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Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can

interact with cell membranes and mechanosensitive ion channels, causing changes in

neuronal activity. However, the thorough understanding of the mechanisms involved in

these interactions are hindered by different experimental conditions for a variety of animal

scales and models. While the lack of complete understanding of FUS neuromodulation

mechanisms does not impede benefiting from the current known advantages and

potential of this technique, a precise characterization of its mechanisms of action

and their dependence on experimental setup (e.g., tuning acoustic parameters and

characterizing safety ranges) has the potential to exponentially improve its efficacy as well

as spatial and functional selectivity. This could potentially reach the cell type specificity

typical of other, more invasive techniques, e.g., opto- and chemogenetics or at least

orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the

mechanisms and their potential overlap are reviewed along with discussions on the

potential insights into mechanisms that magnetic resonance imaging sequences along

with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and

mechanical stimuli can provide.

Keywords: central nervous system, focused ultrasound, magnetic resonance imaging, peripheral nervous system,

therapeutic ultrasound, ultrasound neuromodulation

INTRODUCTION

The ability to probe spatially specific brain regions enable understanding brain functioning
and connectivity. In turn, this can unlock a wealth of potential investigative and therapeutic
applications. Focused ultrasound (FUS) has been proven capable of eliciting excitatory and
inhibitory effects non-invasively and locally in the central nervous system (CNS) and peripheral
nervous system (PNS), depending on the adopted pulsing regime [1]. Several studies have
demonstrated the elicitation of motor responses in rodents obtained from the FUS stimulation
of cortical brain regions [2–6]. Furthermore, the capability of FUS to reach deeper brain structures
(which is one of the major challenges of other current- or voltage-controlled neuromodulation
techniques) can provide access to subcortical areas of the brain. For example, the stimulation of
deep-seated structures such as locus coeruleus and superior colliculus caused pupil dilation and
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eyeball movements in mice [6]. Also, FUS stimulation of the
putamen induced improvements in speed and accuracy of visual–
motor tasks in non-human primates (NHPs) [7]. In humans,
targeting the head of the caudate resulted in hemodynamic
responses visible through functional magnetic resonance imaging
(fMRI) [8] and stimulating the thalamus induced changes in
somatosensory evoked responses [9].

The mechanisms proposed to explain the FUS
neuromodulation effects are based on multiple hypotheses
on how ultrasound interferes with depolarization through
mechanical deformation of the cell membrane. In addition,
experimental evidences have shown that ultrasound can activate
mechanosensitive ion channels in neurons [10–13] and other
brain cell types like astrocytes [14], providing additional avenues
for FUS to interfere with the membrane potential. Despite the
advances provided by in vitro, ex vivo, and in vivo experiments,
the high variability in experimental conditions and setups, as well
as partially conflicting results, has led to somewhat contradictory
interpretations and a variety of possible hypotheses about
underlying physiological mechanisms, which may be acting
concurrently in a dynamic interplay every time FUS is applied.
Moreover, most current animal experiments are performed
under anesthesia. The interaction of pharmacological sedation
with FUS neuromodulation is not entirely understood and
may partially obfuscate the interpretation of a number of FUS
neuromodulation experiments [15].

The use of MRI can provide insights into brain structure
and activity and hence support FUS-based neuromodulation
through targeting, safety evaluation, and the evaluation of
brain function and mechanisms. In this context, multimodal
stimulation coupled with neuroelectric or MRI may present a
better opportunity to understanding of the multiple factors that
play a role in neuron functioning as well as how FUS interferes
with it.

In this review, the proposed mechanisms for ultrasound
neuromodulation and interactions of FUS with tissue are
revisited, and current contradictory findings are discussed
in light of varying experimental conditions and anesthesia
effects. Finally, the potential of multimodal stimulation and
the use of MRI is discussed as a promising future avenue for
spatiotemporally selective, non-invasive neuromodulation.

