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The Bell theorem stands as an insuperable roadblock in the path to a very desired

intuitive solution of the EPR paradox and, hence, it lies at the core of the current lack

of a clear interpretation of the quantum formalism. The theorem states through an

experimentally testable inequality that the predictions of quantummechanics for the Bell’s

polarization states of two entangled particles cannot be reproduced by any statistical

model of hidden variables that shares certain intuitive features. In this paper we show,

however, that the proof of the Bell theorem involves a subtle, though crucial, assumption

that is not required by fundamental physical principles and, hence, it is not necessarily

fulfilled in the experimental setup that tests the inequality. Indeed, this assumption can

neither be properly implemented within the standard framework of quantum mechanics.

Namely, the proof of the theorem assumes that there exists a preferred absolute frame of

reference, supposedly provided by the lab, which enables to compare the orientation of

the polarization measurement devices for successive realizations of the experiment and,

hence, to define jointly their response functions over the space of hypothetical hidden

configurations for all their possible alternative settings. We notice, however, that only

the relative orientation between the two measurement devices in every single realization

of the experiment is a properly defined physical degree of freedom, while their global

rigid orientation is a spurious gauge degree of freedom. Hence, the preferred frame

of reference required by the proof of the Bell theorem does not necessarily exist. In

fact, it cannot exist in models in which the gauge symmetry of the experimental setup

under global rigid rotations of the two detectors is spontaneously broken by the hidden

configurations of the pair of entangled particles and a non-zero geometric phase appears

under some cyclic gauge symmetry transformations. Following this observation, we build

an explicitly local model of hidden variables that reproduces the predictions of quantum

mechanics for the Bell’s states.

Keywords: Quantum Mechanics, EPR paradox, Bell’s inequality, hidden variables, locality, rotational symmetry,

gauge symmetries, spontaneous symmetry breaking

1. INTRODUCTION

The Bell theorem is one of the fundamental theorems upon which relies the widespread belief
that quantum mechanics is the ultimate mathematical framework within which the hypothetical
final theory of the fundamental building blocks of Nature and their interactions should be
formulated. The theorem states through an experimentally testable inequality (the Bell inequality)
that statistical models of hidden variables that share certain intuitive features cannot reproduce the
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predictions of quantummechanics for the entangled polarization
states of two particles (Bell’s states) [1, 2]. These predictions
have been confirmed beyond doubt by very carefully designed
experiments [3–12].

In these experiments a source emits pairs of particles whose
polarizations are arranged in a Bell’s entangled state:

|98〉 =
1√
2

(

| ↑〉(A) | ↓〉(B) − ei8 | ↓〉(A) | ↑〉(B)
)

, (1)

where {| ↑〉, | ↓〉}(A,B) are eigenstates of Pauli operators σ
(A,B)
Z

along locally defined Z-axes for each one of the two particles.
The two emitted particles travel off the source in opposite
directions toward two widely separated detectors, which test their
polarizations. The orientation of each one of the detectors can
be freely and independently set along any arbitrary direction
in the XY-plane perpendicular to the locally defined Z-axis.
Upon detection each particle causes a binary response of
its detector, either +1 or −1. Thus, each pair of entangled
particles produces an outcome in the space of possible events
P ≡

{

(−1,−1), (−1,+1), (+1,−1), (+1,+1)
}

. We refer to each
detected pair as a single realization of the experiment.

Quantum mechanics predicts that the statistical correlation
between the binary outcomes of the two detectors in a long
sequence of realizations of the experiment is given by:

E(1,8) = − cos(1 − 8), (2)

where 1 is the relative angle between the orientations of the two
detectors. In particular, when 1 − 8 = 0 we get that E = −1,
so that all outcomes in the sequence must be either (−1,+1) or

(+1,−1).
The Bell theorem states that prediction (2) cannot be

reproduced by any model of hidden variables that shares certain
intuitive features. In particular, the CHSH version of the theorem
states that for the said generic models of hidden variables the
following inequality is fulfilled for any set of values (11,12, δ)
[13]:

∣

∣E(11)+ E(12)+ E(11 − δ)− E(12 − δ)
∣

∣ ≤ 2. (3)

On the other hand, according to quantum mechanics the
magnitude in the left hand side of the inequality reaches a
maximum value of 2

√
2, known as Tsirelson’s bound [14], for

certain values of 11, 12 and δ— e.g., 11 = −12 = 1
2δ =

π
4 . As it was noted above, carefully designed experiments have
confirmed that the CHSH inequality is violated according to the
predictions of quantummechanics and, therefore, have ruled out
all the generic models of hidden variables constrained by the Bell
inequality (3).

In this paper we show, however, that the generic models of
hidden variables constrained by the Bell theorem all share a
subtle crucial feature that is not necessarily fulfilled in the actual
experimental tests of the Bell inequality. Indeed, the considered
feature cannot be derived from fundamental physical principles
and may even be at odds with the fundamental principle
of relativity. Moreover, this feature neither can be properly

implemented within the standard framework of quantum
mechanics. We follow this observation to explicitly build a local
model of hidden variables that does not share the disputed
feature and, thus, it is capable to reproduce the predictions
of quantum mechanics for the Bell’s polarization states of two
entangled particles.

