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In this paper, neural network (NN) control of the fractional-order Duffing system (FODS)

by using a backstepping method within finite time in the presence of input saturation has

been investigated. A fractional-order filter with an order lying on the interval (1,2) was

used to estimate the virtual input together with its fractional derivative, and this showed

that the estimation error tends to a small region in some finite time. Fractional-order law

is designed for the parameter of the NN, and an adaptive NN controller was given. The

proposed method drives the tracking error, tending to an arbitrary small region within a

finite time. The simulation results verify the validity of the proposed method.

Keywords: finite time control, fractional-order system, fractional filter, adaptive neural network control, chaos

control

1. INTRODUCTION

It is a well-known fact that classical differential operators are local operators and cannot describe
some complex properties. For example, Brownian motion, viscoelastic materials, anomalous
diffusion, and irregular fluctuations in the turbulent velocity field have memory problems.
Fractional-order differential operators are non-local and can well-characterize memory, genetic,
and global correlation in the real world. The physical process is an important tool for describing
physical processes and complex mechanics [1, 2]. In fact, fractional derivatives exhibit several
advantages over integer derivatives: (1) fractional derivatives have a global correlation and can
reflect the historical dependence of function development in the system; (2) the fractional derivative
model is more consistent with the experimental results when simulating some complex properties,
and the effect is better; and (3) when simulating complex mechanics and physical process problems,
the expression of fractional-order model is more concise and the meaning is clearer [3, 4]. In view
of these three advantages of fractional derivative, scholars have gradually used fractional differential
equations to describe some practical problems. In recent decades, fractional calculus and fractional
differential equations have developed rapidly and have gradually matured, and they have also
been applied in other disciplines, such as quantum mechanics, economics and finance, turbulence,
viscoelasticity theory, and superconductivity. A large number of papers on fractional calculus
and fractional differential equations and works and so on have appeared [5–10]. The research
contents include the theory and application of fractional calculus, the existence and uniqueness of
solutions to the Cauchy problem, stability, controllability, the existence and uniqueness of solutions
to boundary value problems, analytical solutions, and numerical algorithms. However, some
research methods in integer-order differential equations cannot be directly applied to the study
of fractional-order differential equations, and new theories and methods need to be sought. There
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are many research fields for integer-order differential equations,
and research fields for fractional-order differential equations
are limited, and the solution mapping of fractional-order
differential equations does not have a semigroup property.
Therefore, there are many difficulties in the study of fractional
differential equations.

On the other hand, it is well-known that chaos control is a
research hot topic and has some successful applications. With the
in-depth study of chaotic systems, people began to try to migrate
the synchronization method of integer-order chaotic systems to
the synchronization of fractional-order chaotic systems (FOCSs).
This natural idea is not easy to implement. For this reason,
some people try to use the Laplace transform method and time-
frequency domain transformation method. By solving the sα by
using the Laplace transform method, finite time control was
investigated in Tavazoei and Haeri [5]. Up to now, many control
methods have been used to control or synchronize FOCSs, for
example, adaptive robust control, adaptive fuzzy control (AFC),
adaptive neural network control (ANNC), sliding mode control
(SMC), command filtered control (CFC), etc. [11–18]. In Pham
et al. [19], a three-dimensional FOCS that had no equilibriumwas
introduced and investigated, and it was shown that the system
shows chaotic phenomenon when the order <2.7. In Zhang et al.
[20], the lag projective synchronization of FOCSs with time-
varying delays was considered by using a comparison principle
of linear fractional equation. In Liu et al. [16], the NN was used
to control FOCSs in the presence of input faults. It should be
mentioned that above works do not consider the finite time
stability is. Up to now, the finite time control of the FOCS has
rarely been investigated [21–23].

Inspired with above discussion, we will address the finite time
NN control of the fractional-order Deffuing system (FODS) with
input saturation. Take some related works, such as Liu et al.
[16] and Ha et al. [24, 25], the our work has included several
features: (1) a fractional-order filter whose order lies on (1,2),
designed to evaluate the immediate controller and its fractional
derivative within some finite time. However, a fractional filter
was also used in Liu et al. [16] and Ha et al. [25] whose order
lies on (0, 1), and, in addition, the finite-time stability cannot
be guaranteed; (2) to cancel the estimation error of the filter,
a fractional-order compensated signal was proposed. Compared
with the compensated signals proposed in Ha et al. [24], our
method can obtain a more rapid convergence; and (3) in the
FOCS’s mode, we have considered the case of input saturation.