MECHANISMS OF ULTRASOUND
NEUROMODULATION

Ultrasound propagation in biological tissue is characterized
by vibrational waves traveling with frequencies above the
hearing range (>20 kHz). In the compressional phase, ultrasound
displaces tissue particles and fluid molecules, generating an
elastic restoring force. As the tissue and fluids return to
their normal configurations, molecules experience a rarefaction
phase. During this process, waves propagate through the
tissue, giving rise to an acoustic radiation force (ARF) where
part of the energy is stored in the tissue in the form of
elastic deformation, and part is dissipated as heat due to
viscous frictional forces. When acoustic wave flow experiences

opposition due to acoustic impedance discontinuities, parts
of the wave are transmitted, reflected, and refracted. Both
scattering and heating dissipation are frequency-dependent,
where energy deposition in the medium occurs through
absorption. The scattered waves can be subsequently partially
absorbed and partially re-scattered multiple times. Other effects
during the rarefaction phase can occur, such as cavitation
(nucleation) [16], which has a higher probability of occurring
at higher pressures and lower frequencies. Potential mechanisms
for ultrasound neuromodulation are associated with changes
in membrane potential due to ultrasound-induced neuronal
membrane deformation and the activation of mechanosensitive
channels (Table 1) (see Jerusalem et al. [15] for a review).
In this context, both theoretical and experimental studies
have proposed that mechanical deformations induced by strain
gradients produce a membrane polarization, giving rise to a
flexoelectric effect [21, 28]. A study using a model lipid bilayer
membrane demonstrated that the displacement of the membrane
caused by the ARF results in changes in the membrane area
and its capacitance, which in turn creates capacitive currents
measured with voltage-clamp techniques [17]. Another recent
study evoked neuronal calcium responses obtained from local
mechanical indentation delivered by a piston in cultured rat
cortical and hippocampal neurons [18], giving experimental
evidences that neurons are sensitive to mechanical stress. Also,
Muratore et al. [19] have shown that ARF can deform the cell
membrane. Intriguingly, other theoretical studies have proposed
that the rarefactional phase of ultrasound waves can pull apart
the two membrane lipid leaflets, leading the formation of bubbles
in the intramembrane space, which in turn induces currents by
modulating membrane capacitance in an oscillatory manner [23,
29]. However, an ex vivo study has shown that micron-scale tissue
displacements consistent with ARF generation triggered spiking
activity that remained unchanged to a broad acoustic frequency
range (0.5–43 MHz), hence excluding a potential cavitation-
related effect at least in an ex vivo setting [30]. Moreover, a
new theory known as the soliton model proposes that the action
potential (AP) involves an adiabatic process, where a mechanical
pulse propagates in phase with an electrical pulse along the axon
[22]. The reversed pathway could mean that deformations of
the neuronal membrane induced by the ARF could potentially
both annihilate or enhance axonal electrophysiology [20]. Also,
for specific regimes (high pulse repetition frequency, high duty
cycle, high pressure), ultrasound may increase temperature and
alter the electrical capacitance of the plasma membrane [25], as
demonstrated through light-induced temperature increase [26].
Interestingly, a behavioral study using mutants C. elegans model
demonstrated that knocking out mechanosensitive ion channels
abolishes neuronal responses to mechanical stimulation, while
knocking out thermosensitive ion channels kept responses
unaffected [31]. In this context, Thompson et al. [27] have
demonstrated a temperature dependence of neuronal membrane
conductance and synaptic potentials, while recent studies
have shown that ultrasound can directly drive a number of
mechanosensitive ion channels (K+ channel family TREK-1,
TREK-2, and TRAAK [11], voltage-gated Na+ and Ca+ [10],
and piezo-type mechanosensitive channel Piezo1 [12, 13] and
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TABLE 1 | Summary of potential mechanisms associated with ultrasound neuromodulation.