Our model puts forward for consideration the possibility that
quantum mechanics might not be the ultimate mathematical
framework of fundamental physics. In fact, it is interesting to
notice that the way how our model solves the apparent “non-
locality” associated to entanglement in the standard quantum
formalism is very similar to the way howGeneral Relativity solves
the “non-locality” of Newton’s theory of gravitation: in our model
quantum entanglement is the result of a curved metric in the
space in which the hypothetical hidden variables live.

2. OUTLINE

Any local statistical model of hidden variables that aims to
describe the Bell’s experiment consists of some space S of possible
hidden configurations for the pair of entangled particles, labeled
here as λ ∈ S , together with a well-defined (density of)
probability ρ(λ) for each one of them to occur in every single
realization. The model must also specify well-defined binary

functions s
(A)
�A

(λ) = ±1, s
(B)
�B

(λ) = ±1 to describe the outcomes
that would be obtained at detectors A and B when the pair
of entangled particles occurs in the hidden configuration λ ∈
S and their polarizations are tested along directions �A and
�B, respectively.

The proof of the CHSH inequality (3) involves two well-
defined possible orientations �A and �′

A for the polarization
test of particle A and two well-defined possible orientations
�B and �′

B for the polarization test of particle B, and assumes
that the considered model of hidden variables assigns to each
possible hidden configuration λ ∈ S a 4-tuple of binary values
[

s
(A)
�A

(λ), s
(A)
�′
A
(λ), s

(B)
�B

(λ), s
(B)
�′
B
(λ)

]

∈ {−1,+1}4 to describe the

outcomes that would be obtained in each one of the two detectors
in case that it would be set along each one of its two available
orientations. Hence, it is straightforward to obtain that for any
λ ∈ S ,

s
(A)
�A

(λ) ·
(

s
(B)
�B

(λ)+ s
(B)
�′
B
(λ)

)

+ s
(A)
�′
A
(λ) ·

(

s
(B)
�B

(λ)− s
(B)
�′
B
(λ)

)

= ±2,

(4)

since the first term is non-zero only when s
(B)
�B

(λ) and s
(B)
�′
B
(λ) have

the same sign, while the second term is non-zero only when they
have opposite signs. The CHSH inequality (3) is then obtained
by averaging (4) over the whole space S of all possible hidden
configurations, since

∣

∣

∣

∣

∫

dλ ρ(λ)
{

s
(A)
�A

(λ) ·
(

s
(B)
�B

(λ)+ s
(B)
�′
B
(λ)

)

+ s
(A)
�′
A
(λ) ·

(

s
(B)
�B

(λ)− s
(B)
�′
B
(λ)

)}∣

∣

∣
≤ 2, (5)
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while
∫

dλ ρ(λ) s
(A)
�A

(λ) · s(B)�B
(λ) = E(11), (6)

∫

dλ ρ(λ) s
(A)
�A

(λ) · s(B)
�′
B
(λ) = E(12), (7)

∫

dλ ρ(λ) s
(A)
�′
A
(λ) · s(B)�B

(λ) = E(11 − δ), (8)

∫

dλ ρ(λ) s
(A)
�′
A
(λ) · s(B)

�′
B
(λ) = E(12 − δ). (9)

In this argument the orientations�A,�
′
A,�B, and�′

B seem to be
fixed with respect to some external frame of reference supposedly
provided by the labs. Nonetheless, the data collected in such an
experimental setup could be alternatively analyzed within frames
of reference aligned, for example, with the magnetic axis of the
Sun or the rotational axis of the Galaxy, with respect to which
the orientations of the detectors for different realizations of the
experiment are not fixed anymore. Obviously, the conclusions of
the analysis must remain the same, independently of the chosen
lab frame. Indeed, the proof of the CHSH inequality actually
requires only three well-defined angles, 11 ≡ 6 (�B,�A), 12 ≡
6 (�′

B,�A), and δ ≡ 6 (�′
A,�A), which correspond, respectively,

to the relative orientations of�B,�
′
B, and�′

A with respect to�A,
which serves as a reference direction. The reference direction �A

serves also to define the hidden configuration λ ∈ S of the pair of
entangled particles in every single realization of the experiment,
since the description of a physical state must necessarily be done
with respect to a reference frame. Otherwise, the orientation with
respect to any external lab frame, either the optical table or the
stars in the sky, of this reference direction �A at different single
realizations of the Bell’s experiment is absolutely irrelevant: it is
an spurious gauge degree of freedom, which can be set to zero
(see Figure 1).