2. PRELIMINARIES

2.1. Description of the NN
The NN with three layers is expressed as

yj(s,µj) =
h
∑

η=1

ωjηϕjη

(

n
∑

i=1

vηisi + γη

)

= µT
j χj(·), (1)

where n, h, andm ∈ N+ denote the amount of neurons three

layers (input, middle, and output), µj =







ωj1
...

ωjh






, and χj =







ϕj1
(
∑n

i=1 v1isi + γ1
)

...
ϕjh

(
∑n

i=1 vhisi + γh
)






. vji denotes a weight whose value is on

the interval [−1, 1]. Usually, ϕ(·) can be defined by

ϕ(h̄) =
eh̄ − e−h̄

eh̄ + e−h̄
. (2)

Then, the NN is given as

y = θTχ(h̄) (3)

with θ =











µT
1

µT
2
...

µT
m











, and χ(h̄) =











χ1(h̄) 0 · · · 0
0 χ2(h̄) · · · 0
...

...
. . .

...
0 0 · · · χm(h̄)











.

Suppose that f (h̄), h̄ ∈ Rn is unknown, then it can be
approximated by the NN as

f (x) = θ∗Tχ(h̄)+ ε(h̄), (4)

with ε(h̄) denoting the optimal approximation error, where

θ∗ = argmin
θ

[

sup |f̂ (h̄)− f (h̄)|
]

, (5)

with f̂ (h̄) = θT(t)χ(h̄).

2.2. Basic Lemmas
The q-th fractional integral for a function g(t) is defined as

I
qg(t) =

1

Ŵ(q)

∫ t

0

g(τ )

(t − τ )1−q
dτ , (6)

with Ŵ(·) representing Euler’s function, and the q-th fractional-
order derivative for a function g(t), which has a k-th continuous
derivative, is

D
qg(t) =

1

Ŵ(k− q)

∫ t

0

g(k)(τ )

(t − τ )q+1−k
dτ , (7)

where k− 1 ≤ q < k (k ∈ N). The following always assumes that
0 < q ≤ 1 for convenience. The fractional-order calculus has the
following properties.

Lemma 1. [16] For a smooth function x(t), it holds that

1

2
D

αx2(t) ≤ x(t)Dαx(t). (8)

Lemma 2. [22] Let V(ζ ) be a smooth function satisfying
D

q
t V(ζ ) + α1V

α2 (ζ ) ≤ 0, ζ ∈ �1 ⊂ Rn, α1 ∈ R+, and
0 < α2 < 1. Then, one can find �2 ⊂ Rn, which holds that
V(ζ ) begins within �2 will reach a sufficient small region in some
finite time T∗.

Lemma 3. [23] Assume g1, g2 > 0, 0 < g3 < 1, and

D
q
t V(ζ )+ g1V(ζ )+ g2V

g3 (ζ ) ≤ 0

where ζ ∈ Rn. Then, the system is finite time stable.
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Lemma 4. [23] Consider











D
q
t π1(t) = ̥(t),

̥(t) = −g4sign(π1(t)− ζ (t))+ π2(t)

D
q
t π2(t) = −g5sign(π2(t)−̥(t)),

where ζ (t) ⊂ R, g4, g5 ∈ R+. Let

ê1 = π1 − ζ , ê2(t) = ̥−D
q
t ζ .

Then, ê1 and ê2 are finite time stable.

3. MAIN RESULTS

The integer-order Duffing system is written as

ÿ(t)− y(t)+ aẏ(t)+ y3(t) = b cos(ωt) (9)

where a, b are parameters. Denote x1(t) = y(t), x2(t) = ẏ(t),
x(t) = [x1(t), x2(t)]T and f (x(t)) = x1(t) − ax2(t) − x31(t) +
b cos(ωt). By putting the fractional calculus into system (9) and
considering the input saturation, the controlled FODS is written
as

{

D
q
t x1(t) = x2(t),

D
q
t x2(t) = sat(u(t))+ d(t)+ f (x(t)).

