions of 4He at |q| = 300 MeV (left) and |q| = 500 MeV (right) obtained inverting the Laplace and Lorentz

integral transforms compared to the experimental data of Carlson et al. [88].

FIGURE 3 | (Left) Longitudinal electromagnetic response functions of 4He at |q| = 700 MeV computed in the LAB and in the ANB frame are displayed by the blue

and red solid curves, respectively. The dashed curves have been obtained by applying the two-fragment model to consider two-body relativistic kinematics for the final

state energy. (Right) Double-differential electron-4He cross sections for Ee = 1108 MeV and θ = 37.5. The short-dashed red and dashed blue curves are the GFMC

calculation were only one- body and one- plus two-body contributions in the electromagnetic currents are accounted for. The results obtained in the ANB frame

corrected by the two-fragment model are displayed by the red solid line. The experimental data are taken from Benhar et al. [44].

momentum pfrN and a remaining (A − 1) system in its ground

state pfrX , respectively. The relative and center-of-mass momenta
of the nucleon and spectator system are obtained as

pfrf = µ(
pfrN
m

−
pfrX
MX

) , Pfrf = pfrN + pfrX , (46)

where MX and µ are the mass of the residual nucleus and the
reduced mass, respectively. The relative momentum pfr

f
can be

computed in a relativistic way utilizing the correct definition of
the final hadronic energy

E
fr

f
=

√

m2 + (pfr
f
+ (µ/MA−1)P

fr
f
)2

+
√

M2
A−1 + (pfr

f
− (µ/m)Pfr

f
)2 ;

and used to determine the relativistically “fake” kinetic energy
(pfr

f
)2/2µ entering in the energy conserving δ-function of

Equation (3). A more detailed discussion of the approach can be
found in Rocco et al. [89] and Efros et al. [24].

The results computed within the two-fragment model are
displayed by the dashed curves in Figure 3. Note that, now the
position and the strength of the LAB rel and ANB rel curves are
the same. This implies that the position of the quasielastic peak
in the electromagnetic responses no longer depends upon the
reference frame and coincides with that of the ANB frame (solid
blue curve).

In order to compute the inclusive electromagnetic cross
section of Equation (4),RL andRT have to be evaluated for several
values of ω and |q|. Hence, due to the sizable computational
effort associated with the inversion of the Euclidean response
for a given value of |q|, the direct evaluation of Equation (4) is
not feasible within GFMC. In order to overcome this limitation,
an interpolation procedure based on the concept of scaling
was devised in Rocco et al. [24] and used for an accurate
and efficient interpolation of the GFMC responses. The right
panel of Figure 3 displays the double-differential electron-4He
cross sections for Ee = 1108 MeV and θ = 37.5. The red
and blue lines have been obtained including the one- body
and one- plus two-body contributions in the electromagnetic
currents. The inclusion of the meson exchange current leads
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to a substantial enhancement in the quasielastic region. The
same feature is present in the results of Lovato et al. [23, 25]
where the electromagnetic responses of 4He and 12C have been
calculated and compared with the experimental data. Separating
the longitudinal and transverse channel it has been observed
that the two-body term has a predominantly transverse nature;
its contribution is almost vanishing in the longitudinal channel
when electromagnetic processes are considered. The red solid
line indicates one plus two-body current results obtained in the
ANB frame, employing the two-body fragment model to account
for relativistic kinematics. The inclusion of relativistic effects
leads to a shift of the peak position toward lower values of ω and
to a reduction of its width.

Recently, GFMC calculations of the neutral-current responses
and cross sections for neutrino scattering off 12C have also
been performed [26]. A description of the two-body charge and
current operators used in this work is provided in Lovato et
al. [23] and Shen et al. [40] and references therein. The left
panel of Figure 4 shows the different spatial components of the
neutral-current response functions in 12C at momentum transfer
|q| = 570 MeV. The vector and axial contributions are shown

separately in all cases but for Rxy the entire strength is given
by the axial-vector interference. The dashed and solid lines have
been obtained including the one-body and one- and two-body
currents, respectively. Note that also in this case the two-body
term significantly increases in magnitude the response functions
in the quasielastic region. At variance with the electromagnetic
results, the axial component of the two-body operator in the
weak neutral charge produce substantial excess strength in the
longitudinal channels as clearly visible in the upper figure. While
in the transverse response, shown in the middle panel, we have
a two-body enhancement both from the axial and vector terms.
The xy response function in the lower panel which arises solely
on account of this interference is also modified by the two-body
contribution. In the right panel of Figure 4 the CC responses
in 4He at momentum transfer |q| = 600 MeV are displayed.
In analogy the NC case, we see that the enhancement given by
the inclusion of two-body currents is present in all the different
channels. However, in the longitudinal one it is not as significant
as for the NC scattering. This has to be ascribed to the relative
strength of the axial contribution to the total response which in
this case is much smaller than the vector one.