Mechanisms Description

Membrane deformation causing capacitance

changes

Capacitance changes have been observed during artificial membrane deflection [17] and deformation of in vitro

membranes [18, 19] and modeled in simulations [20]. Capacitance can be altered by membrane volume changes or be

associated with a flexoelectric effect (a property of the membrane that causes a spontaneous electric polarization when

submitted to a mechanical strain gradient [21]).

Soliton model Changes in membrane conformation could arise from interfering with a thermodynamic process involved in

electromechanical pulse traveling during AP [22].

Intramembrane cavitation model Ultrasound-induced intramembrane cavitation within the bilayer membrane induces a current through membrane

capacitance changes [23].

Mechanosensitive ion channel modulation A number of mechanosensitive ion channels were seen in vitro to be sensitive to ultrasound waves (TREK-1, TREK-2,

TRAAK [11]; voltage-gated Na+ and Ca+ [10]; Piezo1 [12, 13]; and Piezo2 [24]).

Modulation of TRPA1 channels in astrocytes Ultrasound opens TRPA1 channels in astrocytes, inducing glutamate-releasing Best1 as a mediator of glia–neuron

interaction [14].

Thermal modulation Heating reversibly alters the membrane capacitance, resulting in depolarization [25, 26]. FUS can increase temperature

at specific regimes. Neuronal membrane conductance and synaptic potentials are altered by temperature changes [27].

AP, action potential; FUS, focused ultrasound; TRPA, transient receptor potential ankyrin.

Piezo2 [24]) as well as indirectly control neuronal responses via
modulation of transient receptor potential ankyrin 1 (TRPA1)
channels in astrocytes with glutamate-releasing bestrophin-1
(Best1) as a mediator of glia–neuron interaction [14]. Therefore,
it is highly likely that, depending on the pulse regime, different
combinations of partially overlapping mechanisms would concur
to the final result of the interaction between ultrasound and the
cell membrane.

EX VIVO/IN VITRO VS. IN VIVO

Despite the advances provided by ex vivo and in vitro studies,
contradictory results regarding the absence [30] or presence [32,
33] of cavitation and its role [23] in ultrasound neuromodulation
have been reported. These conflicts may potentially be due
to differences in experimental conditions. For instance, the
oxygenation process inherent to culturing cells may introduce
bubbles in in vitro preparations [32]. Furthermore, in vivo
translation of in vitro and ex vivo results is hampered by
differences in a number of parameters and effects such as
cavitation threshold, the rapid cooling effects associated with
brain perfusion [34], the contribution of different cells to
the neuromodulatory effect [14] and skull-related effects such
as attenuation due to absorption and scattering, and shear
wave from mode conversion [35]. Indirect confounding effects
may also include activation through auditory pathways [36,
37]. Nevertheless, all ultrasound neuromodulation studies have
demonstrated that the paradigm of framing neural activity within
and electromagnetic perspective is too simplistic, confirming
that ultrasound neuromodulation studies can be of great aid in
all applications requiring fast and painless interference of brain
function, both in investigative and in therapeutic contexts.

IN VIVO STUDIES-ANESTHESIA EFFECTS

Anesthesia effects have long represented a major confounding
factor in neuromodulation studies. It has been shown that

