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We use discrete-event simulation on a digital computer to study two different models of

experimentally realizable quantum walks. The simulation models comply with Einstein

locality, are as “realistic” as the one of the simple random walk in that the particles

follow well-defined trajectories, are void of concepts, such as particle-wave duality and

wave-function collapse, and reproduce the quantum-theoretical results by means of a

cause-and-effect, event-by-event process. Our simulation model for the quantum walk

experiment presented in Robens et al. [1] reproduces the result of that experiment.

Therefore, the claim that the result of the experiment “rigorously excludes (i.e., falsifies)

any explanation of quantum transport based on classical, well-defined trajectories” needs

to be revised.

Keywords: quantum walk, quantum theory, subquantum models, discrete event simulation (DES), computer

simulation

1. INTRODUCTION

A particle is said to perform a simple random walk (SRW) over a set of lattice points (enumerated
by integers) when at each time step, it jumps to one of its neighboring points, and the direction
of the jump is determined by a random variable [2, 3]. Random walks find applications in many
diverse fields, too many to list them here.

The term “quantum random walk” was introduced in 1993 [4] and emphasizes the analogy to
the simple random walk on a lattice. However, the time evolution of a “quantum random walk” is
deterministic and reversible [5], not random at all, so the term quantum walk (QW) is more apt.
There are various kinds of proposals and implementations of QWs using optical lattices [1, 6, 7],
ion traps [8–10], microwave cavities [11], or optical networks [12–14]. A review covering various
aspects of QWs is given in Kempe [15].

The basic idea of the QW is similar to that of the SRW. Instead of using a random variable
to decide which way to jump, an internal degree of freedom (e.g., spin or polarization) is used to
determine the direction of the jump. This internal degree of freedom changes its state according to
the rules of quantum theory, that is by a unitary transformation.

For simplicity, in this paper, we consider the case where this state is described by a 2-dimensional
Hilbert space (e.g., spin up |↑〉 and spin down |↓〉) and the particle makes nearest-neighbor hops on
a one-dimensional lattice. Compared to the SRW, the new feature is that at each jump, the state of
the spin changes by a unitary transformation, e.g., a Hadamard transformation. The particle moves
to the right if the projection of the spin (along the z-axis by convention) is up |↑〉 and moves to the
left if its spin is down |↓〉.

In symbols, this process is formalized as follows. The basis states of the Hilbert space are |x, s〉,
where x ∈ {−L, . . . , L} labels the position on the one-dimensional lattice of X = 2L + 1 sites, and
s ∈ {↑,↓} labels the eigenstates of the z-component of the Pauli matrices describing the internal
degree of freedom. In terms of the basis states, the wave function at step l reads
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and is related to the initial state |8(0)〉 = |0,↑〉 by
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are the spin projection operators, and
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)

(5)

is the Hadamard operation, acting on the spin degree-of-freedom
only. We only consider the case that the number of steps is
smaller than or equal to L, meaning that the particle initially
localized at x = 0 never goes beyond the boundaries of the lattice.

QWs are different from SRWs in that the latter cannot display
interference phenomena whereas the former, being described in
terms of the evolution of a wave function, can. In addition, the
probability distribution of a QW (starting from the initial state
|8(0)〉 = |0,↑〉) is not necessarily symmetric w.r.t. x = 0, unlike
the probability distribution of a SRW for a particle initially at
x = 0. Furthermore, the variance of x is non-linear in the number
of steps L [15].

There are two distinct views of the formulation of the QW.
The first uses the particle picture to spell out the rules by which
a particle changes its position and spin. Although the spin is
often regarded as a characteristic quantum feature, if there is
only one spin in play, we can equally well represent this spin by
a unit vector on a Bloch sphere, a genuine classical-mechanical
construct. The quantization of the spin only enters through the
digitalization of its projection on the z-axis, a process very similar
to the tossing of a coin, which during its flight usually rotates.
This pictorial description of the motion of a single particle is as
“realistic” as the one of the SRW. Indeed, at any time the particle
is at a definite position and the measurement of the internal
degree of freedom yields an unpredictable outcome (the mapping
of the unit vector to “spin-up” or “spin-down”), determining the
direction of the jump.

