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The life of a cell is governed by highly dynamical microscopic processes. Two notable

examples are the diffusion of membrane receptors and the kinetics of transcription factors

governing the rates of gene expression. Different fluorescence imaging techniques

have emerged to study molecular dynamics. Among them, fluorescence correlation

spectroscopy (FCS) and single-particle tracking (SPT) have proven to be instrumental

to our understanding of cell dynamics and function. The analysis of SPT and FCS is an

ongoing effort, and despite decades of work, much progress remains to be done. In this

paper, we give a quick overview of the existing techniques used to analyze anomalous

diffusion in cells and propose a collaborative challenge to foster the development

of state-of-the-art analysis algorithms. We propose to provide labeled (training) and

unlabeled (evaluation) simulated data to competitors all over the world in an open and

fair challenge. The goal is to offer unified data benchmarks based on biologically-relevant

metrics in order to compare the diffusion analysis software available for the community.

Keywords: diffusion in cells, continuous-time randomwalks, fractional Brownian motion, fluorescence correlation

spectroscopy, single-particle tracking

1. INTRODUCTION

The life of a cell is governed by highly dynamical microscopic processes occurring at different space
and time scales from single macromolecules up to organelles. Optical microscopy provided four
decades ago the first measurements of biomolecule motion in cells. First by fluorescence recovery
after photobleaching (FRAP) [1] and fluorescence correlation spectroscopy (FCS) [2], and more
recently with the help of single particle tracking (SPT) [3, 4]. Several factors have colluded to
popularize these techniques in many biophysics and biology labs: (i) the development of highly
sensitive detectors, (ii) the emergence of genetically encoded fluorescent protein labeling in the late
90s [5–7], and (iii) the advent in the years 2000–2010 of far-field super-resolution microscopy [8–
12]. All these technological efforts have granted us access to the monitoring of molecular motion in
cells with unprecedented spatial (down to single molecule) and temporal resolution [13, 14]. The
adoption of these techniques has been paramount in the advancement of the understanding of cell
organization and dynamics [15–17].
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While acquiring sufficient experimental data sets used to be a
limiting factor, these technological advances combined with data
acquisition parallelization provide nowadays huge amounts of
data available for analysis of molecular motion inside the cell.
In turn, the richness of this data has unraveled an unforeseen
complexity and diversity of mechanisms for biomolecule motion
in cells. Therefore, many efforts are devoted to analyze data
provided by FCS or SPT with direct or inference approaches.

However, choosing the appropriate algorithms to analyse the
complexity of the observed phenomena is still an important
challenge. Indeed, the richness of experimental data often makes
it difficult to determine which are the physical models to be
considered and which are the relevant biophysical parameters
to be estimated from them. We review and address this issue in
this perspective.

We will first briefly review key anomalous diffusion models
relevant to cell biology and summarily describe some of the
existing techniques to either infer model parameters or to
perform model selection. We will discuss the relevance of
numerical simulations and the importance of designing realistic
data sets closely mimicking the results obtained in experiments
on biological samples.Wewill also highlight the often overlooked
limitations in current acquisition methods and emphasize the
role of experimental noise and biases of the aforementioned
techniques. Finally, we will present and advocate in favor of
the development of comprehensive sets of simulated data and
metrics, allowing the community to objectively evaluate existing
and new analysis tools. Our hope is that this work will instigate an
open discussion about the limitations and challenges of analysing
andmodeling diffusion ofmolecules in the complex environment
of the cell.

2. BROWNIAN VS. ANOMALOUS
DIFFUSION

Maybe one of the best-known result of the theory of Brownian
diffusion is that the mean squared displacement (MSD) of a
random walker scales linearly with time, and is proportional
to the diffusion coefficient of the fluid in which diffusion takes
place. With x(t) being the position of the random walker at

time t (in one dimension), this means that the MSD
〈

x(t)2
〉

=

2Dt, where 〈·〉 denotes ensemble averaging and x(0) = 0.
However, Brownian diffusion does not explain the physics of
disordered systems. Interestingly, an ubiquitous observation in
cell biology is that the diffusive motion of macromolecules and
organelles is anomalous, i.e., the MSD change with time is
typically characterized by a sublinear increase. In most instances,
this sublinear increase of the MSD with time can be fitted
to a power-law relation

〈

x(t)2
〉

∝ tα with exponent α <

1, which justifies the vocable of “subdiffusion.” Subdiffusion
is usually attributed to cellular crowding, spatial heterogeneity
or molecular interactions. Another possibility of anomalous
diffusion is superdiffusion, with 1 < α < 2. Indeed a lot of
processes in biology exhibit active transport or combinations of
active and random motions.