(10)

in which sat : u(t) → sat(u(t)) is called a saturator. It can be
expressed as:

sat(u(t)) =











ur , u ≥ ur

u(t), ul < u(t) < ur

ul, u ≤ ul,

(11)

with ur > 0, ul < 0. Denoting the term that exceeds the
saturation limiter as γ (t):

γ (t) =











ur − u(t), u(t) ≥ ur ,

0, ul < u(t) < ur ,

ul − u(t), u(t) ≤ ul.

(12)

For the target, let x1(t) track a known smooth signal xd(t) ∈ R in
finite time. In this paper, we have used the backstepping method.
Define e1(t) = x1(t) − xd(t), and let us construct a virtual input
α(t), giving us

D
q
t e1(t) = x2(t)−D

q
t xd(t)

= α(t)+ α̂(t)− α(t)+ x2(t)− α̂(t)−D
q
t xd(t)

= α(t)+ α̂(t)− α(t)+ e2(t)−D
q
t xd(t)

(13)

with e2(t) = x2(t)− α̂(t), and α̂(t) being α(t)’s estimation. Noting
the estimation error is hard to be canceled, we have designed a
compensated signal to solve this problem. Let

D
q
t β1(t) = −k1β1(t)+ α̂(t)−α(t)+β2(t)− c1sign(β1(t)), (14)

where β2(t) is given later, k1, c1 > 0, and β(0) = 0. Using Lemma
4, we can estimate α(t) and D

q
t α(t) as











D
q
t π1(t) = ̥(t),

̥(t) = −b1sign(π1(t)− α(t))+ π2(t)

D
q
t π2(t) = −b2sign(π2(t)−̥(t)).

(15)

Thus, (15) and Lemma 4 imply that α̂(t) = π1(t) and D
q
t α̂(t) =

̥(t) within finite time. Let

{

ẽ1(t) = e1(t)− β1(t),

ẽ2(t) = e2(t)− β2(t),
(16)

where e2(t) = x2(t)− α̂(t). Then the victual signal is designed as

α(t) = −k1e1(t)+D
q
t xd(t)− a1ẽ

ν
1(t), (17)

with k1 ∈ R+, ν ∈ (0, 1). Define V1 = 1
2 ẽ

2
1(t), according to

Lemma 1, and its fractional-order derivative is

D
q
t V1 ≤ ẽ1(t)D

q
t ẽ1(t)

= ẽ1(t)
[

α(t)+ ˆα(t)− α(t)+ e2(t)

−D
q
t xd(t)+ k1β1(t)− α̂(t)+ α(t)− β2(t)

+ c1sign(β1(t))
]

= ẽ1(t)
[

− k1ẽ1(t)− a1ẽ
ν
1(t)+ e2(t)+ k1β1(t)− β2(t)

+ c1sign(β1(t))
]

= −k1ẽ
2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ ẽ1(t)e2(t)− ẽ1(t)ẽ2(t)

+ c1ẽ1(t)sign(β1(t))

= −k1ẽ
2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ ẽ1(t)ẽ2(t)

+ c1ẽ1(t)sign(β1(t)).
(18)

It follows from (10), (11), (12), and (16) that

D
q
t ẽ2(t) = sat(u(t))+ d(t)+ f (x(t))−D

q
t α̂(t)−D

q
t β2

= u(t)+ γ (t)+ d(t)+ f (x(t))−D
q
t α̂(t)−D

q
t β2

= u(t)+ 2(t)−D
q
t α̂(t)−D

q
t β2

(19)
with2(t) = γ (t)+d(t)+ f (x(t)),D

q
t α̂(t) being driven from (15).

The unknown function 2(x) in (19) can be approximated by the
NN as

2̂(t) = θT(t)χ(x(t)). (20)

Let the optimal parameter of NN be θ∗ =

argmin
θ(t)

[

sup
x(t)

∣

∣

∣
2̂(t)− 2(t)

∣

∣

∣

]

. Define θ̃(t) = θ(t) − θ∗, and

ǫ(t) = 2̂(t)−2(t). In fact, according to universal approximation
theorem of the NN, we know that, for any continuous non-linear
function defined on a compact set, there is a NN in order for the
optimal to be as small as possible [16, 26, 27]. Thus, it is possible
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for us to assume the optimal estimation error is bounded, i.e.,
|ǫ| ≤ ǭ, where ǭ ∈ R+ is a constant. We then have

2̂(t)− 2(t) = θ(t)Tχ(x(t))− θ(t)∗Tχ(x(t))+ θ∗Tχ(x(t))