FIGURE 4 | (Left) Adapted from Lovato et al. [26] under the Creative Commons CCBY license. Neutral-current response functions in 12C at momentum transfer |q| =

570 MeV obtained with one-body only (dashed lines) and one- and two-body (solid lines) currents. The vector and axial contribution corresponds to the red and green

curves, the black curves display the full result in which the axial-vector interference is accounted for. The upper, middle, and lower panel corresponds to the charge,

transverse and xy component of the response function. (Right) Charge-current response functions in 4He at momentum transfer |q| = 600 MeV. The different lines are

the same as for the left panel.
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4. SHORT TIME APPROXIMATION

A novel approach to calculate the short-time propagation
resulting from two- nucleon dynamics has been recently
developed [28]. The STA method utilizes QMC techniques to
evaluate path integrals of one- and two-nucleon currents in
real time and predict the response function of nuclei in the
quasielastic region. The expression of this response is reported
in Equation (3) and can be rewritten as

Rµν(q,ω) =

∫ ∞

−∞

dt

2π
ei(ω+E0−Ef )t

∑

f

〈90|J
µ†(q,ω)|9f 〉〈9f |J

ν(q,ω)|90〉

=

∫ ∞

−∞

dt

2π
ei(ω+E0)t〈90|J

µ†(q,ω) e−iHt Jν(q,ω)|90〉

(47)

where the sum over final states has been replaced with a real-
time propagator. In the following, we drop the Lorentz indices to
simplify the notation and replace J(q,ω) → J(q) with ω = ωqe,
the one- and two-body current operators utilized are the same
as for the GFMC results [40]. The main assumption underlying
the STA is that only the active pair of nucleons propagate, this
qualitatively amounts to rewrite the final state as

∑

f |9f 〉 →
∑

f ′ f ′′ |φ
2
f ′
〉|9A−2

f ′′
〉 where |φ2

f ′
〉 is the correlated two-nucleon

state. To evaluate the response function, two completeness
relations on the coordinate states are inserted, yielding

〈90|J
µ† e−iHt Jν |90〉 =

∫

dr1 . . . drAdr
′
1 . . . dr

′
A〈90|J

µ†|r1 . . . rA〉

× 〈r1 . . . rA|e
−iHt|r′1 . . . r

′
A〉〈r

′
1 . . . r

′
A|J

ν |90〉 .
(48)

In the STA the current-current correlator is rewritten keeping the
one- and two-body terms

Jµ† e−iHt Jν =
(

∑

i

jµ†(i)+
∑

i<j

jµ†(ij)
)

e−iHt
(

∑

i′

jν(i′)

+
∑

i′<j′

jν(i′j′)
)

=
∑

i

jµ†(i)e−iHtjν(i)+
∑

i6=j

jµ†(i)e−iHtjν(j)

+
∑

i6=j

(

jµ†(i)e−iHtjν(ij)+ jµ†(ij)e−iHtjν(i)

+ jµ†(ij)e−iHtjν(ij)
)

(49)

the contributions with three or more active nucleons have
been neglected. This amounts to include only two-nucleon
interactions in the Hamiltonian; the A-nucleon particle

propagator is approximated as

〈r1 . . . rA|e
−iHt|r′1 . . . r

′
A〉 = 〈r1 . . . rA|e

−i(Hcm
ij +Hrel

ij +HA−2)t|r′1 . . . r
′
A〉

= 〈Rij|e
−iHcm

ij t
|R′ij〉〈rij|e

−iHrel
ij t

|r′ij〉e
−iĒA−2t

A
∏

k 6=i,j

δ(rk − r′k) (50)

where Hcm
ij = P2ij/(4mN) and Hrel

ij = p2ij/mN + vij. The A −

2 nucleons are treated as static spectators and their energy is
assumed to be peaked around a constant value ĒA−2.