In the second view of the formulation of the QW, use of
wave mechanics is made in order to describe the evolution of a
collection of particles, prepared in the same initial state (position
and spin). The realistic view is lost when we impose that the time
evolution of a single particle and its internal degree of freedom
are to be described in terms of a wave function that evolves in
time according to the rules of quantum theory, Equation (2) in
the case at hand.

2. AIM OF THE PAPER

In this paper, we demonstrate that QWs can be modeled without
ever having to resort to the notion of particle-wave duality, the
wave function of the particle, the update rule Equation (2), etc.
Specifically, we show that it is possible to construct a discrete-
event simulation (DES) that is as realistic as the model of the
SRW, complies with Einstein’s notion of local causality [16],
and reproduces the results of quantum theory without using
expressions, such as Equations (1) or (2). In this respect, DES
constitutes a “subquantum” model that agrees with the statistical
results of quantum theory but additionally gives a description in
terms of individual events in contrast to quantum theory which
only gives collective, statistical predictions.

DES is a general methodology for simulating the time
evolution of a system as a discrete sequence of consecutive events.
In the application at hand, there are four different kinds of events,
namely a particle starting its walk, an operation acting on the
second degree of freedom (e.g., the spin) of a particle, a particle
moving from one lattice site to the next according to the state
of the second degree of freedom, and a particle being counted
and removed by detectors positioned at each of the lattice sites
and activated after a particle made the maximum number of
allowed jumps.

Simulation of a SRW is one of the simplest applications of
DES. In the DES of both the SRW and the QW, each walker
follows a well-defined trajectory but in contrast to the former, the
latter yields distributions of particles over the lattice which agree
with the quantum-theoretical prediction, not with a distribution
originating from a diffusion process.

We also use DES to reproduce the experimental data
of a particular QW experiment with atoms [1], which
“rigorously excludes (i.e., falsifies) any explanation of quantum
transport based on classical, well-defined trajectories,” in blatant
contradiction with the fact that each of the particles in the
DES follows a well-defined trajectory and the DES reproduces
the experimental data. In particular, we show that the DES can
produce data that either violates or does not violate the Leggett-
Garg inequality (LGI) [17], depending on the treatment of the
data [18, 19]. This implies that the QW by itself is not the cause
of a violation of the LGI. Note that in DES it is trivial to perform
non-invasive measurements, an essential requirement for the
application of the LGI [17].

3. DISCRETE-EVENT SIMULATION

For our demonstration, we build on the DES approach
introduced in De Raedt et al. [20], which reproduces the
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experimental and quantum-theoretical results of many
fundamental quantum-physics experiments with photons
and neutrons [21]. In essence, we use DES on a digital computer
as a metaphor for a perfect laboratory experiment [22]. A
salient feature of any DES implementation is that all variables
which enter the model have definite values and are known at
all times. The application of DES to the QW is based on the
following ideas:

1. The moving object is treated as a particle carrying a
unit vector and making nearest-neighbor jumps on a one-
dimensional lattice.

2. There are “processing units” which can be thought of as being
placed on the lattice sites. Depending on the unit vector
that the particle carries when it enters a processing unit, the
latter may rotate the unit vector and tell the particle where to
jump to.

3. Each particle can only take one definite path. In this sense,
our DES of a QW is as “realistic” as the DES of a SRW.

4. A particle can arrive at only one detector. The function of
the detector is to count the particle and to remove it from
the lattice. Each detection event is caused by exactly one
particle making a walk. Of course, being a simulation on a
digital computer, during the DES, the position of the particle
and its unit vector can be “read out” at any time, without
disturbing anything.

5. A particle is not allowed to start its walk as long as there is
another particle present on the lattice, implying that there
can be no direct interaction between particles.

