
ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fphy.2020.00154

Frontiers in Physics | www.frontiersin.org 1 June 2020 | Volume 8 | Article 154

Edited by:

Lu Guo,

University of Chinese Academy of

Sciences, China

Reviewed by:

Giuseppe Verde,

National Institute for Nuclear Physics,

Italy

Nikolai Antonenko,

Joint Institute for Nuclear Research

(JINR), Russia

*Correspondence:

Yoritaka Iwata

iwata_phys@08.alumni.u-tokyo.ac.jp

Specialty section:

This article was submitted to

Nuclear Physics,

a section of the journal

Frontiers in Physics

Received: 04 February 2020

Accepted: 15 April 2020

Published: 30 June 2020

Citation:

Iwata Y (2020) Solitons in Nuclear

Time-Dependent Density Functional

Theory. Front. Phys. 8:154.

doi: 10.3389/fphy.2020.00154

Solitons in Nuclear Time-Dependent
Density Functional Theory
Yoritaka Iwata*

Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan

The soliton existence in sub-atomic many-nucleon systems will be discussed. In

many nucleon dynamics represented by the nuclear time-dependent density functional

formalism, much attention is paid to energy and mass dependence of the soliton

existence. In conclusion, the existence of nuclear soliton is clarified if the temperature

of nuclear system ranges from 10 to 30 MeV. With respect to the mass dependence
4He and 16O are suggested to be the candidates for the self-bound states exhibiting the

property of nuclear soliton.
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1. INTRODUCTION

The concept of nuclear soliton is proposed by its existence in the three-dimensional nuclear
time-dependent density functional formalism. The solitons in this article are the waves stably
traveling without changing shape and velocity even after collisions between waves (Figure 1). In
this sense, as for the terminologies of classical and quantum field theory, what we study in this
article is not similar to the topological soliton [1, 2], but rather corresponds to the non-topological
soliton [3]. From here on, we refer simply to “soliton” for a kind of non-topological soliton. The
mathematically common property of a soliton (for example, see Ablowitz [4]) has been clarified as

• Non-linearity
• Dispersive property

being independent of the size andmedium of wave. The common properties of solitons are essential
to the solitons existence, and several uncommon properties specific to nuclear solitons such as

• Quantum effect with the fermi statistics
• Many-body effect leading to the collectivity

canmodify the conditions of soliton existence, where a competition between them possibly appears.
In most soliton research mentioned here, the size and model dependent additional properties are
not seriously considered. Here we employ the nuclear time-dependent density functional theory
(TDDFT) in which all the above four properties are included in a self-consistent manner. In
particular the collectivity of many-nucleon systems has been successfully treated by the nuclear
DFT with and without time-dependence (for example, see Greiner and Maruhn [5]).

The solitons are observed in any scale, if the mathematically common property is held by the
master equation. This fact has something to do with the size and model dependence of the two
common properties. The nuclear soliton is found in sub-atomic femto-meter scales whose energy
is at the order of MeV (mega electron volt). Such a specific scale arises from the effective unit of
motion: the nucleon degree of freedom in the case of a nuclear soliton. For example, the effective
unit of motion for the optical soliton is the photon. In other words, as is known in nuclear physics,
the motion of the nucleus at the energy order of MeV is governed by the independent nucleon
motion (for example, see Ring and Schuck [6]).

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00154
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00154&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:iwata_phys@08.alumni.u-tokyo.ac.jp
https://doi.org/10.3389/fphy.2020.00154
https://www.frontiersin.org/articles/10.3389/fphy.2020.00154/full
http://loop.frontiersin.org/people/900571/overview


Iwata Solitons in Nuclear TDDFT

FIGURE 1 | Two soliton solution of KdV equation (α = 1). Although the

momentum and shape are exactly conserved, time delay appears due to the

collision (around (t, x) = (0, 0)).