The proof of the CHSH inequality, thus, seems
straightforward and unavoidable. Nonetheless, the main
claim of this paper is that this proof, as well as the proofs
of all other versions of the Bell inequality, involve a subtle,
though crucial, implicit assumption that cannot be derived
from fundamental physical principles and, indeed, it might
not be fulfilled in the actual experimental setup that tests the
inequality. Namely, in each realization of a Bell’s experiment the
polarization of each one of the two entangled particles is tested
along a single direction. Hence, the relative orientation 1 of
the two measurement devices in each single realization of the
experiment is a properly defined physical magnitude, which can
be set to values 11, 12, or any other desired value. On the other
hand, the definition of the angle δ that appears in the proof of
the CHSH inequality requires a comparison of the global rigid
orientation of the measurement devices for different realizations
of the Bell’s experiment and, thus, it requires the existence of an
absolute preferred frame of reference with respect to which this
global orientation could be defined. Otherwise, we could choose
the orientation of, say, detector A as the reference direction
for every single realization of the experiment and define the
orientation of the other detector with respect to it, in which case
the proof of the Bell theorem does not necessarily hold as we

shall show later. Obviously, such an absolute preferred frame of
reference would not be needed if the polarization of each one of
the two entangled particles could be tested along two different
directions at once in every single realization of the experiment,
but this is certainly not the case. Similar concerns regarding the
way how different settings of the detectors are compared within
the framework of the Bell theorem and the crucial role that this
comparison plays in the proof of the inequality are also raised
by Hess in [15, 16], and much earlier in a different but related
context in Hess and Philipp [17, 18] and Hess et al. [19].

The said preferred frame of reference needed to prove the
Bell theorem is supposedly provided by the lab. However, the
conditions that a reference frame must fulfill in order to qualify
as a preferred absolute frame are far from obvious and, in any
case, its existence is an overbold assumption whose fulfillment
has never been explored neither theoretically or experimentally.
In fact, the existence of an absolute preferred frame of reference
would be clearly at odds with Galileo’s principle of relativity.
Moreover, it is straightforward to show that this assumption
cannot be properly implemented within the standard framework
of quantummechanics either. The argument goes as follows. The
Bell’s state (1) that describes the pair of entangled particles is
defined in terms of the bases {| ↑〉, | ↓〉}(A,B) of eigenstates

of the Pauli operators σ
(A,B)
Z along locally defined Z-axes for

each one of the particles. Since these eigenstates are defined
up to a global phase, the phase 8 in expression (1) cannot
be properly defined with respect to a lab frame. In order to
properly define it we need to choose an arbitrary setting of the
two detectors that test the polarizations of the pair of entangled
particles as a reference. This reference setting defines parallel
directions along the XY-planes at the sites where each one of the
two particles are detected. Then, the phase 8 of the entangled
state (1) can be properly defined with respect to this reference
setting with the help of the measured correlations between the
outcomes of the two detectors, E = − cos(8). Furthermore,
we can use this reference setting to properly define a relative
rotation 1 of the orientations of the two measurement devices.
On the other hand, since we must use an arbitrary setting of
the detectors as a reference, their absolute orientation is an
unphysical gauge degree of freedom (see Figure 2). In summary,
in order to describe the setting of the measurement devices in
a Bell’s experiment within the standard framework of quantum
mechanics we need to specify both 8 and 1 with respect
to some otherwise arbitrary reference setting of the detectors.
Nonetheless, only their difference 1 − 8 is independent of the
chosen reference setting and, hence, the correlation between the
outcomes of the two devices can only depend on this difference
(2).

In the absence of an absolute preferred frame of reference the
global rigid orientation of the two detectors is, as we have already
noticed before, an spurious (unphysical) gauge degree of freedom
and, hence, the proof of the CHSH inequality (as well as of all
other versions of the Bell inequality) holds only for models in
which the considered hidden configurations are symmetrically
invariant under a rigid rotation of the two measuring devices.
On the other hand, we shall show below that the proof of
the inequality does not necessarily hold when this symmetry
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FIGURE 1 | The orientation of the reference direction �A with respect to the chosen lab frame is a spurious gauge degree of freedom.

is (spontaneously) broken by the hidden configuration of the
entangled particles, since then a non-zero geometric phase may
appear under cyclic gauge transformations. Indeed, the crucial
role of the angle δ in the proof of the CHSH inequality is
an obvious indication that in order to violate it the gauge
symmetry under a rigid rotation of the two detectors must be
spontaneously broken.

In fact, it is obvious from the correlation (2) that the
entanglement of the two particles explicitly breaks the symmetry
of the system under a rotation of the relative orientation of
the two detectors. Since a reference direction is needed for
this symmetry to get broken, the gauge symmetry under a
rigid rotation of the two detectors must be also spontaneously
broken. From this perspective the phase 8 that appears in
the description of the source (1) seems to play the role of a
Goldstone mode associated to the spontaneously broken gauge
symmetry, that is, the phase 8 appears instead of the spurious
gauge degree of freedom δ that would describe the global rigid
orientation of the two detectors. Under these circumstances, it is
not possible to compare different settings of the detectors with
respect to an external lab frame of reference: they can only be
compared with respect to a frame in which they all share the
same preferred direction, e.g., the reference frame set by the
orientation of one of the detectors. This requirement can be
explained as follows.