We put the two equations together and define j
µ†
L jνR =

(

jµ†(i)jν(j)+ jµ†(i)jν(ij)+ jµ†(j)jν(ij)) yielding

Rµν (q,ω) =
A(A− 1)

2

∫

dtei(ω+E0−ĒA−2)t

∫

dr12dR12dr
′
12dR

′
12dRA−2〈90|j

µ†
L |r12R12;RA−2〉

× 〈R12|e
−iHcm

12 t|R′12〉〈r12|e
−iHrel

12 t|r′12〉〈r
′
12R

′
12;RA−2|j

ν
R|90〉 .
(51)

The two-nucleon propagator 〈r12|e
−iHrel

12 t|r′12〉 is obtained by

summing over the bound and continuum eigenstates of Hrel
12 .

Note that the interaction effects in the active pair are exactly
accounted for. It is convenient to rewrite the STA response in
terms of an integral over the relative- and center-of-mass energy
of the pair as

Rµν(q,ω) =

∫ ∞

0
de

∫ ∞

0
dEcmδ(ω + E0 − e− Ecm)D

µν(e,Ecm) .

(52)

Within the factorization scheme outlined above, interaction
effects at the two-nucleon level are fully retained, and
the interference between one- and two-body terms in the
electromagnetic current operator are consistently accounted for.
The low-energy properties of the system (discrete transition
and collective excitation of the nucleus) and the correct energy
threshold for the quasielastic region can not be described within
the STA. For this reason, some corrections have to be introduced
in order to recover the exact value of the threshold for the
quasielastic scattering. In particular, the response density is
folded with a gaussian kernel

D̃(e′,Ecm) =

∫ ∞

0
deD(e,Ecm)N exp

{

−
[ e′ − ω(e)

ωth

]2
}

(53)

where ω(e) =
√

e2 + ω2
th
exp−e/ω̄ and N is defined requiring

that the sum rules are preserved

∫ ∞

0
deN exp

{

−
[ e′ − ω(e)

ωth

]2
}

= 1 . (54)

The two parameters controlling the shift and width of the
gaussian folding are ωth and ω̄, respectively. The values chosen
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FIGURE 5 | Transverse electromagnetic response of 4He obtained within the STA and GFMC approaches. The left and right panel corresponds to |q| = 300 and 500

MeV, respectively. The dashed (blue) and solid (red) lines are STA calculations prior and including the shift; the solid (black) line displays the GFMC results. Figure

adapted from Pastore et al. [28].

to reproduce the physical threshold of ∼ 20 MeV of 4He are
ωth = 35 MeV and a 15 MeV width.

A comparison between the STA and GFMC electromagnetic
response function of 4He is shown in Figure 5 for |q| = 300
and 500 MeV. The dashed line displays the STA results without
any knowledge of the threshold while in the full red line the
correct behavior at threshold has been enforced as explained in
Equation (53). Including these corrections leads to a shift of
the response toward larger values of the energy transfer and a
redistribution of the strength; while for |q| = 300 MeV this effect
is sizable the results at |q| = 500 are only slightlymodified. In both
configurations the STA results which include the shift accurately
reproduce the GFMC ones.

The role played by final-state interactions within the pair is
analyzed in the left panel of Figure 6 where the solid and dashed
lines correspond to the transverse electromagnetic response of
4He obtained with and without interactions effects, respectively.
Their inclusion leads to a visible shift in the position of the
quasielastic peak toward left. The breakdown of the response into
one-body current diagonal and off-diagonal terms, interference
between one- and two-body currents, and two-body currents
only, is also shown. It is interesting to note that the off-diagonal
terms, routinely neglected in the IA scheme, provide a negative
contribution depleting the response strength. In analogy with
the GFMC findings, the interference between one-and two-body
currents provides an important enhancement in the quasielastic
region; contrary to the pure two-body current which does not
provide a significant contribution to the response function in
this kinematics. This is likely to be ascribed to the static limit
adopted in both the GFMC and STA approaches to derive the
non-relativistic expression of the 1 current. As discussed in
Dekker et al. [72] in the static limit all energy dependence of the
1 propagator disappears and the resonance behavior in the dip
region is not present.