The soliton is a wave with both individuality and stability.
On the other hand, the nuclear soliton is also regarded as
bringing about a nuclear matter state with perfect fluidity. It is
worth mentioning here that perfect fluidity can be rephrased
as inertness in the context of reaction theory. Accordingly, the
nuclear soliton is expected to be associated with some important
physics if its existence is established. Indeed, perfect fluidity leads
to the conservation of the number of vortexes. Since celestial
bodies consist of nuclear matter, the quantitative understandings
of the nuclear soliton are able to show a new aspect of
the matter/heat transportation inside the (compact) stars.
Furthermore, perfect fluidity is associated with the dissipation
property of low-energy heavy-ion collisions that has been a
long standing open problem in microscopic nuclear reaction
theory. Perfect fluidity is also associated with the conservation of
nuclearmatter without the loss of any information: i.e., isentropic
property arising from the time-reversal symmetry [7]. As the
conservation property of the soliton has already been utilized in
the optical fiber, the preservation property of nuclear matter is
expected to be utilized in the nuclear engineering for preserving
and condensing a certain projectile nucleus. In particular, the
well-preserved nuclear matter is expected to be used for the
reduction of nuclear waste by the nuclear transmutation, with
the extremely high intensity/density projectile of reactions, which
is not only to make a high intensity/density beam but also high
projectile-density matter in the nuclear reactor.

This article is organized as follows. The basic concepts of wave
propagation are introduced in section 2. The general definition
of solitary wave and soliton is shown in section 3. The existence
of nuclear soliton is discussed in section 4. The summary and
perspectives are presented in section 5.

2. EQUATION OF WAVES

This section is devoted to introducing the basic concepts for
wave propagation, which provides a working area of the soliton
research. For the purpose of introducing the concept of dispersive
property, we begin with the linear wave:

u(t, x) = A exp(i(kx− ωt + α)), (1)

in one-dimensional space, where kmeans the wave number,ω the
angular frequency, and α the phase. This wave is also referred to
as the plane wave in themulti-dimensional case, and to a traveling
wave in more general fields. The first order linear hyperbolic
equation (advection equation) is written by

∂tu+ c∂xu = 0 (2)

in one-dimensional space R, where c is a real constant, meaning
the propagation speed. It is well-known that this equation holds
the solution represented by the d’Alembert’s formula, so that
the plane wave (1) satisfies this equation. The linear dispersion
relation ω = ck is satisfied by the plane wave solution. The
plane wave solution can also be associated with the second order
linear wave equations, more closely to the present interest, the
Klein-Gordon equation:

∂2t u− c2∂2xu+
(

mc2

h̄

)2

u = 0 (3)

describing a quantum scalar or pseudoscalar fields [8]. By
considering the same plane wave solution, another relation ω2 =
c2(k2 + m2c2/h̄2) is obtained, which is asymptotically equal to
ω = ±ck (Figure 2). Note that the dispersion relation in the
massless case (m = 0) also becomes ω = ±ck.

The Schrödinger equation is known to describe the non-
relativistic quantum physics. The linear dispersion relation ω =
ck is violated in case of Schrödinger type waves. On the other
hand, it is readily confirmed that the plane-wave solution is also
the solution of the linear Schrödinger equation:

i∂tu+ c∂2xu = 0 (4)

in one-dimensional space R, where c is a real constant being
represented by c = −h̄/2m using the Dirac constant h̄ and
the mass m. In this case another dispersion relation ω = ck2

is satisfied instead. Such waves, without satisfying the linear
dispersion relation ω = ck, are called the dispersive wave.
It is worth noting here that the non-relativistic approximation
of Klein-Gordon equation corresponds to the Schrödinger
equation. As a result, the Schrödinger equation is a typical
example of dispersive wave equations.

3. NON-LINEAR DISPERSIVE WAVES

3.1. Korteweg-de Vries Equation
The concepts of solitary wave and soliton are introduced. For
verifying the soliton existence in sub-atomic quantum equations,
we focus on two relevant equations: the Korteweg-de Vries
equation and non-linear Schrödinger equation. These equations
are not only dispersive wave equations but also non-linear
evolution equations.

First, in the flow of shallow water, the concept of a solitary
wave was introduced by Scott-Russel [9] in 1844. Indeed, they
observe that

• A single wave moves stably on the flat surface without
changing the shape and velocity.
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FIGURE 2 | Dispersion relation associated with Equations (2) and (3).