In the proof of the CHSH inequality it is implicitly
assumed, as we have already noticed above, that there exists
a preferred frame of reference, which defines a set of
coordinates λ ∈ S over the space S of all possible hidden
configurations that can be used to describe the response
function of each one of the two detectors in each one of its
two available orientations (defined with respect to the said
preferred frame). Above we denoted these response functions as

s
(A)
�A

(λ), s
(A)
�′
A
(λ), s

(B)
�B

(λ), s
(B)
�′
B
(λ). Nonetheless, in general, we should

allow for each one of the two detectors to define its proper set
of coordinates over the space S . Thus, for a given setting of the
detectors we shall denote as λA and λB the sets of coordinates
associated to detector A and detector B, respectively, so that their
responses would be given as s(λA) and s(λB) by some universal
function s(·) of the locally defined coordinate of the hidden
configuration. Since these two sets of coordinates parameterize
the same space of hidden configurations S there must exist some
invertible transformation that relates them:

λB = −L(λA; 1 − 8), (10)

which may depend parametrically on the relative orientation
1−8 between the two detectors. This transformationmust fulfill
the constraint
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dλA ρ(λA) = dλB ρ(λB), (11)

in order to guarantee that the probability of every hidden
configuration to occur remains invariant under a change of
coordinates, while the (density of) probability ρ(·) is functionally
invariant for both sets of coordinates. However, these constraints
do not forbid the possibility that the set of coordinates
accumulates a non-zero geometric phase α 6= 0 through certain
cyclic gauge transformations:

(

−L1̄2

)

◦
(

−L1̄2−δ̄

)

◦
(

−L1̄1−δ̄

)

◦
(

−L1̄1

)

6= I, (12)

In such a case there does not exist a single set of coordinates
that can be used to define the response functions of each one of
the two detectors in its two available orientations (defined with
respect to an external frame), as required by the proof of the
inequality (3). Therefore, in order to compare the four different
experiments involved in the CHSH inequality we must choose
the orientation of one of the detectors as a reference direction,
as we do below in (13), so that they all may be described within
a common set of coordinates. The appearance of a non-zero
geometric phase under a cyclic transformation is a well-known
phenomena in physical models involving gauge symmetries [20]
and, therefore, we should not rule out the possibility that it also
occurs in models of hidden variables for the Bell’s states. The Bell
theorem, however, cannot account for such models.

Following these observations we were able to explicitly build a
local model of hidden variables that reproduces the predictions
of quantum mechanics for the Bell polarization states. In our
model the hidden configurations of the pair of entangled
particles are described by a pointer, which sets an arbitrarily
oriented preferred direction and, thus, spontaneously breaks
the symmetry of the setup under rigid rotations of the two
detectors. As we have just noticed, and we shall show later
on in further detail, in order to compare different realizations
of the experiment within the framework of such a model we
must choose a common reference direction, which can be
either the orientation of the hidden configuration of the pair of
entangled particles or, alternatively, the orientation of one of the
detectors, say, detector A. Since the former may not be directly
experimentally accessible, we are left only with the latter option.
Thus, in such a model we only need to specify the binary values
for s(λA), s(λB), s(λ

′
B), s(λ

′′
B), and s(λ′′′B ) for each possible hidden

configuration λA ∈ S of the pair of entangled particles, where
λB = −L(λA;11), λ′B = −L(λA;12), λ′′B = −L(λA;11 − δ),
λ′′′B = −L(λA;12 − δ). It is then straightforward to notice that
the magnitude

s(λA) ·
(

s(λB) + s(λ′B) + s(λ′′B) − s(λ′′′B )
)

, (13)

which comes instead of (4), can take values out of the interval

[−2, 2]. Hence, these models are not constrained by the CHSH
inequality (3). A simplified version of these arguments is
presented in Figure 3 with the help of a toy model.

FIGURE 2 | Two descriptions of the experimental setup required for testing

the Bell inequality. In the description above the lab frame is taken to be fixed,

while in the description below the orientation of detector A is taken to be fixed.

The relative angle between the two detectors is set at four possible values 11,

12, 11 − δ, and 12 − δ. When considering models in which the hypothetical

hidden configurations of the pairs of entangled particles spontaneously break

the symmetry under rigid rotations of the orientations of the two measurement

devices, only the latter choice allows to properly compare the four different

settings.

These arguments can be stated in more abstract terms
as follows. Quantum predictions for the Bell experiment are
commonly described as a set of conditional probabilities
p(a, b|A,B), where a = ±1 and b = ±1 are the two possible
outcomes at each one of the two detectors and A = ±1 and
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FIGURE 3 | Two closely related, though intrinsically different, random games:

the game on the left hand side is constrained by the Bell inequality, while the

one on the right hand side is not necessarily constrained by the inequality. In

both games we have reference unit vectors, labeled, respectively as Ea, Eb, and
Ec, drawn at each one of the vertices, labeled as A, B, and C, of a triangle. In

the game on the left the triangle is drawn on a plane surface and the reference

unit vectors are contained within the plane, while in the game on the right the

“triangle” is defined on the surface of a sphere by segments of three great

circles and the three reference unit vectors lay within the corresponding

tangent planes. Two copies of a randomly oriented unit vector Eλ are generated

at random at the center of one of the three segments of the triangle with

density of probability ρ(Eλ), and detected, respectively, at the two detectors

located at the ends of the segment. In the game on the left the vector Eλ is

contained within the plane surface, while in the game on the right the vector Eλ
is tangent to the sphere. The binary responses of the detectors are locally

defined by parallelly transporting the unit vector Eλ along the segment of the

triangle to its end, and comparing its orientation to the orientation of the

corresponding reference unit vector: A(Ea, Eλ) = sign(Ea · Eλ), B(Eb, Eλ) = sign(Eb · Eλ),
C(Ec, Eλ) = sign(Ec · Eλ). It is then straightforward to prove the Bell inequality for the

game on the left, since for any settings Ea, Eb, Ec and any random vector Eλ the

following equality holds:
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)