The isospin dependence of pairs in the back-to-back
kinematics, i.e., pairs with low initial center-of-mass momentum
and high relative momentum, is studied in the right panel of

Figure 6. These pairs can be singled-out in the response densities
by requiring the pair center-of-mass momentum P being close
to |q| and the relative momentum in the final state being large.
Figure 6 displays the response densities at fixed energy Ecm ≃
|q|2/(4mN) as a function of the relative energy of the pair e.
The solid and dot-dashed curves have been obtained with and
without interactions within the pair. The comparison between
the full results (black line) and the one-body total (magenta
line) shows that the two-nucleon currents do not provide a
large contribution at low relative energies. While, the full result
becomes substantially larger than the one-body current term for
e ≥ 250 MeV. The back-to-back momentum distributions of
np pairs are known to dominate over pp or nn pairs at high
relative momenta because of tensor correlations as discussed in
Schiavilla et al. [90]. In addition to that, the two-nucleon currents
are almost entirely in the np pairs, and increase the response by
roughly a factor of∼ 2 around at e = 300 MeV.

5. EXTENDED FACTORIZATION SCHEME

For large values of ω and |q|, a non-relativistic calculation of
the hadron tensor is no longer reliable. Since both the final
state and the transition currents depends upon the momentum
transfer, relativity has to be properly accounted for. Factorizing
the hadronic final state allows one to overcome these difficulties
by providing a relativistic description of |9f 〉 and of the current
operator. In addition to that, realistic spectral functions are used
to accurately model the dynamics of the target nucleus and
account for correlation effects. We start by only retaining the
one-body current terms and rewriting the hadronic final state as

Jµ =
∑

i

jµ(i), |9f 〉 → |p〉 ⊗ |ψA−1
f

〉 (55)

where |p〉 is a plane wave describing the propagation of the
final-state nucleon with momentum |p| and energy e(p) =
√

|p|2 +m2
N , while |ψ

A−1
f

〉 describes the (A− 1)-body spectator
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FIGURE 6 | (Left) Transverse electromagnetic response of 4He at |q| = 500 MeV without (dashed lines) and with (solid lines) interacting two-nucleons in the final state.

The different contributions corresponding to one-body current diagonal terms, one-body current off-diagonal terms, interference between one- and two-body

currents, and two-body currents only are separately shown. (Right) Transverse response densities of 4He at |q| = 500 MeV and final center of mass energy

Ecm = |q|2/(2mN ). The solid cyan and magenta solid line display the diagonal only and diagonal plus off-diagonal one-body term, respectively. The solid black curve

corresponds to the total one- plus two-body current result while in the blue dashed and red dashed isolate the contribution of the nn and pp pairs is singled-out.

Figure adapted from Pastore et al. [28].

system. The energy and momentum of the latter are obtained by
energy and momentum conservation relations

EA−1
f

= ω + E0 − e(p) , PA−1
f

= q− p . (56)

The incoherent contribution to the one-body hadron tensor
can be easily obtained from Equation (55) and by inserting a
single-nucleon completeness relation

R
µν

1b
=

∫

d3k

(2π)3
dEPh(k,E)

m2
N

e(k)e(k+ q)

∑

i

〈k|j
µ
i

†
|k+ q〉

〈k+ q|jνi |k〉δ(ω̃ + e(k)− e(k+ q)) , (57)

where mN is the rest mass of the initial nucleon. We introduced
ω̃ defined as ω̃ = ω − E+mN − e(k). To describe the scattering
off a bound nucleon with momentum k, the four-momentum
transfer employed in the hadronic tensor is replaced by q =
(ω, q) → q̃ = (ω̃, q). The factors mN/e(k) and mN/e(k+ q)
ensures the implicit covariant normalization of the nucleon
quadri-spinors. The hole-spectral function Ph(k,E) provides the
probability distribution of removing a nucleon with momentum
k from the target nucleus, leaving the residual (A − 1)-nucleon
systemwith an excitation energy E. The calculation of the spectral
function of finite nuclei is a challenging problem that has seen the
endeavor of multiple theory groups. In this work we will focus on
the results obtained within the Correlated Basis Function and the
Self Consistent Green’s Function many-body methods, shortly
outlined in section 5.1.