− 2(t) = θ̃T(t)χ(x(t))− ǫi(t).
(21)

To meet the control objective, we can design the compensated
signal as

D
q
t β2(t) = −k2β2(t)− β1(t)− c2sign(β2(t)) (22)

with k2, c2 > 0. Then, let us construct the final input as

u(t) = −k2e2(t)+D
q
t α̂(t)− θ̂T(t)χ(x(t))−σ sign(ẽ2(t))−a2ẽ

ν
2(t)
(23)

where σ , a2 > 0, and σ ≥ ǭ can be satisfied. It follows from (22)
and (23) into (19) that

D
q
t ẽ2(t) = −k2e2(t)− θ̂T(t)χ(x(t))− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)+ 2(t)−D

q
t β2(t)

= −k2e2(t)− θ̃T(t)χ(x(t))+ ǫ(t)− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)+ k2β2(t)

− β̃1(t)+ c2sign(β2(t))

= −k2ẽ2(t)− θ̃T(t)χ(x(t))+ ǫ(t)− σ sign(ẽ2(t))

− a2ẽ
ν
2(t)− β̃1(t)+ c2sign(β2(t)).

(24)

Then, (24) implies

ẽ2(t)D
q
t ẽ2(t) = −k2ẽ

2
2(t)− ẽ2(t)θ̃

T(t)χ(x(t))+ ẽ2(t)ǫ(t)

− σ ẽ2(t)sign(ẽ2(t))− a2ẽ2(t)ẽ
ν
2(t)

− ẽ2(t)ẽ1(t)+ c2ẽ2(t)sign(β2(t))

≤ −k2ẽ
2
2(t)− ẽ2θ̃

T(t)χ(x)(t)+ |ẽ2(t)|ǭ

− σ |ẽ2(t)| − a2ẽ2(t)ẽ
ν
2(t)− ẽ2(t)ẽ1(t)

+ c2ẽ2(t)sign(β2(t))

≤ −k2ẽ
2
2(t)− e2(t)θ̃

T(t)χ(x(t))− a2ẽ2(t)ẽ
ν
2(t)

− ẽ2(t)ẽ1(t)+ c2ẽ2(t)sign(β2(t)).
(25)

Define

V2(t) = V1(t)+
1

2
ẽ22(t). (26)

According to (18), (25), and (26), we have

D
q
t V2(t) = −k1ẽ

2
1(t)− a1ẽ1(t)ẽ

ν
1(t)+ c1ẽ1(t)sign(β1(t))

− k2ẽ
2
2(t)− ẽ2θ̃

Tχ(x(t))

− a2ẽ2(t)ẽ
ν
2(t)+ c2ẽ2(t)sign(β2(t)) = −

2
∑

j=1

kjẽ
2
j (t)

−

2
∑

j=1

ajẽj(t)ẽ
ν
j (t)+

2
∑

j=1

cjẽj(t)sign(βj(t))

− ẽ2θ̃
T(t)χ(x(t))

=

2
∑

j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

− ẽ2(t)θ̃
T(t)χ(x(t)).

(27)
The fractional-order adaptation law is

D
q
t θ(t) = κ1ẽ2(t)χ(x(t))− κ1κ2θ(t) (28)

with κ1, κ2 > 0.
The following theorem provides a conclusion for the discussion.

Theorem 1. Let the immediate controller be (17) with the
fractional filter (15). Let the compensated signal be (14) and (22).
Then, the NN controller (23) with adaptation law (28) drive e1(t)
to be arbitrary small in finite time.

Proof. Let

V(t) = V2(t)+
1

2κ1
θ̃T(t)θ̃(t). (29)

Then, based on (27), (28), and (29), we obtain

D
q
t V(t) ≤

∑2
j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

−e2θ̃
T(t)χ(x(t))+ 1

κ1
θ̃T(t)D

q
t θ(t)

=
∑2

j=1

[

− kjẽ
2
j (t)− ajẽ

ν+1
j (t)+ cjẽj(t)sign(βj(t))

]

−κ2θ̃
T(t)θ(t)

≤
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− κ2θ̃
T(t)θ(t)

+
∑2

j=1
cj
2

=
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− κ2θ̃
T(t)(θ̃(t)

+θ∗(t))+
∑2

j=1
cj
2

≤
∑2

j=1

[

−
2kj−cj

2 ẽ2j (t)− ajẽ
ν+1
j (t)

]

− 3κ2
4 θ̃T(t)θ̃(t)

+
∑2

j=1
cj
2 + κ2θ

∗Tθ∗(t). (30)
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FIGURE 1 | Chaotic phenomenon of uncontrolled FODS (10).