motor-evoked potentials induced by electrical stimulation are
suppressed by isoflurane in a dose-dependent manner [38].
Similarly, ketamine blocks cortical neuron activity, which
suppresses ultrasound-elicited motor responses [39]. In this
context, in FUS neuromodulation studies, the isoflurane dose
was reduced down to 0.1%, which corresponds to operating
on a semi-awake animal [4]. However, some experiments
have reported auditory artifacts and audible buzzing sounds
generated by the ultrasound transducer, which may affect
experiments in animals [36, 37], as well as in humans [40–42].
Therefore, the use of low-level anesthesia to maintain animal
semi alert requires careful considerations in the setup and
techniques such as signal smoothing [43] to avoid confounds.
From deep brain stimulation (DBS) studies, it is known
that anesthesia affects the spontaneous background firing and
the neuronal spike activity patterns, as well as potentiates
the inhibitory actions of gamma-aminobutyric acid (GABA)
and causes a global depression in neuronal discharge, among
other effects [44, 45]. In a repetitive transcranial magnetic
stimulation (rTMS) study in rats, isoflurane, dexmedetomidine,
and propofol caused significant different effects on functional
connectivity, particularly between the sensorimotor cortex and
thalamus [46]. In general, as reviewed by Jerusalem et al. [15],
anesthetics lead to unconsciousness, immobility, amnesia, and
analgesia without a complete understanding of the mechanisms
underlying loss of consciousness and depth of anesthesia,
which is mirrored by even more partial insights into the
implication of sedation and deep anesthesia in humans [47]
to the extent that anesthesia itself can be considered an
instrument to explore the neural substrates of cognitive processes
[48]. Importantly, several hypotheses about how anesthetic
drugs modulate membrane excitability overlap with potential
mechanisms of FUS neuromodulation. These include membrane
deformation, changes in the thermodynamic properties of the
membrane, and bubble formation. Therefore, awake studies
are needed for a more precise characterization of the neural
underpinning of FUS neuromodulation.
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MRI

MRI can help advance neuromodulation technologies in a
number of ways [49]. Importantly, MRI and ultrasound
neuromodulation share similar spatial resolutions, which lies
in the order of millimeters or submillimeters. MRI resolution
depends on several factors, includingmagnetic field strength [50–
52], coil performance, and subsequent imaging gradients [53, 54].
High magnetic field strengths from 3 to 7 T for humans [55] and
above 7 T for preclinical studies [56], dedicated multi-transmit
head coils [57, 58], and strong imaging gradients up to 100 mT/m
for human scanners and 1,000 mT/m for preclinical systems [59–
61] can provide spatial resolutions ranging from 1 to 2 mm3 to
submillimeter (depending on imaging modality) for human and
animals studies, respectively [60, 62].

On the other side, the lateral resolution (L) of ultrasound
neuromodulation for a concave transducer can be characterized
as L= 1.4λF/A, where λ is the wavelength (equal the ratio of the
speed of sound in the medium and the ultrasound frequency),
F is the focal length, and A is the aperture size (F/A is also
known as the f-number). However, the frequency dependence of
the ultrasound attenuation factor, mainly influenced by the skull,
imposes a trade-off in the frequency choice. The attenuation
factor is given by α0fn, where α0 is a temperature-dependent
attenuation factor at 1 MHz, f is the ultrasound frequency, and n
lies in the range of 0.9–2.1 for the human skull bone and 1.05–1.1
for brain [63]. Typically, ultrasound neuromodulation delivers
submillimetric to millimetric resolution that employs frequencies
in the kHz range for humans (i.e., f = 250 kHz, L = 7mm [64])
and NHPs (i.e., f = 320 kHz, L = 5mm [64]) and kHz to MHz
range for rodents (i.e., f = 1.9 MHz, L = 1mm [6]; f = 5 MHz,
L= 0.29 mm [65]).

Motion-sensitizing gradients can detect phase shifts in MR
data that encode brain tissue displacements caused by FUS
application [66, 67]. This specificMRI technique, called magnetic
resonance-acoustic radiation force imaging (MR-ARFI), has been
shown to be safe despite the need for high-intensity FUS pulses to
displace tissue [68]. Currently, just like in transcranial magnetic
stimulation (TMS, which employs pulsed magnetic fields to
induce eddy currents in the brain) or transcranial direct current
stimulation (tDCS), neuromodulation studies rely on numerical
simulations to perform targeting. However, a confirmation of
tissue engagement through MR-ARFI would be highly desirable,
especially for small brain structures. In this context, targeting
accuracy can be improved by using low-frequency ranges and
normal incidence angles [69] both minimizing FUS beam
distortions and by adopting neuronavigation systems based on
MR images [70].