This is the essential property of the solitary wave. Here the single
wave means the wave without undergoing any collisions with
the other waves. Although such a property is common in linear
cases, this should not be true in non-linear cases. If solitary waves
preserve their shape and speed after a collision, the solitary waves
holding a transparency is called the soliton. In particular, the
terminology “soliton” is introduced by Zabusky and Kruskal [10].
Indeed, for the initially given sine waves, they are split into several
solitary waves, and

• The Solitary wave moves stably by preserving momentum and
shape even after the collisions.

• The Solitary wave possibly experiences a phase shift and time
delay during the collision.

These are the properties to be satisfied by the soliton wave.
That is, the solitary wave is called soliton if it satisfies the
above properties. The transparency leading to the individuality
is often called the particle-like property in the soliton theory. In
particular, by comparing soliton waves before and after collision,
there are no changes in the momentum and shape, but there is
for the phase.

The equations holding the soliton as a solution are called
the soliton equation, and the Korteweg-de-Vries equation (KdV
equation, for short) is known as a soliton equation. In a
mathematical sense the concept of a solitary wave was initially
studied by the KdV equation [11]

∂tu+ αu∂xu+ ∂3xu = 0, x ∈ R, (5)

where α is a real constant. In the second term αu plays a role
of propagation speed (cf. Equation 2), so that the propagation
speed depends on the state of the wave. This non-linear equation
models the shallow water waves including both the non-linearity
and the dispersive property, but not the dissipation leading to
the non-unitary time evolution. It is worth noting here that the
KdV equation is obtained by approximating the incompressible
Navier-Stokes equation (for example, see Lamb [12]).

The plane wave (1) can be the solution at small amplitude
oscillation limit, and then ω = ck− k3 is approximately satisfied.
On the other hand, KdV equation admits some exact traveling
wave solutions:

u = 3c

α
sech2

[√
c

2
(x− ct)

]

(6)

where c means the speed of wave propagation. It is remarkable
that Equation (6) holds the form of d’Alembert’s solution for the
wave equation. This solution corresponds to the solitary wave
solution (one-soliton solution) whose amplitude depends on the
propagation speed c. The solitary wave solution can hold the
soliton property that has been examined by obtaining the exact
two-soliton solution (Figure 1).

u = 72

α

3+ 4cosh(2x− 8t)+ cosh(4x− 64t)

{3cosh(x− 28t)+ cosh(3x− 36t)}2 (7)

asymptotically equal to the superposition of two solitons for
large t

u = 12κi

α
sech2

[

κi(x− 4κ2i t)+ δi
]

, (8)

where i = 1, 2, κ1 = 1, κ2 = 2, and δi are constants. The existence
of the two-soliton solution ensures the existence of soliton in a
given theoretical framework. In several equations the two-soliton
solutions are extended to N-soliton solutions (for example, see
Scott et al. [13]).

3.2. Non-linear Schrödinger Equation
A typical soliton equation for non-relativistic quantum dynamics
is the non-linear Schrödinger equation (NLS equation, for short).
It reads

i∂tu+ ∂2xu+ k|u|2u = 0, (9)

where a real number k means the interaction constant, and also
the height/depth of potential hill/well. Indeed, in the case of
positive k, V(u) = −k|u|2 provides a potential well. Indeed, it
holds a solution

u(t, x) =

√

u2e − 2ueuc

2k
sech

[
√

u2e − 2ueuc

4
(x− uct)

]

exp
[

i(u0/2)(x− uct)
]

,

where the amplitude of u depends on the constant k, which is a
specific feature arising from the angular speed uc and the wave
propagation speed ue. Contrary to the previous KdV equation,
the amplitude is proportional to k−1/2 and ue. Consequently, the
two factors have been considered to be essential to the soliton
propagation: the dispersive property and the non-linearity.