∣

∣

∣
= 1+ B(Eb, Eλ) · C(Ec, Eλ). Therefore, after

integrating over the whole space of possible hidden configurations:
∣

∣

∣

∫

dEλ ρ(Eλ)
[

A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)
]
∣

∣

∣
≤

∫

dEλ ρ(Eλ)
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · C(Ec, Eλ)

∣

∣

∣
=

∫

dEλ ρ(Eλ)
∣

∣

∣
A(Ea, Eλ) · B(Eb, Eλ)+ A(Ea, Eλ) · B(Eb, Eλ) · B(Eb, Eλ) · C(Ec, Eλ)

∣

∣

∣
=

1+
∫

dEλ ρ(Eλ) B(Eb, Eλ) · C(Ec, Eλ), and therefore,
∣

∣

∣
EA,B(Ea, Eb)+ EA,C(Ea, Ec)

∣

∣

∣
≤ 1+ EB,C(Eb, Ec). This proof, nonetheless, does not hold

for the random game on the right hand side, since the orientation of a vector Eλ
parallelly transported along the closed contour of the triangle ABC gets rotated

by a geometric phase α due to the curvature of the sphere. In fact, in the

game on the right the three bipartite correlations are constrained by the

inequality
∣

∣

∣
EA,B(Ea, Eb)+ EA,C(Ea, Ec)

∣

∣

∣
≤ 1+ EB,C(Eb, R̂αEc), where R̂αEc denotes the

rotation of vector Ec by an angle α.

B = ±1 describe two possible choices for the setting of each
one of the two detectors. It is then proven that these conditional
probabilities cannot be obtained in terms of a local model of
hidden variables, defined by its configuration space λ ∈ S , its
density of probability ρ(λ) and its local response functions a =
f (λ,A), b = f (λ,B) [2].

This statement can be clearly illustrated with the help of
the toy model described in Table 1 [21], where conditional
probabilities for each one of the four possible results of an
experiment with two binary outcomes a, b = ±1 (columns)
are given for each one of four possible settings, defined by

TABLE 1 | Conditional probabilities for a toy model with two binary inputs and two

binary outcomes that cannot be reproduced by a realistic and local underlying

theory [21].

Outcome

setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

A = +1

B = +1
p1 0 0 1− p1

A = +1

B = −1
p2 0 0 1− p2

A = −1

B = +1
p3 0 0 1− p3

A = −1

B = −1
0 p4 1− p4 0

TABLE 2 | Conditional probabilities for a toy model with a single input with four

possible values and two binary outcomes.

Outcome

setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

D = 1 p1 0 0 1− p1

D = 2 p2 0 0 1− p2

D = 3 p3 0 0 1− p3

D = 4 0 p4 1− p4 0

They can be reproduced by an underlying theory.

two independent binary inputs A,B = ±1 (rows). For these
probabilities to be properly defined we require that p1, p2, p3, p4 ∈
[0, 1]. It can be readily checked that for each set of input
values (rows) the sum of the probabilities for all possible
results of the experiment (columns) equals 1. These conditional
probabilities, however, cannot be obtained within the framework
of an underlying local model of hidden variables: the conditional
probabilities listed in the first three rows would imply a = b, that
is, the outcomes of the two detectors in any of their four possible
settings must have the same sign, which is obviously inconsistent
with the conditional probabilities listed in the fourth row.

Nonetheless, it is straightforward to identify in this abstract
reformulation of the Bell theorem the same unjustified implicit
assumption that we have noticed above, namely, that there are
two well-defined choices for the setting of each one of the
detectors. We have noticed above that we can properly define
and measure only the conditional probabilities p(a, b|D), where
a = ±1 and b = ±1 are, as before, the outcomes at each one
of the two detectors and D = 1, 2, 3, 4 defines four possible
relative orientations between them. We did notice also that
quantum mechanics as well makes theoretical predictions only
for these conditional probabilities p(a, b|D). Under these looser
constraints the Bell theorem does not necessarily hold.

Consider, for example, the toy model described in Table 2.
The conditional probabilities are identical to those described in
Table 1 for each one of the four possible results of the experiment,
but the setting of the measurement devices is now described by a
single parameter D = 1, 2, 3, 4. Each input value corresponds to
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a given relative orientation of the two devices. The new model
simply states that when the devices are set at D = 1, 2, 3 their
outcomes must have the same sign, and when they are set at D =
4 their outcomes must have opposite signs. Obviously, this latter
model is not necessarily in contradiction with an underlying local
model of hidden variables.

A straightforward proof of the inequalities that constraint
the correlations that can be obtained in any model of hidden
variables with two binary inputs and two binary outcomes is
presented in Revzen [22] using only Boolean logic. The analysis
relies on the observation that any such model makes a prediction
for the correlations 〈AB〉, 〈AB′〉, 〈A′B〉, and 〈A′B′〉, and also
for the correlations 〈AA′〉 and 〈BB′〉 that would be obtained
in the hypothetical case that the polarization of each one of
the two entangled particles could be tested along two different
orientations at once. It can be immediately noticed that these
constraints do not hold for the model of hidden variables
discussed in this paper, for which the correlations 〈AA′〉 and
〈BB′〉 cannot be jointly bounded.