For low and moderate values of |q|, interactions between the
struck particle and the spectator system become relevant. For this
reason, the IA results must be modified to include them [30].
This is achieved by including in the energy spectrum of the
propagating nucleon the real part of the optical potential U of
Cooper et al. [91] which accounts for its interactions with the

mean-field created by the residual system. This potential has to
be evaluated for a given kinetic energy of the nucleon tkin(p) =
√

p2 +m2 −m, and modifies its energy as

ẽ(k+ q) = e(k+ q)+ U
(

tkin(k+ q)
)

. (58)

The rescattering processes of the propagating nucleon are
described by a convolution scheme which amounts to fold the
IA responses with a function fk+q, normalized as

∫ +∞

−∞
dωfk+q(ω) = 1 . (59)

The one-body hadron tensor then reads

R
µν

1b
(q,ω)

FSI
=

∫

d3k

(2π)3
dEPh(k,E)

∫

dω′ fk+q(ω − ω′)

m2
N

e(k)e(k+ q)

∑

i

〈k|j
µ
i

†
|k+ q〉〈k+ q|jνi |k〉

× δ(ω′ + E− ẽ(k+ q))θ(|k+ q| − pF) . (60)

where a generalization of the Glauber theory is utilized to derive
the folding function [92]

fp(ω) = δ(ω)
√

Tp +

∫

dt

2π
eiωt

[

ŪFSI
p (t)−

√

Tp

]

= δ(ω)
√

Tp + (1−
√

Tp)Fp(ω) . (61)

A more detailed discussion on how to obtain the nuclear
transparency Tp and the finite width function Fp(ω) can be found
in Benhar et al. [29] and Benhar et al. [93].

The inclusion of two body-currents requires an extension of
the factorization ansatz of Equation (55). In Benhar et al. [34]

Frontiers in Physics | www.frontiersin.org 12 April 2020 | Volume 8 | Article 116

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rocco Electroweak Interactions Within ab initio Methods

and Rocco et al. [35, 36] the amplitudes involving two-nucleon
currents have been included by rewriting the hadronic final state
as

|ψA
f 〉 → |pp′〉a ⊗ |ψA−2

f
〉 (62)

where |p p′〉a = |p p′〉 − |p′ p〉 is the anti-symmetrized two-
nucleon plane wave state. The two-body current component of
the hadron tensor reads [34]

W
µν

2b
(q,ω) =

V

4

∫

dE
d3k

(2π)3
d3k′

(2π)3
d3p

(2π)3
m4

N

e(k)e(k′)e(p)e(p′)
Ph(k, k

′,E)

× 2
∑

ij

〈k k′|j
µ
ij

†
|p p′〉a〈p p

′|jνij|k k
′〉δ(ω − E+ 2mN − e(p)− e(p′)) .

(63)

where Ph(k, k
′,E) is a two-hole spectral function which in Benhar

et al. [34] and Rocco et al. [35, 36] has been approximated as the
product of the one-nucleon ones. Note that, while this is correct
for infinite nuclear matter, its application to mediummass nuclei
such as 12C is questionable and should be further investigated.

The production of real pions in the final state will be crucial
for the correct understanding of the DUNE results. In order to
include this reaction mechanism, we can write the hadronic final
state as

|ψA
f 〉 → |pπp〉 ⊗ |ψA−1

f
〉 , (64)

where pπ denotes both the four-momentum (p0π , pπ ) and the
isospin tπ of the emitted pion. In analogy with the one-body
case reported in Equation (57), the one-body one-pion (1b1π)
incoherent contribution to the hadron tensor is given by

W
µν

1b1π
(q,ω) =

∫

d3k

(2π)3
dEPh(k,E)

d3pπ

(2π)3
m2

N

e(k)e(k+ q− pπ )
∑

i

〈k|j
µ
i

†
|pπp〉〈pπp|j

ν
i |k〉

∣

∣

∣

p=k+q−pπ

× δ(ω − E+mN − e(k+ q− pπ )− eπ (pπ )) ,
(65)

where eπ (pπ ) =
√

p2 +m2
π is the energy of the outgoing pion.

The expression of ω̃ is the same as for the one-body current
process. In order to describe the real emission of a pion we
need the transition amplitude between the initial one-nucleon
state |k〉 to the pion-nucleon |pπp〉 final state. These matrix
elements have been obtained within the sophisticated dynamical
couple-channel (DCC) model able to describe the πN → πN,
γN → πN, and N(e, e′π)N reactions accounting for meson-
baryon channels and nucleon resonances up to an invariant of
W = 2 GeV. About 26,000 data points of the πN, γN →
πN, ηN,K3,K6 data from the channel thresholds to W ≤
2.1 GeV have been fitted to obtain the parameters adopted within
the DCCmodel. The extension to the electroweak sector has been
recently performed [38].

Within the DCC model the following Hamiltonian is defined

HAO = H0 +
∑

c,c′

vc,c′ +
∑

N∗

∑

c

[ŴN∗ ,c + Ŵ
†
N∗ ,c] , (66)

to generate the matrix element 〈pπp|j
ν
i |k〉 of Equation (65).