Anomalous diffusion in cells is therefore a very active area of
research involving biophysics, cell biology, statistical physics and
mathematical modeling.

When confronted to a set of data retrieved from FCS or
SPT experiments, the first question that one needs to answer is
whether the measured subdiffusion is indeed a manifestation of
an anomalous process. Often, a combination of several normal
diffusion mechanisms or experimental artifacts gives rise to an
apparent diffusion. If an anomalous subdiffusion—characterized
by a power law scaling of the MSD with time—can be identified,
establishing the physical model behind the diffusion process can
shed light on the molecular mechanisms driving the motion of
the molecule of interest.

Below, we will first focus on three classical models
for anomalous subdiffusion and their common biological
interpretation, namely the continuous-time random walk
(CTRW) model, the fractional Brownian motion (fBm) model,
and random walks on fractal and disordered systems (for
a review, see e.g., [18]), then we will briefly describe
different models covering super-diffusion processes that can be
encountered in cells, such as run and tumble model, Lévy flights
and super-diffusive fBm.

The continuous-time random walkmodel is a generalization
of a random walk in which the diffusing particle waits for
a random time between jumps. More generally, when the
distribution φ(τ ) of waiting times τ is long-tailed and cannot
be averaged (with e.g., φ(τ ) ∝ τ−(1+α) and 0 < α < 1),
the ensemble-averaged MSD shows anomalous scaling with a
power law. A straightforward interpretation of a CTRW in the
context of molecular biology is assimilating the waiting times
to interactions of the molecule with an immobile substrate (at
the relevant temporal and spatial scales). It is important to note
that an interaction with a characteristic residence time does not
fulfill the conditions of the model. Interestingly, however, the
waiting-time distribution of non-specific interactions, abundant
in the cell, might be non-averageable and thus CTRW a good
microscopic model for one type of anomalous subdiffusion in
the cell. It has been proposed to govern the cytosolic diffusion
of nanosized objects in mammalian cells [19] and it has also been
used to explain the lateral motion of potassium channels in the
plasma membrane of cells [20].

The fractional Brownian motion model is a different
generalization of Brownian diffusion in which the jumps between
lag times follow a normal distribution but respect a correlation
function given by

〈

x(t)x(s)
〉

= 1/2(t2H + s2H − (t − s)2H) for
t > s > 0. A fBm process is thus characterized by the Hurst
index H, ranging between 0 and 1. The value of H determines
the type of jump dependence in the fBm process, such that
H > 1/2 indicates a positive correlation between the increments,
Brownian motion is achieved for H = 1/2, and the increments
are negatively correlated when H < 1/2. The MSD of a fBm

is given by
〈

x(t)2
〉

∝ t2H , which, again, encompasses Brownian

diffusion for H = 1/2 and yields subdiffusion for H < 1/2
or superdiffusion for H > 1/2 (see below). The fBm model
describes faithfully the diffusion of particles in a viscoelastic fluid
[21], and it has been often argued that molecular crowding in
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the cell gives rise to microviscosity and therefore to anomalous
diffusion. It was proposed as the model of telomere diffusion in
nucleus [22, 23].

Another possible model for anomalous diffusion in the cell is
that of random walks in fractal media and disordered systems.
Fractals are self-similar mathematical objects built upon the
repetition of simple rules and characterized by a non-integer
number: the fractal dimension. Although still under debate, some
authors have proposed that chromatin organization follows, as
a first order approximation, a fractal structure, and estimates of
its fractal dimension have been proposed [24]. Random walks
on fractals are subdiffusive due to the spatial correlation of
displacements, and the power law scaling factor of the MSD
with time is given by 2/dw, where dw is the dimension of the
walk that is specific to the fractal. Although the pertinence of
a fractal network model to describe molecular diffusion is still
up to debate, it is justified to attempt to integrate the multiscale
characteristics of the cell organization to such fractal model.