6. Interference results from the adaptive dynamics of the
processing units. In the case at hand, a processing unit
models a beam splitter with two input and two output ports
(see below). Input to such a processing unit are the port
at which the particle enters and the orientation of the unit
vector. The adaptive dynamics changes the internal state of
the processing unit in a deterministic manner. The internal
state determines the output port by which a particle leaves
the processing unit.

7. After processing many particles (100,000 in the case at
hand), the relative frequencies of the detector counts
agree with the probabilities obtained from the quantum-
theoretical description.

In a DES, we can read off, at any time, the value of a physical
quantity without changing the state of the system and we
explicitly exclude from consideration DES implementations that
violate Einstein’s criterion of local causality. Specifically, our DES
models satisfy the locality criteria of category 0, as defined in
Hess [16], that is they are void of interactions (such as those
appearing in the hydrodynamic/Bohm interpretation of quantum
theory [23, 24]) that violate Einstein’s criterion of local causality.
In summary, our DES approach satisfies the criteria for a local
realist model.

Our DES is manifestly “non-quantum mechanical” in the
sense that there is no wave function describing the state
of the particle in space-time but instead there are definite
particle trajectories. Still the rules by which these trajectories
are formed cannot be described by “Newtonian mechanics.”

Clearly, without calling upon magic, one cannot have individual
particles following well-defined trajectories interfere unless there
is a mechanism at work that provides some form of indirect
communication between successive particles starting their walk.
As mentioned in 6 above, in our DES approach, this indirect
communication is the result of the adaptive (non-Newtonian)
dynamics of the processing unit.

At this point of the discussion, we wish to draw attention to
a paper of Duane [25]. Duane proposed that, in addition to the
quantum rules for energy and angular momentum, there is a
similar rule for the linear momentum and then showed that with
this rule one can explain the diffraction of X-rays from a crystal
without reference to interference of waves [25]. In plain words,
the key point of Duane’s work may be formulated as follows:
there is no reason to attach a wave function to a particle if there
is plenty of wave-like motion in the crystal with which the X-
rays interact. At the time of the development of quantum theory,
the latter experiment was generally taken as strong evidence for
the dual particle-wave character. An extensive discussion of the
negative impact of the particle-wave duality and the development
of a deeper understanding of where quantum theory comes from
and what it entails is given by Landé in a series of papers [26–29]
and a book [30].

We mention Duane’s work [25] here because in essence,
a similar idea is also used to construct the rules of operation
for the processing units in our DES. Indeed, a quick glance at
the structure of the DES algorithm for a beam splitter [20, 21]
shows that the internal state of this unit is represented by a
real-valued vector of length two and a complex-valued vector
of length four. The decision about the port at which the particle
leaves the beam splitter involves the combination of these two
vectors and a multiplication by a 4 × 4 unitary matrix. In
other words, we have attached a kind of “wave function” to
the material (of the beam splitter), meaning that this “wave
function” is local to the device. In the case of a beam splitter
for light, the internal state, the “wave function,” is just another
word for the electrical polarization vector of the material [21]
and has little relation to the particle wave function that appears
in quantum theory. An essential ingredient of the processing
unit, its capability of adapting (learning) its state from the
particles that it receives on its input ports, as well as the rule to
send particles out, cannot be inferred from the work of Duane.
They are designed such that the DES is able to reproduce,
event-by-event (particle-by-particle), in a cause-and-effect
manner, the values of the probabilities predicted by quantum
theory [20, 21].

4. DISCRETE-EVENT SIMULATION OF A
QW

In this section, we present the results of a DES for a QW on a
line which can be implemented by a network of beam splitters,
phase shifters and photodetectors [12]. An interesting point of
this implementation is that light waves can be used to simulate
the QW, i.e., we can use Maxwell’s equations for electromagnetic
waves to simulate a quantum system. Of course, this is not really
a surprise as the description of beam splitters, phase shifters etc.,
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FIGURE 1 | Setup of a realization of a QW experiment [12] on a line of L = 4 levels (X = 9 lattice sites). The solid (cyan) boxes represent phase shifters, shifting the

phase of the wave by angles ϕ1 or ϕ2, respectively. Open squares with a diagonal line represent 50:50 beam splitters. Half circles (pink) with a tail denote detectors at

level 4, placed at lattice sites x = −4,−2, 0, 2, 4. Each group of three processing units, marked by a dashed border, causes the particle to jump left or right.

uses Jones-vector calculus which is, in essence, the same as the
quantum-theoretical description in terms of Equations (1)–(5).
As explained earlier, the main point of performing a DES for a
QW is that it uses an event-by-event, particle-based approach
that is as realistic as the description of a SRW and does not rely
on the quantum formalism embodied in Equations (1)–(5).