3. THE MODEL

We shall now build an explicitly local statistical model of hidden
variables that reproduces the predictions of quantum mechanics
for the Bell’s states (1) and, hence, it is not constrained by the
Bell inequality (3). The fundamental ideas of the model were
first discussed in Oaknin [30]. As we have already noticed above,
the crux of the model is the spontaneous breaking of the gauge
symmetry of the experimental setup under global rigid rotations
of the orientation of the detectors. The symmetry is broken
by the hidden configuration of the pair of entangled particles.
Furthermore, we allow for a non-zero geometric phase (12) to
accumulate through cyclic gauge transformations. Under these
circumstances there does not exist an absolute preferred frame,
other than the orientation of one of the detectors, to which we can
refer in order to compare different realizations of the experiment
(see Figure 3).

The gauge symmetry is spontaneously broken because in
the considered model the hidden configuration of the pair of
entangled particles has a preferred direction randomly oriented
over a unit circle S in the XY-plane. This orientation is carried
by each one of the particles of the entangled pair. Each one of the
two detectors defines over this circle S a frame of reference with
its own set of associated coordinates, which we shall denote as
λA ∈ [−π ,+π) for detector A and λB ∈ [−π ,+π) for detector
B. Since the two sets of coordinates parameterize the same space
S , they must be related by some transformation law:

λB = −L(λA; 1 − 8), (14)

where 1 is the relative angle between the two detectors and 8

is the phase that characterizes the source of entangled particles
as defined above. This transformation law states that a hidden
configuration whose preferred direction is oriented along an
angle λA with respect to detector A, it is oriented along an angle
λB with respect to detector B.

The transformation law (14) does not violate neither locality
nor causality: it may well be a fundamental law of Nature. Indeed,
the notions of locality and causality in special relativity stem from
a similar relationship v′ = T(v; V) between the velocities v
and v′ of a point particle with respect to two different inertial
frames moving with relative velocity V . Moreover, (14) is only
a generalization of the Euclidean linear relationship that states
that in a flat space given two detectors whose orientations form
an angle 1, then a pointer oriented along an angle ω with respect
to one of them is oriented along an angle ω − 1 with respect to
the other detector.

In order to reproduce the predictions of quantum mechanics
we define the transformation law (14) as follows:

• If 1̄ ∈ [0,π),

L(λ; 1̄) =















































q(λ − 1̄) · arccos
(

− cos(1̄)− cos(λ)− 1
)

,

if − π ≤ λ < 1̄ − π ,

q(λ − 1̄) · arccos
(

+ cos(1̄)+ cos(λ)− 1
)

,

if 1̄ − π ≤ λ < 0,

q(λ − 1̄) · arccos
(

+ cos(1̄)− cos(λ)+ 1
)

,

if 0 ≤ λ < 1̄,

q(λ − 1̄) · arccos
(

− cos(1̄)+ cos(λ)+ 1
)

,

if 1̄ ≤ λ < +π ,

(15)

• If 1̄ ∈ [−π , 0),

L(λ; 1̄) =















































q(λ − 1̄) · arccos
(

− cos(1̄)+ cos(λ)+ 1
)

,

if − π ≤ λ < 1̄,

q(λ − 1̄) · arccos
(

+ cos(1̄)− cos(λ)+ 1
)

,

if 1̄ ≤ λ < 0,

q(λ − 1̄) · arccos
(

+ cos(1̄)+ cos(λ)− 1
)

,

if 0 ≤ λ < 1̄ + π ,

q(λ − 1̄) · arccos
(

− cos(1̄)− cos(λ)− 1
)

,

if 1̄ + π ≤ λ < +π ,

(16)

where

q(λ − 1̄) = sign((λ − 1̄)mod([−π ,π))),

1̄ = 1 − 8 and the function y = arccos(x) is defined in
its main branch, such that y ∈ [0,π] while x ∈ [−1,+1]. In
Figure 4, the transformation L(λ; 1̄) is graphically shown for
the particular case 1̄ = π/3. It is straightforward to check that
the transformation law (14) is strictly monotonic and fulfills the
differential relationship

∣

∣d
(

cos(λB)
)∣

∣ = dλB
∣

∣sin(λB)
∣

∣ = dλA
∣

∣sin(λA)
∣

∣ =
∣

∣d
(

cos(λA)
)∣

∣ ,
(17)

while the parameter 1̄ plays the role of an the
integration constant.

Locality is explicitly enforced in our model by requiring that
the outcome of each one of the detectors in response to the
hidden configuration of the pair of entangled particles depends
only on its locally defined orientation, that is, s(λA) = ±1 for
detector A and s(λB) = ±1 for detector B, where λB and λA
are related by relationship (14) and s(·) is the binary response
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FIGURE 4 | Plot of the transformation law λ → λ′ = L(λ;1) for 1 = π/3 (solid

line), compared to the corresponding linear transformation (dotted line).

function of the detectors, which for the sake of simplicity we
define here as

s(l) =
{ +1, if l ∈ [0,+π),
−1, if l ∈ [−π , 0).