Amongst the existing superdiffusive motion in cells is the
run-and-tumble process, which consists of alternating phases
of fast active and slow passive motion leading to transient
anomalous diffusion [25]. Initially observed for bacteria motion
it has recently been used to describe molecular motions in
cells, such as the motion of motors along cytoskeletal filaments.
Motor proteins perform a number of steps (run) until they
randomly unbind from the filaments and diffuse in the crowded
cytoplasm (tumble) before rebinding [26]. The same could also
stand for transcription factors in the nucleus searching for their
initiation codon, alternating successively diffusion and 1D sliding
along the DNA. Superdiffusive fBm which is characterized by an
Hurst index H > 1/2 has been described as the intracellular
motion of particles in the super-crowded cytoplasm of a amibae
[27]. Finally, Lévy flights, has previously been proposed for
intracellular actin-based transport mediated bymolecular motors
[28] and recently in the case of a membrane targeting C2
protein [29].

Note that by no means the above described models
exhaustively cover the range of models that are known to
exhibit anomalous diffusion (see e.g., [30–32]). However, the
CTRW, fBM, and random walks in a fractal models have been
extensively studied; more importantly, they have the potential
to map parameters of the model to relevant biological and
biophysical features. Therefore, we will limit our discussion to
the aforementioned cases, and how they can be used to analyse
and interpret experimental data obtained by FCS and SPT.

3. WHICH METHODS TO CORRECTLY
ANALYSE DIFFUSIVE PROCESS?

3.1. Fluorescence Correlation
Spectroscopy
The principle of FCS consists in measuring the temporal
variations of molecular concentration at a given position within
the volume of a biological sample. This is achieved by monitoring
the temporal fluctuations of fluorescence signal emitted by the
molecules present in the observation volume, which is excited

with a focused laser. The underlying assumption of FCS is that
the system is in a dynamic equilibrium and therefore the signal
fluctuation can be correlated to the diffusion of molecules within
the observation volume. While the amplitude of the fluctuations
relates to the number of molecules in the observation volume, the
decay of their autocorrelation in time depends on their mobility.

A typical FCS set-up consists of an illumination laser and
a confocal microscope with a fast single-channel single-photon
detector. The laser beam illuminates the detection volume with,
usually, a Gaussian intensity profile and excites the fluorophores
in the focal volume. The emitted fluorescent light is collected
by the detector and it depends on the fluctuations of the local
concentration of the labeled molecules.

Parameters, such as the average number of molecules (N)
and their mean residence time (τd) in the confocal volume
(surface) can be obtained either directly from this fluorescence
intensity fluctuation measurement or indirectly by a temporal
auto-correlation of this fluctuation. The second method is the
most popular approach for FCS data analysis (see Figure 1). The
main drawback of standard FCS is the lack in directly monitoring
possible spatial and/or temporal heterogeneities that will give rise
to deviation from pure Brownian motion. Several approaches
have been proposed to overcome this issue including spot
variation FCS (sv-FCS) [14, 33], line scanning FCS and STED-
FCS [34, 35], as well as imaging approaches, such as (spatio)-
temporal imaging correlation spectroscopy [(S)TICS], raster
imaging correlation spectroscopy (RICS) [36] or more recently
whole plane Imaging FCS (Im-FCS) [37]. With the development
of commercial microscopes coupled to FCS capabilities, this
technique and its derivatives are now becoming more and more
popular in biology labs.