The layout of the proposed experiment is shown in Figure 1.
The function of the beam splitters is to create the superposition of
the two input modes. In Jones-vector calculus or quantum theory
(see Appendix A), the matrix describing the operation of a beam
splitter is given by

MBS =
1
√
2

(

1 i
i 1

)

. (6)

Two phase shifters, with their Jones matrix representation
given by

Mϕ1 =
(

eiϕ1 0
0 1

)

and Mϕ2 =
(

1 0

0 eiϕ2

)

, (7)

respectively, change the phase difference between the two partial
waves leaving the beam splitter.

Table 1 summarizes the theoretical results for the QW and the
corresponding SRW. For both types of walks, detectors with an
odd (even) number x will only register particles if l is also odd
(even). From the expressions in Table 1 it also follows that the
probabilities to observe a particle do not depend on ϕ1. For more
than two steps (l > 2) the dependence on ϕ2 is sinusoidal, a
characteristic feature of interference. Furthermore, the variance
is larger than for the SRW and the peak of the distributions is not
at the center anymore.

Implementing a DES for a network, such as the one shown
in Figure 1 is straightforward. We simply reuse, over-and-over
again and without modification, the event-based algorithms
that have been developed to simulate the beam splitter, phase
shifter, and detector [21] and connect outputs to inputs of these
algorithms strictly according to the diagram in Figure 1. As the
algorithms for all the different components and the method to
stitch them together have been discussed extensively and at great
length elsewhere [21], we omit the discussion of these aspects.
The reader interested in setting up her/his own DES should
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TABLE 1 | Quantum theoretical results for the probabilities of the quantum walk after l = 1, . . . , 5 steps (see Appendix A for details on the calculation) for a particle

initially localized at x = 0.

Step Lattice site (detector number) x

l −5 −4 −3 −2 −1 0 1 2 3 4 5

1 0 0 0 0 1
2 0 1

2 0 0 0 0

2 0 0 0 1
4 0 2

4 0 1
4 0 0 0

3 0 0 1
8 0 3

8+
2 cosϕ2

8 0 3
8−

2 cosϕ2
8 0 1

8 0 0

4 0 1
16 0 4

16+
2+4 cosϕ2

16 0 6
16−

4
16 0 4

16+
2−4 cosϕ2

16 0 1
16 0

5 1
32 0 5

32+
6+6 cosϕ2

32 0 10
32−

6
32 0 10

32−
6
32 0 5

32+
6−6 cosϕ2

32 0 1
32

The probabilities only depend on ϕ2, not on ϕ1. For l = 1 and l = 2, the probabilities are identical to the ones of the SRW (the first or only term in each column) which are given by

2−l
( l
(x+l)/2

)

if x+ l is even and are zero otherwise. For more than two steps, the probabilities in each row exhibit a ϕ2 → ϕ2+π symmetry w.r.t. x = 0. Interference leads to the differences

(red) between the probabilities of the SRW and the QW. The case ϕ1 = π/2 and ϕ2 = −π/2 is shown in Figure 1.

consult Michielsen and De Raedt [21] and papers cited therein.
Details of the implementation, specific for the application to
QWs, can be found in Nocon [31]. An example implementation
in PYTHON is given in Appendix B and available online1.