(18)

In order to complete our statistical model we need to specify
also the (density of) probability ρ(l) of each hidden configuration
l ∈ S over the space S to occur in every single realization of
the pair of entangled particles. By symmetry considerations this
density of probability must be functionally identical from the
point of view of both detectors, independently of their relative
orientation. Moreover, the condition of “free-will” demands
that the probability of each hidden configuration to occur in
any single realization of the experiment cannot depend on the
parameterizations of the space S associated to each one of the
two detectors. This condition can be precisely stated as:

dλA ρ(λA) = dλB ρ(λB). (19)

It is straightforward to show from (17) that this condition is
fulfilled if and only if the probability density ρ(l) is given by:

ρ(l) = 1

4

∣

∣sin(l)
∣

∣ . (20)

We can now compute within the framework of this model the
statistical correlations expected between the outcomes of the two
detectors as a function of their relative orientation. The binary
outcomes of each one of the two detectors define a partition of
the phase space S of all the possible hidden configurations into

four coarse subsets,

(s(A) = +1; s(B) = +1) ⇐⇒ λA ∈ [0,1 − 8)

(s(A) = +1; s(B) = −1) ⇐⇒ λA ∈ [1 − 8,π)

(s(A) = −1; s(B) = +1) ⇐⇒ λA ∈ [1 − 8 − π , 0)

(s(A) = −1; s(B) = −1) ⇐⇒ λA ∈ [−π ,1 − 8 − π),

where we have assumed without any loss of generality that 1 −
8 ∈ [0,π). Each one of these four coarse subsets happen with a
probability given by:

p (+1,+1) =
∫ 1−8

0 ρ(λA) dλA = 1
4

(

1− cos(1 − 8)
)

,

p (+1,−1) =
∫ π

1−8
ρ(λA) dλA = 1

4

(

1+ cos(1 − 8)
)

,

p (−1,+1) =
∫ 0
1−8−π

ρ(λA) dλA = 1
4

(

1+ cos(1 − 8)
)

,

p (−1,−1) =
∫ 1−8−π

−π
ρ(λA) dλA = 1

4

(

1− cos(1 − 8)
)

.

These conditional probabilities reproduce the predictions of
quantum mechanics (2):

E(1,8) = p (+1,+1) + p (−1,−1) − p (+1,−1) − p (−1,+1)

= − cos(1 − 8).

Finally, we notice that in spite of the non-trivial transformation
law (14) our model complies with the trivial demand that a
relative rotation of the measurement apparatus by an angle 1

followed by a second relative rotation by an angle 1′ results
into a final rotation by an angle 1 + 1′. Consider, for example,
an initial reference setting T0 in which the outcomes of the
two measurement apparatus are correlated by an amount E =
− cos(8). The angular coordinates of the hidden configurations
with respect to each one of the two measurement devices, λA and
λB, would be related in this reference setting by the relationship:

λB = −L(λA;−8). (21)

We now define a new measurement setting T1 obtained from the
initial setting T0 by rotating the relative orientation of the two
apparatus by an angle 1. The angular coordinates λA and λ′B
defined with respect to this new setting would be related by:

λ′B = −L(λA;1 − 8). (22)

A third measurement setting T2 is obtained from the
intermediate setting T1 by rotating the relative orientation of the
two apparatus by an additional angle 1′. In the intermediate
setting T1, which is now taken as reference to define the second
rotation, the pair of particles appears to be in a polarization state
characterized by a phase 8′ = −1 + 8. Hence, the angular
coordinates λA and λ′′B defined with respect to the setting T2

would be related by the transformation law:
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λ′′B = −L(λA;1′ − 8′) = −L(λA;1′ + 1 − 8). (23)

By comparison of the transformation law (21) for the initial
setting T0 and the transformation law (23) for the setting T2, we
realize that the latter has been obtained from the initial setting by
rotating the apparatus by an angle 1′ + 1, as we had demanded.

In order to complete the description of the Bell’s experiment
we define two new settings T3 and T4, which are obtained,
respectively, from T1 and T2 by canceling the phase 8 in
the reference setting T0. Hence, in these settings the angular
coordinates of the hidden configurations with respect to the two
measurement apparatus are related by the relationships:

λ′′′B = −L(λA;1). (24)

and

λ′′′′B = −L(λA;1′ + 1), (25)

respectively. Thus, we could intuitively think about the four
settings of the detectors involved in a Bell’s experiment as
corresponding to two possible values for the relative angle 1 and
two possible values for the phase 8, while they all four share
the orientation of one the two detectors, say detector A, taken
as reference.

Finally, let us notice that when we substitute the coherent
source of pairs of entangled particles (1) by the incoherent
classical source (where all the mixed coherent sources are defined
with respect to the same arbitrary setting of the two detectors):

µ̂ =
∫

2π
d8 |98〉〈98|

= | ↑〉〈↑ |(A) ⊗ | ↓〉〈↓ |(B) + | ↓〉〈↓ |(A) ⊗ | ↑〉〈↑ |(B),(26)

the broken rotational symmetries are statistically restored and the
outcomes of the two measurement devices become uncorrelated
for all settings. Only then, when the rotational symmetries are
restored, we can safely define separately the orientations of each
one of the measurement devices with respect to some external
reference frame and, thus, describe the phase space of its possible
settings with the help of these two angles (�A,�B).