3.3. Sturm-Liouville Formalism
Following Lax [14], the relation between the KdV and the
Schrödinger type equations are understood by a simplified Sturm
Liouville equation:

Ly : = ∂2x y− U(x, t)y = λy, (10)
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where the periodic boundary condition is imposed, for
instance. This equation can be regarded as the Schrödinger
equation with the potential −λ + U(x, t). It is readily
seen that

∂t(Ly) = (∂tL)y+ L(∂ty) = (∂tλ)y+ λ(∂ty) = −(∂tU(x, t))y

+ (∂2x − U(x, t))(∂ty) (11)

leads to

(∂tL)y = −(∂tU(x, t))y. (12)

If t-independence of parameter λ: ∂tλ = 0 is further assumed,

(∂tλ)y = −(∂tU(x, t))y+ L(∂ty)− (∂tλy)
= −(∂tU(x, t))y+ L(∂ty)− (∂tLy)
= −(∂tU(x, t))y+ [L, ∂t]y

(13)

is obtained, where [·, ·] denotes the commutator product. After
generalizing this equation as

(∂tλ)y = −(∂tU(x, t))y+ [L,D]y, (14)

the KdV equation with the potential U and α = −6
is obtained by −(∂tU(x, t)) + [L,D] = 0 with D =
f ∂3x + g∂x + h, g = −3Uf /2 and h = −3(∂xu)f /4.
Consequently, KdV and Schrödinger equations are associated
not only with having a soliton solution, but with holding a
common mathematical structure. An interesting reminder here
is the relation between Schrödinger, Heisenberg, and interaction
pictures in quantum field theory (for a textbook, see Fetter and
Warecka [15]).

4. SOLITONS IN NUCLEAR TDDFT

4.1. Many-Nucleon System
Atomic nucleus is a finite-body many-nucleon system consisting
of nucleons: protons and neutrons. Proton numbers range from
1 to 120 (at the present), and neutron numbers from 1, roughly,
to 200. It is thought that almost 300 stable nuclei exist in
nature, and the theoretical calculations such as nuclear density
functional calculations simulate those nuclei as being sufficiently
comparable to the experiments.

We are interested in the soliton propagation at the scale of
atomic nuclei. The size of one nucleus ranges from 10−15 to 10−13

m, and the corresponding energy is below several 10s of MeV per
nucleon. One of the unique features of the many-nucleon system
is found in their finite-body property, which is quite different
from most of many-electron systems being treated as infinite
matter. This feature brings about the fact that the self-bound
state (the localized wave) is naturally realized in both nature and
theory of many-nucleon systems. Following the general usage of
low-energy nuclear physics, the terminology “low-energy” is used
for energy below 30MeV per nucleon. The relativistic effect plays
a considerable role, only if the relative velocity of the collision is
over 30% of the speed of light, and it roughly corresponds to the
collision energy 30 MeV per nucleon.

Ground states and some excited states of stable nuclei (in the
following, self-bound nuclei) are classified to the localized self-
bound system. Each self-bound system is the solitary wave in the
soliton theory because it is satisfied that

• A self-bound nucleusmoves stably without changing the shape

if there is no collision with the other nuclei/particles. Therefore,
the existence of a solitary wave is trivially true for many-nucleon
systems, where this issue should be examined by the non-linear
framework with the ultimately determined density functional. In
other words, all the self-bound nuclei are candidates of soliton.
All we have to do to verify the soliton existence is to check that

• [Conditional] a nucleus moves stably by preserving
momentum and shape even after the collisions.

• The nucleus possibly experiences the phase shift and the
time delay.

The first condition is expected to be satisfied conditionally. On
the other hand, the second condition is trivially satisfied in
case of atomic nuclei, as phase shifts have been observed and
theoretically calculated in nuclear reactions, as well as the time
delay. One of the general motivations is to find a valid condition
for the existence of the nuclear soliton.