Then, (30) implies

D
q
t V(t) ≤

2
∑

j=1

[

−
2kj − cj

2
ẽ2j (t)− ajẽ

ν+1
j (t)

]

−
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
3κ2
4

θ̃T(t)θ̃(t)

+ κ2θ
∗Tθ∗i +

2
∑

j=1

cj

2
+
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

.

(31)

If
(

κ2i
2 θ̃Ti θ̃i

)
1
2 (ν+1)

≥ 1, it is easy to know that

(κ2i

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗

≤
κ2

2
θ̃T(t)θ̃(t)−

κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗

= κ2θ
∗Tθ∗.

(32)

On the contrary, if
(

κ2
2 θ̃T(t)θ̃(t)

)
1
2 (ν+1)

< 1, one has

(κ2

2
θ̃T θ̃

)
1
2 (ν+1)

−
κ2

2
θ̃T θ̃ + κ2θ

∗Tθ∗

< 1−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗ ≤ 1+ κ2θ
∗Tθ∗.

(33)
Thus, it follows from (32) and (33) that

(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

2
θ̃T(t)θ̃(t)+ κ2θ

∗Tθ∗ ≤ 1+ κ2θ
∗Tθ∗.

(34)

Substituting (34) into (31) yields

D
q
t V(t) ≤

2
∑

j=1

[

−
2kj − cj

2
ẽ2j (t)− ajẽ

ν+1
j (t)

]

−
(κ2

2
θ̃T(t)θ̃(t)

)
1
2 (ν+1)

−
κ2

4
θ̃T(t)θ̃(t)

+
[

1+ κ2θ
∗Tθ∗

]

+

2
∑

j=1

cj

2

≤ −ς1V − ς2V
ν+1
2 + ς3

(35)

with ς1 = min
{

2k1−c1
2 , 2k2−c2

2 , κmin
2

}

, ς2 =

min

{

2
ν+1
2 a1, 2

ν+1
2 a2, κ

ν+1
2

min

}

, and ς3 = 1 + κ2θ
∗Tθ∗ +

2
∑

j=1

cj

2
,

and κmin = min{κ1, κ2}. As a result, (35) can be arranged as

D
q
t V(t) ≤ −

(

ς1 −
ς3

2V(t)

)

V(t)−

(

ς2 −
ς3

2V
ν+1
2 (t)

)

V
ν+1
2 (t).

(36)
According to (36) and Lemma 3, when k > 1

2 c, e1(t) will tend to
the region

|e1(t)| ≤ max











√

ς3

ς1
,

√

√

√

√

2

(

ς3

2ς2

)
ν+1
2











in some finite time. Since e1(t) = ẽ1(t) + β1(t), e2(t) = ẽ2(t) +
β2(t), if β1(t) and β2(t) are bounded, then all signals are bounded.
Let V3(t) =

1
2β

2
1 (t)+

1
2β

2
2 (t). Then, (14) and (22) imply

D
q
t V3 ≤ β1(t)D

q
t β1(t)+ β2(t)D

q
t β2(t)

= −k1β
2
1 (t)+ β1(t)( ˆα(t)− α(t))+ β1(t)β2(t)

− c1β1(t)sign(β1(t))− k2β
2
2 (t)

− β2(t)β1(t)− c2β2(t)sign(β2(t))

≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cjβjsign(βj(t))+ β1(t)(α̂(t)

− α(t)) ≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cj|βj(t)| +
2
∑

j=1

ρjβjα̃(t),

(37)
where α̃(t) = α̂(t)− α(t). Then, it follows from (15) and Lemma
4 that α̃(t) is bounded in finite time. As a result, we have

D
q
t V3(t) ≤ −

2
∑

j=1

kjβ
2
j (t)−

2
∑

j=1

cj|βj(t)| +
2
∑

j=1

ρjδ|βj(t)|

≤ kV3(t)− c
√

V3(t)+ ρ̄δ̄
√

V3(t)

= kV3(t)− (c− ρ̄δ̄)
√

V3(t),

(38)

where k = 2min{k1, k2}, c = min{c1, c2}, ρ̄ = max{ρ1, ρ2} and
δ̄ = max{δ1, δ2}. Thus, (38) and Lemma 3 imply that β1(t) and
β2(t) are finite time bounded. This concludes our proof. �
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FIGURE 2 | Simulation1 results in (A) e1 (t) and e2(t); (B) ẽ1(t) and ẽ2(t); (C) u(t) and sat(u(t)); (D) xd (t) and x1(t).