Our implementation of the DES of the QW experiment shown
in Figure 1 allows for more than L = 5 levels (X = 11 sites). In
general, the larger the number of beam splitters in the diagram,
the larger the number of particles has to be in order for the
processors mimicking the beam splitters to adapt sufficiently
well to the ratio of particles arriving at the two input ports, i.e.,
representing the two sides at which photons can enter a beam
splitter [20, 21]. Numerical experiments show that sending N =
100, 000 particles through the network is more than sufficient to
go up to L = 7 levels (X = 15 sites) and to obtain data with good
statistics. Figures 2A–F shows DES results after l = 2 up to l = 7
steps and for the phase shifts ϕ1 = π/2 and ϕ2 = −π/2, as well
as the results obtained from the quantum-theoretical description
(asterisks). Other asymmetric cases are considered below and
in Nocon [31] and can be generated using the program given
in Appendix B.

The DES outcomes are in full agreement with the quantum-
theoretical results. In conclusion, the DES provides a local
realist model that reproduces the quantum-theoretical results of
the QW.

5. DISCRETE-EVENT SIMULATION OF A
QW EXPERIMENT WITH ATOMS [1]

Robens et al. experimentally implemented a four-level QW with
cesium atoms in a state-dependent optical potential [1]. They
made use of the fact that the two hyperfine states of the electronic
ground state of the cesium atom, |F = 4, mF = 4〉 (pseudo-
spin up) and |F = 3, mF = 3〉 (pseudo-spin down), experience a
different lattice potential [1]. A microwave pulse can change the
superposition of these two hyperfine states, and the difference
in sensitivity of the |F = 4, mF = 4〉 and |F = 3, mF =
3〉 states to left- and right-handed polarized light can be used
to manipulate the position of the cesium atoms in the state-
dependent potential [1].

1Available online at: https://jugit.fz-juelich.de/qip/quantum-walk (accessed April

25, 2020).

In the DES, a cesium atom with its two hyperfine states
is represented by a particle carrying a two-state spin system.
Although we should not think of particles in the DES as objects
observed in Nature, to build a mental picture of what the DES is
actually doing, it may, for the present purpose, be very helpful
to think of a particle and its spin as a single photon and its
polarization [32]. Therefore, and also for the uniformity of
presentation, we will formulate the DES model of the cesium-
atom experiment using the language of optics, using terms like
beam splitters, phase shifters, etc. As a matter of fact, as long as
the dimension of the Hilbert space is finite, it is always possible
to reformulate the original problem as a problem of photons
traversing a network of optical components [33] or, equivalently,
as a quantum gate circuit [34].

The basic ingredients of the DES are then the following [31].
Distinguishing the cesium atoms on the basis of their hyperfine
state is implemented as the action of a polarizing beam splitter,
separating h and v polarized photons (relative to the entrance
surface of the first polarizing beam splitter in Figure 3). In the
context of the experiment, h (v) corresponds to the hyperfine
states |F = 4, mF = 4〉 (|F = 3, mF = 3〉). The
creation of the superposition of the hyperfine states is realized
by Hadamard transformations, i.e., a combination of half-wave
plates and π/2 phase shifters [21, 31]. As h and v polarized
photons do not interfere, instead of the 50:50 beam splitters
used in the DES of the QW model studied in section 4, we use
polarizing beam splitters in order to let h and v polarized photons
interfere [31]. A sample implementation of the DES is given
in Appendix B.

The “photonics” DES network that corresponds to the
experiment with the cesium atoms [1] is depicted in Figure 3.
Looking at Figure 3, it is easy to see that some of the polarizing
beam splitters (those that show only one input and one output
line) can be removed without affecting the operation of the
network. However, in our DES, we do not “optimize” the network
for computational efficiency. As a matter of fact, the DES of the
network in Figure 3 is so fast that optimization is not worth the
effort (the original implementation was written in C++ [31], but
even the demonstration in PYTHON given in Appendix B only
takes a few seconds).