4.2. Theoretical Framework
Among several theoretical models in nuclear physics, nuclear
time-dependent density functional theory [16, 17] (TDDFT, for
short), which describes the nuclear collision dynamics with
the nucleon degree of freedom, is a unique theory including
time dependence, non-linearity, and the dispersive property
simultaneously. The solution of the TDDFT shows the unitary
time evolution, which is preferable because of exact conservation
of the total energy. The dispersive property is satisfied by
the non-relativistic theory, while it is violated in the massless
relativistic theories. In this context, we remind that the sine-
Gordon equation is known as a soliton equation. Furthermore,
it is worth noting here that, among sub-atomic theories except
for the TDDFT, it is not easy to find a calculationally-feasible
theoretical framework including the time-dependence. Note that
the TDDFT is also called nuclear time-dependent Hartree-Fock
theory, and nuclear reaction is often referred to as heavy-ion
collision or ion collision. The theory with nucleon degree of
freedom is called the microscopic treatment, because a nucleus
is a smaller component that builds up a nucleus. The TDDFT is
usually calculated in three-dimensional space, and the TDDFT
have many stable localized stationary solutions corresponding
to the self-bound nuclei. Non-linearity, dispersive property,
and the unitary time-dependence realized in the TDDFT are
preferable for examining the soliton existence. Furthermore,
nuclear saturation property brings about rather universal shallow
potential well with a depth of 50 MeV at the deepest, whose
environmental setting is ideal for the existence of certain kinds
of shallow water waves.

Before moving on to the nuclear theoretical models, a few
remarks are made on the multi-dimensional treatment. There
is limited knowledge on the multi-dimensional soliton, where
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the shape of colliding waves plays more roles. In the multi-
dimensional case, the soliton existence depends on whether the
waves are spatially finite or not, and whether the waves are
spherical or deformed. As a multi-dimensional version of KdV
equation, Kadomtsev-Petviashvili equation (KP equation, for
short) is known. In particular the multi-dimensional version of
NLS equation (2) cannot have the self-bound solution, while the
multi-dimensional NLS type equation

i∂tu+ ∂2xu+ ∂2y u+ k|u|2u = u∂xv,

∂2x v− ∂2y v = −2∂x(|u|2)
(15)

is known to have the soliton (or dromion) solution instead [18–
20], where v means the velocity potential. Roughly speaking, the
addition of a non-linear term contributes to keeping the soliton
property in this case.

4.2.1. One-Dimensional Soliton Model
Let us begin with reviewing the preceding work on soliton
propagation in nuclear physics. In one-dimensional space, the
Hamiltonian of N bosons interacting through a δ-force is
represented by

H = −1

2

N
∑

i=1

∂2xi − v

N
∑

i<j=1

δ(xi − xj). (16)

The corresponding stationary and non-stationary problems are
known to be exactly solvable for bound states and for scattering
states [21–26]. Application of the variational principle to

< 9|∂t −H|9 >= N
∫

dx

(

ψ∗i∂tψ + 1
2ψ

∗∂2xψ

+ v
2 (N − 1)ψ∗ψ∗ψψ

) (17)

leads to

i∂tψ + 1
2∂

2
xψ + v

2 (N − 1)|ψ |2ψ = 0, (18)

where 9 means the many-nucleon wave function and ψ denotes
single-nucleon wave function. The similarity to the NLS equation
(2) is clear, so that the soliton solution follows. The static solution
is

ψi(x) =
√
(N−1)v

2cosh((N−1)vx/2)
(19)

with the energy

EH = −N(N−1)2v2

24
(20)

and the density

ρ(x) = N(N−1)v

4cosh2((N−1)vx/2)
. (21)

For the 2N particle case, a two-soliton solution is obtained. The
two-soliton solution is represented by

ψ(t, x) =
√
2(N−1)v

2 e−(i/2)(K2−a2)t

eiKx{e−a(x−Kt)+(K2/(K−ia)2)e−a(3x+Kt)}+(K↔−K)
1+2e−2axcosh(2aKt)−2a2e−2axRe(e2iKx/(K+ia)2)+(K4/(K2+a2)2)e−4ax .

(22)

The existence of the two-soliton solution ensures the existence
soliton in a given theoretical framework.