4. A PROPOSAL FOR AN EXPERIMENTAL
TEST

The statistical model of hidden configurations described in the
previous section reproduces the quantum mechanical prediction
for the correlation (2) between the binary outcomes of projective
polarization measurements performed on each one of the
two particles of every entangled pair, as a function of the
angular parameter 1 − 8 that characterizes the experimental
setting. However, with the help of additional weak polarization
measurements the predictions of this statistical model can still
be experimentally distinguished from those of the standard
framework of quantum mechanics.

Let us consider as before a source of pairs of entangled
particles prepared in a Bell state (1) and a pair of measuring
devices that test their polarizations through projective
measurements at a relative angle 1 − 8 = π/4, so
that the correlation between their binary outcomes is
EA1 ,B2 = E(π/4) = −1/

√
2. For reasons that will be immediately

clear we denote this correlation as EA1 ,B2 . This correlation is only
very slightly modified if we perform on particle B a very weak
polarization measurement before the projective polarization test
[23, 24]. If we design the weak measurement on particle B so
that it is oriented along a relative angle 1 − 8 = −π/4 with
respect to the projective polarization measurement on particle
A, the correlation between their outcomes in a long sequence of
repetitions will be given by EA1 ,B1 = E(−π/4) = −1/

√
2.

We can now ask ourselves what would be the correlation
EB1,B2 between the outcomes of the weak measurement
performed on particle B and the projective measurement
performed on the same particle later on. According to quantum
mechanics their correlation should be

E
QM
B1,B2 = cos(π/2) = 0, (27)

while in the statistical model presented in the previous section
their correlation would be [33]

ESMB1,B2 = 4

(∫ π/2

π/4
ρ(λ) dλ −

∫ π/4

0
ρ(λ) dλ

)

= (28)

=
∫ π/2

π/4

∣

∣sin(λ)
∣

∣ dλ −
∫ π/4

0

∣

∣sin(λ)
∣

∣ dλ =

= − cos(0)+ cos(π/4)− cos(π/2)+ cos(π/4) =
=

√
2− 1 ≃ 0.41 6= E

QM
B1,B2.

5. DISCUSSION

The Bell theorem is one of the pillars upon which relies the
widely accepted belief that quantum mechanics is the ultimate
mathematical framework within which the hypothetical final
theory of the fundamental building blocks of Nature and their
interactions must be formulated. The theorem proves through
an experimentally testable inequality (the Bell inequality) that
the predictions of quantum mechanics for the Bell polarization
states of two entangled particles cannot be reproduced by
any underlying theory of hidden variables that shares certain
intuitive features.

In this paper we have shown, however, that these intuitive
features include a subtle, though crucial, assumption that is not
required by fundamental physical principles and, hence, it is
not necessarily fulfilled in the actual experimental setup that
tests the inequality. In fact, the disputed assumption cannot
be implemented within the framework of standard quantum
mechanics either.

Namely, the proof of the Bell theorem requires the existence
of a preferred frame of reference, supposedly provided by a lab,
with respect to which the orientations of each one of the two
measurement devices can be independently defined for every
single realization of the experiment. This preferred frame is
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required in order to compare the orientations of the detectors
in a sequence of repetitions of the experiment, since in every
realization each particle’s polarization can be tested along a
single orientation.

Notwithstanding, the existence of a preferred frame of
reference is at odds with Galileo’s fundamental principle
of relativity and, indeed, it cannot exist when the hidden
configurations of the pair of entangled particles spontaneously
break the rotational symmetry of the experimental setup under
rigid rotations of the two detectors and a non-zero geometric
phase accumulates through cyclic gauge transformations. In
such a case, in order to compare different realizations of the
experiment, we must pick the orientation of one of the detectors
as a common reference direction, with respect to which the
relative orientation of the second detector is defined. Under these
conditions the Bell theorem does not necessarily hold [see (13),
Figures 2, 3].

Following these ideas we explicitly built a model of hidden
variables for the Bell’s states of two entangled particles that
reproduces the predictions of quantum mechanics. Further
details of the model are discussed in Oaknin [30]. In two
additional accompanying papers we have used these same
ideas to build explicit local models of hidden variables for the
GHZ state of three entangled particles [31] and also for the
qutrit [32].

The derivation of a model of local hidden variables for the
entangled states of two or more qubits means that entanglement,
the quintessential quantum phenomenon, can be fully described
without the quantum formalism. Indeed, the model shows that
entanglement can be described in terms of classical statistical
concepts, with the help of the well-understood classical notions
of curved spaces and gauge degrees of freedom. Thus, the model

proves that there are not mysterious fundamental differences
between classical and quantum correlations.

Furthermore, the model of hidden variables presented here
opens the window to the possible existence of an unexplored
physical reality that might underlay the laws of quantum
mechanics [25] and, thus, it might lead to a whole new area
of research in physics in quest for the fundamental laws of
this underlying reality. The existence of such a reality was
first suggested 85 years ago by Einstein, Podolsky and Rosen
through their famous EPR paradox [26, 27], but following Bell’s
arguments it had been thought that an underlying reality was
incompatible with quantum mechanics [28, 29].

Finally, we wish to notice that our model of hidden
variables is built upon fundamental physical concepts shared
by the formalism of General Relativity and, thus, it might
eventually lead to a unified description of quantum phenomena
and gravitation.
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