FIGURE 3 | Virtual input and NN parameters in (A) virtual inputs α1(t) and α2 (t); (B) NN parameters.

Remark 1. In this paper, the finite-control of fractional-order
Duffing system was considered. It can be seen from the system
model (10) that the non-linear function f (x) is Lipschitz
continuous. In addition, under the proposed controller (23), for
any initial condition, the solution to the fractional-order Duffing
system exists and is unique. In addition, from Theorem 1, it is
obvious that all the signals in the closed loop system keep bounded.
Thus, the solution of the controlled system (10) is stable.

Remark 2. In should be emphasized that the proposed fractional-
order finite-time filter has very convergence ability compared with
some related works, such as Liu et al. [16] and Ha et al. [25], where
only the following class of lower filter (the order of the filter lying
on (0,1)) is used:

D
q
t z(t) =

1

k
(z(t)− α(t)), (39)

Frontiers in Physics | www.frontiersin.org 6 May 2020 | Volume 8 | Article 122

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lv and Zhang Finite-Time NN Control of FODS

FIGURE 4 | Comparison results.

where k > 0. The fractional-order filter (39) can also guarantee
that the approximation errors of the virtual input and its fractional
converge to a small region of zero; however, the finite-time
convergence cannot be guaranteed. In addition, to drive the
approximation smaller, larger design parameter k should be used,
which usually results in the signal z(t) being too big. However, the
proposed filter (15) has no such problems. To show the effectiveness
of the proposed high order filter, some comparisons have been given
in the following section.

4. SIMULATION RESULTS

In system (10), let parameters a = 0.15, b = 0.23, and the initial
conditions be x1(0) = −1.2, x2(0) = 1.2. When d(t) = u(t) =

0, under above parameters and initial conditions, system (10)
exhibits chaotic phenomenon, as shown in Figure 1.

In the simulation, let x1(0) = 2, x2(0) = 0, and let the
reference signal be

xd(t) =

{

1, t ≤ 8,

0, t < 8.
(40)

The design parameters are k1 = k2 = 0.9; a1 = a2 = 1, c1 =

c2 = 1, κ1 = κ2 = 1, ν = 0.70, b1 = b2 = 1. The NN uses
x1(t), x2(t) as input variables with θ(0) = 0 ∈ R81. The saturation
parameters are ul = −5, ur = 5.

Then, the simulation results can be seen in Figures 2–4. The
tracking errors e1(t) and e2(t) are given in Figure 2A, and we can
see that the tracking error converges quickly. The compensated

tracking errors are given in Figure 2B, where the proposed filter

has very good approximation ability. The control input is given in
Figure 2C. The tracking performance is in Figure 2D. The virtual
input and its approximation is given in Figure 3A, and the NN
parameters are shown in Figure 3B.

To show the rapid convergence speed of the proposed high-
order filter, some comparative simulation results will be given
here. Noting that in Liu et al. [16] and Ha et al. [25], the
lower filter (39) was used. The simulation results under our
filter (15) and (39) are given in Figure 4; in order to make a
fair comparison, the design parameters in (39) are taken as 0.9
just the same as the value we took above. Obviously, compared
with the lower filter (39), our method can guarantee a quicker
convergence speed.

5. CONCLUSIONS

This paper addressed the finite time control of an unknown
disturbed FODS in the presence of input saturation. By using
the backstepping technique, a high order fractional filter with
the order lying on (1,2) is proposed, and thus, the virtual input
and its fractional derivative can be approximated. It is proven
that the filter’s approximation error can be enough small and
can converge to the small region in some finite time. Then, an
adaptive NN controller is given. The stability is proven strictly.
In addition, the robustness of the proposed method is shown in
simulation results. Our future research directions including how
to design sliding mode surface for FODS and how to construct a
high-order filter.
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