In the above equation H0 is the free Hamiltonian while the
production of an N∗ state from a meson-baryon channel c is
described by the vertex ŴN∗ ,c. The energy independent meson-
exchange potentials vc,c′–where c, c′ = γN,πN, ηN,K3,K6–
are derived from phenomenological Lagrangians by using the
unitary transformation method [94, 95]. This hamiltonian is
used to generate 〈pπp|j

ν
i |k〉 of Equation (65). Convoluting the

DCC elementary current matrix elements for π-production with
the spectral function formalism allows to predict electroweak
interactions of finite nuclei in large energy transfer region
presented in section 5.2.

5.1. Determination of the Hole Spectral
Function of Finite Nuclei
The accurate determination of SFs suitable to encompass both
single-particle aspects and short-range dynamics is crucial for the
theoretical description of lepton-nucleus scattering. Its definition
can be given either in terms of nuclear overlaps or as the
imaginary part of a two-point hole Green’s Function

Ph(k,E) =
∑

f

|〈ψA
0 |[|k〉 ⊗ |ψA−1

f
〉]|2δ(E+ EA−1

f
− EA0 )

=
1

π
Im〈ψA

0 |a
†
k

1

E− (H − EA0 )− iǫ
ak|ψ

A
0 〉 . (67)

Within the CBF, the hole SF of finite nuclei is written as a sum
of two terms [31], Ph(k,E) = PMF

h
(k,E) + Pcorr

h
(k,E) displaying

distinctly different energy andmomentum dependences. The first
term is associated to the low momentum and removal-energy
region. The spectroscopic factor obtained from (e, e′p) scattering
measurements are utilized to obtain the first term within a
modified mean field (MF) picture. The correlated contribution
Pcorr
h

(k,E) includes the unbound states of the A − 1 spectator
system in which at least one of the spectator nucleons is in
a continuum state. The local density approximation (LDA) is
adopted to compute this term for finite nuclei

Pcorrh (k,E) =

∫

d3R ρA(R)P
corr
h,NM(k,E; ρA(R)) . (68)

where the correlation component of the SF obtained within the
CBF theory for isospin-symmetric nuclear matter for a given
density ρ is convoluted with the density profile of the nucleus
ρA(R). The applicability of the LDA in obtaining the correlation
part of the SF in finite nuclei relies on the observation that
short-range nuclear dynamics is not affected by surface and shell
effects. This strength of Pcorr

h
(k,E) is concentrated in the high

momentum and removal energy region as opposed to PMF
h

(k,E).
For momenta larger than the Fermi one, the spectral function
coincides with the correlation term.
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FIGURE 7 | (Left) Results obtained SCGF approach are compared to experimental data (dotted lines and square points) from references Emrich et al. [100] and

Ottermann et al. [101] for the charge density distributions of 40Ca (left) and 40Ar (right). The shaded areas represent the total experimental error, while the colored

bands displays the theoretical uncertainties due to model-space convergence. (Right) Neutron spectral function of 40Ar computed within the SCGF. The particle and

hole spectral function corresponds to the region above and below the Fermi level E = 6.3 MeV, respectively, indicated by the red arrow.

The SCGF approach is a many-body approach which scales
polynomially with the number of particle and allows reach nuclei
with A up to ∼100. The spectral function is determined within
an ab initio theory starting from individual interactions among
the nucleons. The central quantity of the SCGF formalism is
the one-body Green’s function which is directly related to the

spectral function through Ph(k,E) = − 1
π
Im

[

Gh(p, p;µ − E)
]

,

as expressed in the last equality in Equation (67). This is obtained
by adopting an iterative procedure to solve the associated Dyson
equation [96, 97] where the irreducible self-energy –which
encodes nuclear medium effects in the particle [98]– explicitly
depends on the propagator itself. To extend the predictive power
of the approach to open shell nuclei, the SCGF has been recently
reformulated within Gorkov’s theory. The particle number is
no longer conserved in this new formulation of the propagator
in which a grand canonical Hamiltonian is utilized. Breaking
of the particle-number symmetry allows one to include pairing
correlations and eliminate the degeneracies that would otherwise
prevent microscopic calculations for open-shell systems.