Figures 4A–C shows that the DES reproduces the
experimental results of Robens et al. [1]. For convenience,
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FIGURE 2 | Results for the normalized number of detector counts Nx/N as a function of the detector number x, obtained by a DES of the QW for N = 100, 000

repetitions, ϕ1 = π/2 and ϕ2 = −π/2 and for different numbers of steps l = 2, . . . , 7, corresponding to (A–F). The distributions from the DES (bars) match with the

analytical results for the QW (asterisks, see Table 1). For more than 3 steps, the distributions of the QW are broader than those of the SRW (see Table 1) because of

interference effects.

the experimental data have been read off from Figures 3A–C
of Robens et al. [1], normalized, and plotted as striped bars
in Figures 4A–C. Furthermore, we see that the DES produces
the quantum-theoretical results of the asymmetric four-step
QW (asterisks).

The agreement between the DES and experimental data
proves that, in contrast to the claim made in Robens et
al. [1], it is possible, to describe a QW without a particle
wave function, but with particles following individual trajectories
that are as well-defined as in the case of a SRW, and local
“wave functions” attached to each polarizing beam splitter [21].
We remark that the learningrate parameter of the
beam splitters (see Appendix B) can be used to tune the
“quantumness” of the DES such that learningrate = 0
yields the SRW and 0.9 ≤ learningrate ≤ 0.98 yields
the QW.

Obviously, the agreement between the DES and experimental
data seems to be in conflict with the common lore that local
realist models, such as a DES cannot reproduce certain results
of quantum physics. It is therefore of interest to explore whether
this conflict is fundamental or not. Recall that by construction,

our DES model of the QW complies with the category 0 locality
criteria, as defined in Hess [16].

Robens et al. support their claim that the QW experiment
“rigorously excludes (i.e., falsifies) any explanation of quantum
transport based on classical, well-defined trajectories” by
demonstrating a violation of a LGI [1]

K = 〈Q(t2)Q(t1)〉 + 〈Q(t3)Q(t2)〉 − 〈Q(t3)Q(t1)〉 ≤ 1, (8)

where the Q(ti) are real numbers with |Q(ti)| ≤ 1 and ti
denote the position at which the measurements are performed
(equivalent to the time in the original formulation of the LGI).
We demonstrate, by means of a DES of their experiment, that
their claim is unfounded.

5.1. Procedure Applied in the
Experiment [1]
Robens et al. set t1 = 0 (initial state preparation |8(0)〉 =
|x = 0,↑〉, start of a single-particle walk), t2 = 1 (after the
first single-atom jump), and t3 = 4 (after the fourth single-
atom jump). In Figure 3, each single-atom jump corresponds to
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FIGURE 3 | DES setup for the QW with polarized single photons of the same energy. Red horizontal (blue vertical) lines show the path of h (v) polarized photons.

Green lines represent the path of photons with a linear combination of h and v polarization. The input to the network consists of h polarized photons only. Square

(blue/white) boxes represent polarizing beam splitters. The oval (yellow) boxes perform a Hadamard transformation on the photon polarization. Each gray region

corresponds to a single-atom jump operation in the QW experiment [1]. In quantum theory, the H boxes correspond to Equation (5) and the S regions correspond to

Equation (3). Circles with labels t1, t2, and t3 denote the positions of the Q(t1), Q(t2), and Q(t3 ) measurements, respectively.

a transition from one gray region to the next. Circles with the
labels t1, t2, and t3 indicate the corresponding positions in the
DES. Robens et al. proceed by choosing Q(t1) = Q(t2) = 1 and
assign Q(t3) = +1 if at the fourth step, the particle is observed at
x > 0, and Q(t3) = −1 otherwise [1]. With these simplifications,
Equation (8) reduces to

K = 1+ 〈Q(t3)Q(t2)〉 − 〈Q(t3)〉 ≤ 1. (9)

In order to estimate 〈Q(t3)〉, Robens et al. repeat the QW
experiment about 400 times, and compute the average of the
measured Q(t3) [1]. To estimate 〈Q(t3)Q(t2)〉, Robens et al. need
to repeat the same QW procedure two times in addition. In the
first (second) repetition, they measure the position at t2, by what
they believe is an ideal negative measurement, and remove atoms
that are measured at position x = 1 (x = −1). We cannot
question the extent to which they really implemented an ideal
negative measurement in their experiment. In our DES of this
experiment, however, it is trivial to perform an ideal negative
measurement. In both cases, the atoms continue their walk and
are finally measured at t3, yielding either Q(t3) = −1 or Q(t3) =
+1. The average of the Q(t3)’s is then denoted by 〈Q(t3)〉x2 where
x2 ∈ {−1,+1} indicates which atoms are kept at t2.