A large range of dynamic processes leading to concentration
fluctuations (i.e., diffusion, flow, chemical reactions and
different combinations of these) has been investigated to
generate corresponding analytical expressions of the temporal
autocorrelation curve G(t) in the case of Gaussian (laser
confocal) illumination/detection geometry (for a review, see [38]
and references therein). For instance, in the case of a Brownian
motion in 2D, G(t) = 1/{N̄(1 + 4Dt/w2)} where w is the size
of the beam waist and N̄ is the average number of molecules in
the observation volume. The main approach to diffusive process
identification and quantification in FCS consists in non linear
least square fitting of experimental autocorrelation curves using
above described analytical expressions and discriminate amongst
these models which suits the best using various statistical test.
Although it can deliver quantitative values of the parameters
of the statistically chosen model of motion, it could be strongly
biased, in particular for complex motions. A Bayesian approach
to single spot FCS correlogram analysis has been proposed to
discriminate between different models without bias [39, 40].

Another way to discriminate between different types of
motion is to explore space and time with FCS using svFCS
for example. svFCS offers the opportunity to generate so-called
“diffusion-laws” by plotting changes in the residence time (τd)
as a function of the surface (i.e., laser waist) explored w2.
This has enabled to directly identify deviations from pure
Brownian motion in the plasma membrane of cells [41] or
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FIGURE 1 | Schematic view of the typical setup used in fluorescence correlation spectroscopy (A) and single/multiple particle tracking (B) experiments. (A) A laser is

focused on the fluorescently labeled sample by the objective of a microscope. The fluorescence is then collected by the objective and focused in a confocal way

(using a pinhole) on a single photon counting detector (avalanche photodiode, APD). This detector records the fluctuation of fluorescence emission within the confocal

volume of the sample. A direct link to an electronic correlator authorize on line generation of the autocorrelogram. (B) A laser is focused at the back focal plane of a

microscope objective in order to obtain a full field illumination of the sample. The fluorescence emitted by each single particle present in the illumination field is then

directly imaged on a sensitive camera (Charge Coupled Device, CCD). A movie is obtained and the post processing of this movie allow tracking of the individual

emitter and latter on, generation of Mean Square Displacement (MSD) as a function of lag time curves.

anomalous diffusion occurring, either during first order lipid
phase transition [42] or in non-homogeneous fluids, gels and
crowded solutions [43, 44]. It has been recently extended to the
line-scanning STED-FCS [45] and to Im-FCS [46].

3.2. Single/Multiple Particle(s) Tracking
While the concentration of the subset of fluorescent molecules
within a confocal volume in FCS experiments is close to the
single-molecule regime, the measurement gauges the average
motion of the ensemble of molecules diffusing in and out the
observation spot. Conversely, SPT is by construction a single-
molecule approach, monitoring thus the motion of individual
molecules. One of the strengths of SPT is the potential to capture
rare events or behaviors that would otherwise be buried within
an average.

The principle of SPT experiments is simple, it consists in
retrieving the changes in position of individual molecules within
the sample of interest, i.e., the time series of two-dimensional or
three-dimensional coordinates of the molecule location. This is
achieved in two stages: firstly by estimating the centroid of the
measured point spread function (PSF) of each detected individual
emitter, and secondly by linking the trajectory of the same
molecule between consecutive images. Importantly, the accuracy

at which one is able to pinpoint the molecule position depends
only on the signal-to-noise ratio of the measured PSF, obtaining
sub-wavelength accuracy typically in the order of∼10 nm.

The basic SPT experimental setup consists of an excitation
laser, a high NA objective, a set of dichroic and filters to separate
the excitation and emission wavelengths, a tube lens, and a
highly sensitive camera capable of detecting single fluorophores
(see Figure 1). The laser is focused on the back focal plane of
the objective to obtain a wide-field illumination configuration,
which can be adjusted to total internal reflection (TIRF) or
highly inclined illumination (HILO) [47] to increase the SNR
when studying molecular dynamics in cellular membranes
or at the interior of cells, respectively. The fluorescence
light is collected by the same objective, and an image of
the single emitters is formed on the camera plane via the
tube lens [13, 48].

The amount of retrieved information about the biological
system from an SPT assay depends on the nature of the
experiment. The study of a slowly diffusing transmembrane
protein will yield much longer traces than a fast diffusing
transcription factor in the nucleus. In the latter case, the traces
will be limited to the number of images in which the tracked
particle remains within the depth of focus around the image
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plane, unlike the former case where photobleaching is the
limiting factor.