The results obtained for the neutron and proton spectral
functions of 40Ar, 40Ca, and 48Ti isotopes have been recently
presented in Barbieri et al. [99]. The SCGF calculations are
performed employing a spherical harmonic oscillator basis in
a model space of 14 major shells and varying the frequency
h̄� to study the uncertainties resulting from the truncation
of the model space. The saturating chiral interactions at next
to next to leading order (NNLOsat) are utilized in order to
correctly reproduce radii as well as charge density distributions
of nuclei. In the left panel of Figure 7 the charge density profiles
computed within the SCGF (solving the Gorkov’s equations) or
40Ca and 40Ar are compared to experimental data from Emrich
et al. [100] and Ottermann et al. [101]. The shaded area in
the theoretical curves has been obtained by performing the

calculation at the extremes of the range h̄� = 14 − 20 MeV–
which from the analysis of Somá et al. [102] turns out to be
the optimal one for the convergence of radii and energies–
and taking the differences between the results. The authors of
Barbieri et al. [99] interpreted this band as a conservative estimate
for the theoretical errors due to model space convergence. The
right panel of Figure 7 displays the computed hole (particle)
Ph(p)(p,E) spectral function for neutron removal (addition)

from 40Ar.
In analogy with PMF

h
(k,E) introduced in the discussion of

the CBF results, the peaks present at low E and k correspond
to nucleons that occupy the valence shell close to the Fermi
surface. In the high momentum and removal energy region,
which is typically associated with short range correlation physics,
the SCGF spectral function presents a mild tail (not shown
in Figure 7). In this regards, it has to be noted that the
CBF spectral function relies on the semi-phenomenological
AV18 Hamiltonian, which naturally encompass short-range
correlations. On the other hand, the NNLOsat interaction is a
relatively soft interaction, with a cutoff of 450 MeV which is able
to produce tails for large values of the momentum. However,
the strength in that region is significantly smaller than the one
obtained using AV18 [103].

5.2. Results
In this section we present different scattering results obtained
using the CBF and SCGF spectral function. In the left panel
of Figure 8 we gauge the differences between the two spectral
functions by comparing the results obtained for the double-
differential cross section of electron-12C scattering at Ee =
620 MeV and θe = 36◦. In the theoretical results we
focused on the quasielastic region, including only the one-
body current operator of Equation (17). The dashed and solid
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FIGURE 8 | (Left) Inclusive 12C(e,e’) cross sections at 620 MeV and 36◦ scattering angle. The solid and dashed curves correspond to the SCGF and CBF SF

calculations, respectively. The red lines correspond to the IA calculation in which the outgoing nucleon is free while in the blue ones FSI corrections have been taken

into account. (Right) Inclusive Ar(e,e’) cross section at 2.2 GeV and 15.5◦ scattering angle. The solid (dashed) line shows the quasielastic cross section without (with)

the inclusion of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Dai et al. [104, 105] and show both the quasielastic

peak and the contribution from meson production at larger missing energies.

FIGURE 9 | (Left) Inclusive 12C(e,e’) cross sections at 730 MeV and 37◦ scattering angle. The short-dashed (blue) line and dashed (red) line correspond to one- and

two-body current contributions, respectively. The dash-dotted (magenta) lines represent π production contributions. The solid (black) line is the total results obtained

summing the three different terms. (Right) Same as left panel but for CC νµ scattering on 12C. The energy of the νµ is 1 GeV and the scattering angle is 30◦.

curve correspond to the CBF and SCGF SFs, the blue and
red lines have been obtained with and without including FSI
effects. Calculations carried out employing the two different
many-body approaches are in very nice agreement, although
they are obtained from different nuclear interactions. FSI effects
have been introduced following the procedure discussed in
Equation (60). The overall effect is a shift in the position
of the quasielastic peak to the left and a redistribution of
the strength which leads to a correct reproduction of the
experimental data. The right panel of Figure 8 shows the
inclusive electron scattering on 40Ar at the energy and kinematics
of the E12-14-012 JLab experiment compared with the SCGF
results with and without FSI displayed by the dot-dashed blue
and solid red curve, respectively. The real part of the 40Ca
optical potential taken from Cooper et al. [106]–the one of Ar
in not available in the literature–and the folding function of
Benhar et al. [93] were adopted to obtain the FSI corrections.
The prediction based on the NNLO sat interaction and SCGF
spectral function slightly underestimates the experimental data

at the quasielastic peak. Overall, there is a small discrepancy
which is compatible with the errors associated to the nuclear
forces [54].