MR phase-difference images can also be used for temperature
monitoring during FUS [71, 72] in order to avoid artifacts
that would arise from local temperature measurements based
on thermocouples [73, 74]. While no significant temperature
elevation has been detected in low-intensity neuromodulation
protocols [75], higher intensity protocols [6] may cause
physiologically relevant temperature elevations [74, 76],
and monitoring temperature may provide insights into FUS
neuromodulation mechanisms. Other MRI modalities, such

as T2-weighted and T2∗-weighted imaging, can provide safety
evaluation such as the detection of potential hemorrhages and
edema formation [77]. Also, T2-weighted fluid-attenuated
inversion recovery (FLAIR) can provide safety assessment with
better differentiation between cerebrospinal fluid (CSF) and
abnormal tissue [78]. In addition, diffusion-weighted imaging
(DWI) is highly sensitive to both reversible and irreversible
changes in brain microstructure [79]. Moreover, in order
to reveal intentional [7] or unintentional breakdown in the
blood–brain barrier in the context of neuromodulation, T2-
or T1-weighted MR images can be used to evaluate T2 or
T1 contrast agent deposition in brain tissue after ultrasound
application [80–82]. Finally, fMRI has been used in NHP to
identify brain areas to be modulated [64] or to reveal the extent
and connectivity of spatial changes in hemodynamic responses
caused by FUS [8, 83–87].

OTHER NEUROMODULATION
TECHNIQUES: MULTIMODAL
STIMULATION

In general, among the numerous techniques available
for neuromodulation, keeping more and more of the
neurophysiology under experimental control goes hand in
hand with an increase in invasiveness and biotechnological
constraints. For example, neuronal activity of specific neuronal
populations could be reversibly silenced by genetic approaches
[88] while FUS would probe specific brain structures. This
could potentially reveal the spatial and temporal scales of
the different mechanisms of action, the contribution of FUS
neuromodulation in different brain cells, and the contribution
of defined projection pathways to neuronal network dynamics
and animal behavior. On the non-invasive side, which is more
immediately translatable to humans, combining magnetic and
ultrasound stimuli is capable of enhancing the effect of FUS [89].
It has been proposed that ions in motion under a static magnetic
field could be subjected to a Lorentz force, giving rise to electric
currents that would contribute to the neuromodulatory effect of
FUS [89, 90]. For example, in humans, concurrent FUS and TMS
applied to the primary motor cortex (M1) attenuated motor
evoked potential amplitude, reduced intracortical facilitation,
and slightly shortened (10 µs) the response time in visual
tasks [42]. Notably, FUS parameters can span a range of values
that has been shown capable of inducing mechanical [91] or
thermal effects to obtain excitatory or inhibitory effects on
mice sciatic nerve [92]. In general, the ability of FUS to probe
spatially specific brain regions enables understanding of, e.g.,
brain functioning and connectivity in non-invasive and spatially
selective manner, with little or no cell type specificity. In this
respect, FUS is somewhat similar to TMS, although it may
offer better focusing of deeper structures (at least with a single
coil) [93, 94]. Interestingly, TMS and FUS still share the large
potential for non-invasive brain enhancing and silencing, as well
as the lack of a thorough understanding of the mechanisms of
action underlying the diversity of effects observed throughout
the literature, which may include involuntary cell type specificity,
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axonal stimulation [95], uncontrolled/uncontrollable activation
at different loci of the neuron, distributed stimulation peaks
[96], and complex interplay of modulating inhibitory and
excitatory synaptic potentials [97]. In this context, current-
controlled “priming” techniques such as tDCS can be used in
conjunction with time-localized TMS [98] (or possibly FUS) to
modify the underlying neuronal activity substrate and possibly
enhance specificity.