With this data in hand, Robens et al. compute the left-hand
side of Equation (9) as

K = 1+
∑

x2=±1

P(x2; t2)〈Q(t3)〉x2 − 〈Q(t3)〉, (10)

where P(x2; t2) denotes the probability that the atom was at
position x2 = ±1 at t2, the theoretical values being 1/2 (see the

l = 1 row of Table 1). Plugging in the experimentally obtained
data, Robens et al. find that [1]

K = 1.435± 0.074 > 1, (11)

and conclude that the “reported violation of the LG inequality
proves that the concept of a well-defined, classical trajectory
is incompatible with the results obtained in a quantum-walk
experiment [1].” This conclusion is unjustified, as we now show.

5.2. Refutation of the Claim
Our demonstration consists of two steps. First, we show that
a DES of the QW performed with the same measurement
procedure as the one used by Robens et al. reproduces their
experimental results and therefore also produces a violation of
the LGI. In this case, the DES also reproduces the results of the
quantum-theoretical model in which we block the corresponding
path labeled by t2. Second, because in a DES performing non-
invasive measurements is not an issue, there is no need to
perform three different runs to measure all the quantities which
appear in Equation (9). In fact, one DES run suffices to compute
all the quantities that enter the LGI. In this case, the DES also
reproduces the quantum-theoretical results of the QW.

In the first step, we adopt the same procedure as in the real
experiment [1], namely we perform three DESs for a four-step
QW. In each DES run, the number of particles is N = 100, 000.
In the first run, we compute 〈Q(t3)〉without removing particles at
position t2. For the other two runs, at position t2, we simulate an
ideal negative measurement by removing the particles traveling
to the right (h polarization) and downwards (v polarization),
respectively, as Robens et al. do in their experiment with the
cesium atoms.
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FIGURE 4 | DES results (solid bars) of the normalized detector counts Nx/N as a function of the detector position x. In each run, N = 100, 000 particles were sent

through the network shown in Figure 3. In (A–C), the solid bars represent the distribution where at position t2, (A) no particles, (B) particles at x = 1, (C) particles at

x = −1 have been removed. In (D), the sum of (B,C) is shown to be symmetric and equal to the four-step QW shown in Figure 2C (for x 7→ x/2). (E,F) Show the

distributions resulting from only observing (and not removing) the particle at t2. As their sum yields the distribution in (A), the observation does not affect the result and

is thus non-invasive. Asterisks represent the ideal result obtained from quantum theory, i.e.,
∑

s |〈2x, s|(SH)3|ψ〉|2 where |ψ〉 is given by (A) SH|0,↑〉, (B) | − 1,↑〉/
√
2,

or (C) | + 1,↓〉/
√
2 (see also Equations 2–5). There are no asterisks in (E,F) because this information is only accessible in the subquantum model. The corresponding

experimental data presented in Figures 3A–C of Robens et al. [1] is (up to a normalization factor) indicated by the striped bars in (A–C).

Direct confirmation that the DES reproduces the
experimentally observed results follows from comparing
the data obtained using the removal process (see Figures 4A–C)
with the corresponding data presented in Figures 3A–C of
Robens et al. [1]. Up to normalization factors, all results agree.
Furthermore, the DES reproduces the quantum-theoretical
results for the QW starting at (t1, x = 0), (t2, x = −1), and
(t2, x = +1), shown as asterisks in Figures 4A–C, respectively.

Next, we compute K as given in Equation (10) from the data
of the three different runs. We estimate the statistical error on
the value of K by repeating the three different runs ten times
and obtain

K = 1.497± 0.006 > 1, (12)

violating the LGI by several standard deviations. In fact, the value
of K = 1.497 ± 0.006 is compatible with the theoretical

maximum violation of K = 1.5, achievable by this type of
experiment [1].