The left panel of Figure 9 shows the double-differential
electron-12C cross sections for Ee = 730 MeV, θe = 37◦. The
theoretical results have been obtained using the CBF spectral
function and correcting for FSI effects in the quasielastic region.
The solid black line corresponds to the total cross section
obtained summing up the contributions associated with the
different reaction mechanisms. The dashed blue line displays
the one-body current contribution while MEC leading to two-
nucleon emission are given by the short-dashed red line. The
dot-dashed magenta line corresponds to the emission of a real
pion and a nucleon. A good agreement between theory and data
is observed for the different kinematics analyzed. Note that, the
strength associated with pion production is necessary to correctly
reproduce the peak in the1-production region.

The interference between one- and two-body currents has
not yet been included. Although the authors of Benhar et
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al. [34] argue that the inclusion of this contribution within
the factorization scheme leads to a small enhancement the
dip region, the GFMC and STA calculations presented in
sections 3 and 4 display a significant increase in the transverse
response due to the interference contribution. Therefore, the
consistent implementation of this term within the spectral
function formalism is a necessary step to be undertaken in order
to properly compare with the GFMC and STA results.

The results obtained for the double-differential CC νµ-
12C

scattering cross sections are shown in the right panel of Figure 9
for Eν = 1 GeV, θµ = 30◦. The calculations have been carried
out within the same framework employed in the electromagnetic
case, utilizing the CBF spectral function and including an axial
term in all the current operators. In order to compare with
experimental data a folding with the energy distribution of a
given neutrino flux is needed.

6. CONCLUSIONS

The success of current- and next- generation of neutrino-
oscillation experiments strongly depend on the availability of
accurate nuclear physics calculations of the dynamics and
electroweak interactions of nuclei with quantified theoretical
uncertainties. This motivated the advent of many recent
theoretical works focused on improving the description of lepton
interactions with nuclei. In this review we outlined the main
features of three different many-body approaches.

The GFMC is an ab-initio method which provides extremely
accurate predictions for the electroweak response functions of
nuclei up to 12C in which correlations are fully retained. In
these results the strength and energy-dependence of two-nucleon
processes induced by correlation effects and interaction currents
provide a sizable contribution in the quasielastic region. The
main limitations of this method come from its non-relativistic
and fully inclusive nature, i.e., the transition to a given hadronic
final state can not be easily identified. Choosing a reference
frame that minimizes nucleon momenta allows to extend the
applicability of GFMC to larger lepton energies, correctly
reproducing experimental data for a large set of kinematics.
For moderate values of momentum transfers, comparing the
predictions based on more approximate schemes of nuclear
dynamics with the accurate GFMC results in the quasielastic
region is extremely important in order to test and validate them.

In the STA, two-nucleon physics is fully accounted for
including ground-state correlations and final state interactions
among the pair. Within this approach the interference between
one- and two-nucleon current is included. When the physical
threshold is enforced in the STA calculations, a very good
agreement with the GFMC quasi-elastic response of light nuclei
is observed for momentum transfers near and above the
Fermi momentum.

The formalism based on IA and realistic SF combines a
non-relativistic description of the target nucleus including

realistic interactions with relativistic currents and kinematics.
The results obtained utilizing two-different spectral functions
corresponding to the CBF and SCGF calculations have been
compared in the quasielastic region. The original formulation
of the factorization scheme utilized in the IA only included
one-nucleon matrix elements, its recent generalization allowed
to include meson-exchange currents and pion-production
mechanisms. The elementary amplitudes corresponding to
pion-production processes were computed capitalizing on
the sophisticated DCC model [37–39], which provides robust
predictions up to an invariant mass ofW ≤ 2.1 GeV. Theoretical
calculations that include different reaction mechanisms
are in good agreement with inclusive electron-scattering
off 12C.

Over the last decade, we witnessed a great progress in
the development of many-body techniques aimed at studying
nuclear properties and interactions. These methods rely on
nuclear EFT to consistently derive the nuclear Hamiltonian and
many-body currents. Despite this success, their application on
the broad energy region explored by oscillation experiments
involves non-trivial difficulties that have to be explored and
understood, such as how to transition to regions where
resonance-production occur and how to correctly include
relativistic effects. To address these points, models based on a
factorization of the hadronic final state have been developed.
Benchmark these models with the low-energy description
provided by correct many-body calculations and understand
the limit of validity of the approximations done will play a
crucial role in providing robust predictions of neutrino-nucleus
interactions.
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