The classical analysis of a set of trajectories consists in
computing the dependence of the MSD (time-average or
ensemble-average) over time from the distribution of jumps at
increasing lag times defined by the camera acquisition, typically
in the order of tens of ms. However, as we will see in the
following section, different approaches and estimators have been
proposed in order to analyze and interpret SPT data to its
full extent. In comparison to FCS, the analysis of SPT has
been intensively investigated, and one can distinguish several
families of techniques (see also for reviews: [24, 49, 50]). In
the field of stochastic processes, the inference of a diffusion
coefficient from a sampled process is a common problem (see for
instance [51, 52]). However, this theory cannot be applied when
moving to experimental trajectories, and other approaches have
been proposed.

3.2.1. MSD-Based Techniques
A first family of SPT analysis algorithms tries to perform
robust MSD inference. The use of MSD to study diffusion was
introduced by Einstein in 1906, and was revived in biology
by [53]. MSD analysis can either be performed by inferring a
diffusion coefficient from a single trajectory (a setting studied
in [54]) or by pooling various trajectories [55], and many
refinements and estimators based on the MSD have been
proposed [56, 57].

When inferring kinetic parameters from a series of single
trajectories, one faces the issue that for common trajectory
lengths obtained in nuclear SPT (length of << 20 points per
track) and common localization error, inaccuracy might reach
100% [54, 58]. As such, any approach that uses MSD on short
trajectories should be evaluated with great care. For longer
trajectories (such as diffusion in a membrane), approaches have
been proposed that can segment trajectories based on the type of
motion [59].

3.2.2. Hidden Markov Models (HMMs)
A second family of SPT analysis algorithms derives fromMarkov
models and Hidden Markov Models. Most of them were derived
to perform trajectory segment classification, the hidden variable
inferred being the state of diffusion, or the current diffusion
coefficient. For instance, Monnier et al. [60] introduces the
HMM-Bayes technique to infer whether a trajectory segment is
in one (or several) diffusive or active transport states. Moreover,
Slator et al. [61] implemented the inference of localization noise
to infer switches in diffusion coefficient within one trajectory. A
similar approach was used to detect confinement [62].

These methods often rely on a fixed number of states,
which comes from significant mathematical limitations. Some
of these limitations were overcome using so-called variational
Bayesian inference [63]. The prototypical algorithm performing
variational Bayesian inference on a HMM is vbSPT [64]. This
algorithm can estimate the number of diffusive states and
progressively consolidate increasing information about these
states as trajectories are analyzed. The algorithm was further
refined to incorporate the estimate of localization error [65].

3.2.3. Inferring Maps of Diffusion Coefficients
A third family of SPT analysis algorithms not only infers the
diffusion coefficient over the population of diffusing molecules,
but also a spatial map of diffusivity [66, 67]. This approach
has been pioneered in membranes, where a high density of
tracks can easily be obtained. An extension of this approach
using an overdamped Langevin equation of the single molecule
motion has shed new lights on HIV-1 assembly within living cells
[68]. These promising techniques have not been tested beyond
membrane molecules, but the high diffusion coefficients of freely
diffusing cellular proteins might render such a map difficult to
establish. Moreover, unlike in membranes, proteins can reside at
the same location with different diffusion coefficients, depending
on whether they are interacting with a given structure or not.

3.2.4. Inferring Anomalous Diffusion
Many approaches have been proposed to infer anomalous
diffusion in cells; some of them are reviewed in Guigas
and Weiss [69]. A direct technique can be used by fitting
the MSD with a power law to estimate the anomalous
diffusion coefficient α. However, alternative techniques have been
proposed, many of them focused on the inference of model-
specific parameters, or on techniques to distinguish between
types of anomalous diffusion.

Several methods have been proposed to infer diffusion
parameters for several anomalous diffusion models. For the case
of diffusion in disordered (fractal) media, Shkilev [70] proposes
estimators that can be applied to SPT, FCS and FRAP. For the
case of fractional Brownian motion, techniques to infer both the
anomalous diffusion coefficient (α) and the generalized diffusion
coefficient (Dα) have been proposed. The former approach
[71] takes into account noise (localization error) and drift,
and uses Bayesian inference. The latter [72] relies on squared
displacements and uses least squares to estimate Dα .