Conversely, techniques such as optogenetics [99] and
chemogenetics/pharmacogenetics [100] can provide cell type-
specific, selectively inhibitory, excitatory or combined control of
neuronal activity by expressing light-sensitive ion channels called
opsins, which can be either excitatory (e.g., channelrhodopsin)
or inhibitory (e.g., halorhodopsin). The specificity [100]
may be selectively activated [101] with light at different
frequencies allowing a virtually infinite combination of stimuli,
which can open/close ion channels with extremely high
frequencies (up to 30Hz). The drawbacks of such techniques
lie both in practical challenges, e.g., the implantation of fiber
optics for stimulation (which may interfere with behavioral
experiments and limit human translational potential) and
the high spatial selectivity (200µm) of light delivery (which,
interestingly, may not suffice to inhibit the function of
a particular brain region and hence examine its function)
and in neurobiological effects such the need to genetically
modify the organisms to achieve cell type specificity, non-
physiological hyperpolarization (which in turn can generate
rebound phenomena), and in the potential generation of
antidromic potentials (which may blur the physiological
significance of the stimulation). While the first set of constraints
may be partially solved by pharmacogenetic approaches (which
employ chemical stimuli to activate the opsins and hence
eliminate the surgical requirements and the need for constant
stimulation when envisaging future treatment strategies in
humans), the second may not. This calls for a new generation
of combined biotechnological and physical neuromodulation
techniques in order to achieve successful translation to the
human context, especially in the therapeutic and clinical
trial arena.

Interestingly, novel paradigms have been proposed
involving the combination of genetic approaches with either
magnetic or ultrasound stimulation. In magnetogenetics,
thermosensitive, and mechano-sensitive ion channels
(typically transient receptor potential vanilloid class receptors
TRPV, which are selective calcium Ca2+ transporters)
are genetically engineered to be tightly coupled to the
iron storage protein ferritin (or another paramagnetic
protein), so that they can be activated by external
magnetic fields [102]. In sonogenetics, through a similar
approach, it has been demonstrated that neuron-specific
misexpression of TRP-4 (a pore-forming subunit of a
mechanotransduction channel) can sensitize neurons to
ultrasound stimuli with detectable behavioral outputs [103].
It appears, therefore, evident that combined multimodal
strategies are the principal future avenues for tailoring
neuromodulation intervention to an application-specific
and possibly patient-specific context within a precision
medicine paradigm.

DISCUSSION

In this review, we have summarized potential mechanisms
underlying the neural substrates of FUS neuromodulation and
outlined conflicting hypotheses of the current literature. Similar
to what has been shown for TMS, it is our opinion that apparent
contradictions observed in some experimental and modeling
studies could be resulted mainly due to variability from different
experimental conditions in vitro, ex vivo, and in vivo applications
and that they could be reconciled by detailed standardization
and translation studies. In turn, this would allow drawing
more informed conclusions on the FUS neuromodulation
mechanisms. Additionally, the lack of a complete understanding
of anesthesia effects on neurons encourages further awake
FUS neuromodulation studies, which with the aid of MRI in
assessing brain activity, targeting, and safety, will provide a
clearer picture of both the neurophysiological underpinnings and
of the potential translational applications of FUS, whether alone
or in a multimodal context.

A number of experimental evidences show that the
AP involves an electromechanical process and that the
deformation of tissues induced by the ARF plays a crucial
role in neuromodulation through potential capacitance
change modulation or a flexoelectric effect triggering. Another
possibility is that FUS could cause a neuronal membrane
deformation capable of interfering with membrane electrical
depolarization by mechanical coupling with the endogenous
mechanical waves (soliton) associated with APs. In addition,
ultrasound propagation can deform tissues elastically while the
pulse energy is lost through heating due to viscous frictional
forces. Whether the thermal effect is detectable or important in
the context of neuromodulation will depend on the temperature
level that is reached, neuronal sensitivity to temperature
transients, tissue diffusion, and perfusion capability. In the
soliton model, the membrane temperature is a crucial factor,
and it should be noted that the membrane melting point is
slightly below physiological temperature. Therefore, small
temperature elevations caused by viscous frictional forces
during ultrasound propagation may cause an interference
with electromechanical membrane physiology. Most studies
have consistently strived to avoid thermal effects from FUS
effects, which is important to separate ablative from non-
ablative effects. However, the mechanical and low-temperature
increase generated by FUS could also potentially improve
the neuromodulatory effects [104]. In this context, animal
experiments based on sedation or anesthesia need to take
thermal effects into account as mild hypothermia is common
during deep sedation [105].