For the second step, we use the DES to perform truly ideal
non-invasive “measurements” at t2. Instead of performing three
DES runs (two of them removing certain particles), we perform
a single DES run, and only observe the particle’s position at t2
(see Listing 2 in Appendix B). We emphasize that in DES, this
observation is truly non-invasive.

The resulting counts of the DES are shown in Figures 4E,F.
From a comparison of Figures 4B,C with Figures 4E,F, it
is immediately clear that there is a significant difference
between the counts obtained by the three-run and single-run
procedures. Furthermore, the distributions in Figures 4E,F add
up to the original result in Figure 4A. In contrast, the sum
of the distributions in Figures 4B,C, obtained by the invasive
procedure, add up to the symmetric distribution in Figure 4D,
which is identical to the four-step QW shown in Figure 2C.
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The relevant question is whether Equation (9) can still be
violated. We compute K from the data collected in a single DES
of the QW and obtain

K = 0.999± 0.002, (13)

implying that there is no violation of Equation (9) (up to
statistical fluctuations).

The clear difference between results of the three-run and
single-run procedure proves that the violation of the LGI by
the three-run procedure is not a property of the QW itself.
Instead, in the case at issue, the violation of the LGI is the
result of using three different experimental scenarios with
three different experimental data sets to compute the single
quantity K.

It is worth mentioning that the data analysis used in other
experiments that report violations of Bell-type inequalities shares
similar features, in that correlations are computed from different
subsets of a larger data set [22], which has been discussed in
terms of the contextuality loophole [18]. Such a procedure can,
as Simpson’s paradox nicely illustrates [3], lead to all kinds of
interesting, paradoxical conclusions.

6. DISCUSSION AND CONCLUSION

In this paper, we have proposed a subquantum model for
quantumwalks. Themodel is as realistic as themodel for a simple
random walk and satisfies Einstein’s criterion of locality, and uses
a digital computer and a discrete-event simulation algorithm as
a metaphor for realizable quantum walk experiments [1, 12].
The subquantum model generates, event-by-event, data that
agrees with the quantum-theoretical description of a quantum
walk [12].

The subquantum model also reproduces the results of a
quantum walk experiment with cesium atoms [1]. In our
simulation, the trajectories of each individual particle can
be followed. Therefore, the conclusion made in Robens et
al. [1] “that the concept of a well-defined, classical trajectory
is incompatible with the results obtained in a quantum-walk
experiment” is unjustified. The results presented in this paper
can be reproduced with the PYTHON programs provided in
Appendix B and online1.

Our subquantum model based on discrete-event simulation
can reproduce the experimental data of quantum walk
experiments as well as many other optics and neutron-
interferometry experiments [20–22, 31]. This suggests that
standardized software that allows for simulations of single events

observed in (quantum) physics experiments may lead to a new
kind of theory. Whether the discrete-event simulation approach
can be modified/generalized to attain the descriptive power of a
theory, formulated in terms of software (i.e., a well-defined set of
rules stated in terms of a programming language) rather than in
the conventional language of theoretical physics, is a challenging
project for future research.

Being a realistic and Einstein-local model, a salient feature
of our simulation approach is the absence of concepts, such
as particle-wave duality, Born’s rule, and other concepts which
are characteristic of quantum theory. Regarding the foundations
of the latter, it is of interest to mention that one of the
rules by which the discrete-event simulation operates requires
attaching a kind of “local wave function” to some of the
event-based processing units (such as the beam splitters) [20,
21]. This is very reminiscent of a proposal by Duane, who
showed that one can explain the diffraction of X-rays from a
crystal without reference to interference of waves, by adding,
to the quantum rules for energy and angular momentum,
a similar rule for the linear momentum [25]. In essence,
Duane suggested that instead of invoking the particle-wave
character, for model building it may be more effective to let
particles (not waves) interact with the multitude of wave-
like motion that is already present in the crystal [26]. As we
have shown in this paper, this idea can be combined with
discrete-event simulation to yield a local realist model for a
quantum walk.
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