Conversely, instead of trying to estimate the parameters
of a known model, a key question is to distinguish between
various anomalous diffusion models. A prototypical approach
[73] used Bayesian inference to distinguish between Brownian,
anomalous, confined and directed diffusion, and uses the
propagators associated with each different diffusion model.
However, Hellmann et al. [74] found using simulations that it
is very hard to distinguish between fBm and diffusion on a
fractal when localization noise is present, both in SPT and FCS.
The authors used a combination of techniques for the inference,
including MSD and p-variation techniques. In Burnecki et al.
[23], the authors propose a series of tests to “unambiguously”
identify fBm, by progressively proving that several other models
are wrong. Other tests were proposed to distinguish fBm from a
CTRW using a test based on p-variations [75]. The p-variations
are the finite sum of the p-th powers of the increments of the
trajectory. Finally, approaches inferring the mean first passage
time of a particle were used to distinguish between CTRW and
diffusion in fractals [76, 77].

Many other families of techniques to identify types of diffusion
have been proposed. Some relied on maximum likelihood
estimates [78], auto-correlation functions [79] or on more exotic
estimators [80]. Another line of progress was made in the type of
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models being simulated. For instance, Amitai [81] introduced a
model in which TFs can bind and rebind in a dense chromatin
mesh. This model was successively fitted to explain anomalous
diffusion of CTCF dynamics [82].

Finally, we note that many models were developed to infer
trapping potential in membranes ([83, 84] for instance). We
do not review them here since their application seems limited
to membranes.

3.3. Strengths and Limitations of the Two
Techniques
A strong limitation is that the experimental context, either in
FCS or in SPT, may lead to spurious determination of anomalous
diffusion. In other words, specific experimental parameters
(low statistics, location noise, spatial confinement, etc.) and/or
inappropriate analysis of the data can lead to incorrectly conclude
that the diffusion exponent α 6= 1. Those artifacts concern both
SPT [85] and FCS [43]. This is for instance the case if α is
determined by a fit of the MSD or the autocorrelation with time
and the statistical power is low (low sampling of the time points
or short trajectories in SPT, low signal/noise at small or large
times in FCS). To avoid such caveats, model selection must use
more elaborate approaches to unambiguously demonstrate and
characterize an underlying complex diffusion process.

So far, most of the inference tools available in the literature
only partially account for the biases detailed above, and are
usually limited in terms of the anomalous diffusion models they
consider. For instance, in Hansen et al. [58], the authors showed
that an algorithm not taking into account localization error was
likely to improperly estimate diffusion coefficients. Similarly, the
fact that the observed proteins diffuse in a confined volume
leads to a sublinear MSD, a phenomenon that has been widely
documented and that needs to be taken into account to properly
distinguish between genuine anomalous diffusion and mere
confinement effect. Similarly, tracking errors (misconnections
between tracks) can also look like anomalous diffusion.

Some of these biases can be minimized at the acquisition
step (for instance by using fast frame rates and low labeling
density [58]), other need to be explicitly taken into account in
the model. As of today, most inference algorithms available have
not been benchmarked against realistic imaging conditions.
Furthermore, a general realistic inference algorithm is
still missing.

4. CONCLUSION: THE NEED FOR
CONTROLLED BENCHMARKS

Confronted with the variety of approaches described above,
one would like to know the performance of each approach
on typical representative datasets. For the comparison to be
fair, this demands two main ingredients: (i) the existence
of a reference dataset, or benchmark—possibly one reference
dataset for each main classes of experimental methods and
(ii) a fair, objective, transparent and open comparison process,
with datasets, comparison procedures and performance results
that are clearly stated and publicly available. Several fields in