While the lack of a complete understanding of the FUS
neuromodulation mechanisms does not currently impede
reaping potential benefits in a more application-driven context,
it is reasonable to expect that a better mechanistic understanding
will immediately reverberate onto the applicability and
efficacy of FUS-based neuromodulation. Importantly, as
the technology continues to gain ground and acceptance,
safety must remain a prime concern. Therefore, overcoming
current limitations in both target confirmation and safety
monitoring through the human skull is imperative. Techniques
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such as mapping of cavitation, temperature, and displacement
will ensure a successful clinical translation of ultrasound
neuromodulation, at the same time providing more control over
the acoustic parameters. This will allow employing precisely
determined mechanism combinations for achieving targeted
neuronal excitation and inhibition. While more and more
studies are being planned, several investigations have already
demonstrated the existence of a wide range of safe parameters
[106–108].

While fMRI is undoubtedly the gold standard for
functional brain imaging, other techniques can provide
complementary information on brain function. Recent studies
have combined fMRI and optical imaging to show that
ultrasound neuromodulation induces cerebral hemodynamic
changes in different animals at variable peak latencies: mice
∼2.5 s [109, 110], rabbits ∼3.2 s [111], and NHPs ∼6.5 s [86].
Furthermore, a technique termed functional ultrasound (fUS)
is capable of detecting transient changes in blood volume
[112], and it has been demonstrated capable of providing
deep brain functional images with high spatial resolution
(from 50 to 200µm) [113] and temporal resolution of <1 s
[114]. In addition, fUS features high sensitivity and portability,
which enable awake experiments with freely moving subjects.
The development of 2D transducer arrays [115], capable
of generating images and steerable, highly focused beams,
potentially with multifrequency capability [116], may facilitate
human fUS during the ultrasound neuromodulation.

Crucially, while in vitro and ex vivo studies are necessary
for understanding mechanisms, in vivo brain activity studies
are essential to gather mesoscale and macroscale information
about the effect of FUS on brain functioning. In small
animals, experiments in ultra-high-field (UHF) MRI (7–21 T)
can provide higher signal-to-noise and contrast-to-noise ratios
as well as in the case of fMRI increased susceptibility [60,
117]. In turn, this will unlock more in-depth insights into

how the intact brain works and into the available windows
in interfering with its activity in a non-invasive or minimally

invasive manner, accelerating the translation toward human
applications and especially the empowerment of clinical trials.
This may include applications to neurological diseases like
epilepsy and chronic pains, psychiatry [Obsessive-compulsive
disorder (OCD), pharmacoresistant depression, agoraphobia], as
well as fostering neuronal plasticity in, e.g., rehabilitation or
slowing the progression of degenerative brain diseases. Especially
in this latter context, multimodal stimulation (as electrical,
magnetic, chemical, light, mechanical), possibly coupled with a
state-of-the-art monitoring tool like UHF MRI for non-invasive
techniques and calcium imaging [118], may enable simultaneous,
multi-scale, brain structure- or cell type-specific silencing or
excitation, allowing the exploration of both brain-wide pathways
and specific cognitive, emotional, and pathological mechanisms.
This can provide a significant step change in keeping more
andmore neurophysiological aspects under experimental control
and hence ultimately approaching the neurobiological goal of
neuromodulation in a more precise, targeted, painless, and
direct manner.
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