computer science have been using open community competitions
to organize the process and produce open benchmarks for the
community. Computer vision, applied machine learning or time
series forecasting, among many others, have a long tradition
of leveraging these competitions. The strategy has been widely
successful because it parallelizes research along a vast community
of high-skilled researchers. Internet platforms or services are
even available to that purpose, including, among many others,
Kaggle (www.kaggle.com) or DrivenData (www.drivendata.org).
This increases further the size of the competing community, and
the richness of the proposals. In fact, in addition to providing
reference datasets and benchmarks, open competitive challenges
can also foster the emergence of radically new approaches to
the open problem at hand. Many of these competitive challenges
are concerned with biomedical applications (for instance, http://
dreamchallenges.org or https://grand-challenge.org), including
several revolving around microscopy (see e.g., https://cremi.
org). Recently, a series of consecutive community competitions
for single-molecule imaging have involved dozens of labs and
focused on tracking algorithms [86], and 2D and 3D localization
for super-resolution [87]. Finally, another challenge has also been
set up recently to infer the anomalous diffusion exponent from
particle trajectories (http://www.andi-challenge.org/) [88].

In practice, an important feature of competitive challenges
is to provide labeled data examples that the participants will
be able to use as a training set. Indeed according to standard
machine learning practice, this training dataset must be distinct
from the test set, that includes the data used to estimate the
performance of the algorithm. The organizers therefore usually
publish two datasets (training dataset and test), of which only the
training dataset comes with the label of each examples—only the
organizers know the true label of the test dataset. After training,
the results of the challenge is based on some quantification of
the performance of the participant tools on the test set, although
performance on the learning set can also be communicated as
a way to judge overtraining/generalization capacities. In many
cases however, it is not possible to provide the “true” label
of experimental data, because such a gold standard does not
exist. In this case, computer simulations can be used to generate
synthetic data, as long as these simulations are realistic enough
that the performance of the algorithms is not different than their
performance on real experimental measurements. In the recent
challenges on super-resolution, training and test data were a
combination of computer-generated data and experimental data.
Computer-generated data gives a clear access to ground truth
whereas experimental data incorporate uncharacterized biases
that can affect the inference process.

Here we propose to organize an international open
collaborative challenge for the quantification and analysis
of molecule movements in living cells via SPT and FCS. To date,
the generation of realistic computer-simulated data has been
hampered by the number of experimental biases to be taken
into account, and by the diversity of the diffusion models, in
particular for anomalous diffusion. For the challenge, we will
generate both SPT and FCS data from the same set of simulated
trajectories and in different modalities (2D in membranes and
3D in the nucleus) using a dedicated open source simulation
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software, simSPT (https://gitlab.com/tjian-darzacq-lab/simSPT),
that is freely available to the participants to generate their own
additional training sets if needed.

The challenge will be organized around various sub-challenges
that represent the main classes of experimental situations
(high-density short trajectories in membranes, less dense long
trajectories in membranes, very short trajectories in the nucleus)
and the main types of Brownian and anomalous diffusion
(Brownian motion, fractional Brownian motion, continuous-
time random walks and diffusion on fractals), and mixtures
thereof. In the long run, we will also propose sub-challenges
where the molecule dynamics depends on the location, to
emulate localized spatial heterogeneity in the dynamics (local
potentials, position-dependent diffusion coefficients). Moreover,
we will progressively propose two challenge categories. In
parameter inference challenges, the models used to generate the
trajectories (Brownian motion, anomalous diffusion, . . . ) will be
given and the task will be to infer as precisely as possible the value
of the parameters used for the generation. In model selection
challenges, the goal will be to infer what model was used to
generate the data given a known limited list of models.

Finally, we are aware that it may well be that no generic
tool is able to solve all the sub-challenges evoked above. We are
also aware that the difficulty of each sub-challenges can be quite

variable. We therefore propose to start with the simple challenges
and work in collaboration with the community involved in the
analysis of molecular dynamics in living cells, to progressively
climb the steps toward the more difficult sub-challenges. In this
strategy, maintaining an open communication channel between
the organizers and the participants is paramount. To this aim, we
propose to start with amailing list that will be used to support this
communication. Every interested individual is therefore welcome
to subscribe to the mailing list of the challenge by visiting
https://listes.services.cnrs.fr/wws/info/diffusion.challenge. Once
registered in the mailing list through this website, participants
will be able to exchange with themselves and the organizers
and they will receive the instructions to access the datasets of
the challenge.
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