4.2.2. Three-Dimensional Model
A two-dimensional model is realized as the axial symmetric
model in nuclear density functional theory dealing with finite
quantum systems, and the axis of symmetry is taken as the
collision axis in the time-dependent collision calculations. In this
sense two dimensional calculation computes one-dimensional
colliding motion along the center axis. One and two-dimensional
models are toy models for simulating the collision, because
the effect described by the outer product (vector product)
cannot be rigorously incorporated. Consequently spin effect
on the dynamics such as spin-orbit force effect cannot be
rigorously treated in one and two dimensional models (cf. the
representation of spin current J(r) in Equation (24)). Note that
spin-orbit force in the non-relativistic framework arises from the
special relativity theory. In particular the spin orbit force is well-
known to play a decisive role in the structure of nuclei (cf. magic
numbers of nuclear structure [6]).

Let us consider the three-dimensional case. It is remarkable
that the nuclear medium as a nucleon degree of freedom consists
of two different kinds of fermions: protons and neutrons. In
the following, the formalism of TDDFT [11, 16] for low-energy
nuclear reactions are introduced based on [27], where the Skyrme
interaction [28] is utilized as the effective nuclear force in most
of the TDDFT calculations. The Skyrme interaction is a zero-
range formalism of effective nucleon-nucleon interaction. The
TDDFT with Skyrme type zero-range interaction is represented
by several densities

ρ(r) =
∑

i,σ (ψ
∗
i (r, σ )ψi(r, σ )),

τ (r) =
∑

i,σ (∇ψ∗
i (r, σ ) · ∇ψi(r, σ )),

j(r) = 1
2i

∑

i,σ (ψ
∗
i ∇ψi(r, σ )− ψi∇ψ∗

i (r, σ )),

(23)

and

s(r) =
∑

i,σ ,σ ′ (ψ
∗
i (r, σ )ψi(r, σ

′)〈σ |σ̂ |σ ′〉),
T(r) =

∑

i,σ (∇ψ∗
i (r, σ ) · ∇ψi(r, σ

′)〈σ |σ̂ |σ ′〉),
J(r) = 1

2i

∑

i,σ (ψ
∗
i ∇ψi(r, σ )− ψi∇ψ∗

i (r, σ ))× 〈σ |σ̂ |σ ′〉),
(24)

where ψi(r, σ ) and ψ
∗
i (r, σ ) are i-th single wave functions and its

complex conjugate, respectively, ρ(r), τ (r), and j(r) denote the
density, the kinetic energy density, and the momentum density,
respectively, and s(r),T(r), and J(r) stand for the spin density, the
spin kinetic density, and the spin current density, respectively.
Single wave functions depend on both spatial variable r ∈ R3

and the spin σ , while the spin dependence is summed up in each
density. By assuming wave functions and densities as depending
also on the time variable t ∈ R, each single-nucleon satisfies the
equation of the form.

ih̄∂tψi(t, r, σ ) = hψi(t, r, σ ) (25)
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with

hψi(t, r, σ ) =
∑

σ ′

[

− ∇ · h̄2

2m∗
q
∇δσ ,σ ′ + Uq(r)δσ ,σ ′

+Vq(r) · 〈σ |σ̂ |σ ′〉 + iCq(r) · ∇δσ ,σ ′

+iWq(r) · (〈σ |σ̂ |σ ′〉 × ∇)

]

ψi(t, r, σ
′),

(26)

where h is the single-particle Hamiltonian, m∗
q denotes the

effective mass, and Uq, Vq, Cq, and Wq mean the spin scalar
potential, the spin vector potential, the current potential, and
the spin orbit potential, respectively. The isospin index q
distinguishes protons (q = p) from neutrons (q = n).
For realizing the fermionic statistical property, single wave
functions are assumed to form the single Slater determinant,
where this assumption is necessary to derive Equation (26).
First, the nucleon-nucleon interaction is fully represented by
the densities. Here the reason this formalism is called the
nuclear TDDFT. Second, this formalism tells us that each single
nucleon does not interact directly with the other nucleon,
but with the force field described by the collectively summed-
up densities (23) and (24). This is the reason the nuclear
TDDFT is claimed to be the theory, based on the mean-
field description of the many-body interaction (in the same
context, the nuclear TDDFT is also called the nuclear TDHF).
Furthermore one-body dissipation with the unitarity appears
mainly due to the internal excitation of nucleus. Note that the
concept of one-body dissipation is a kind of dissipation, but it
does not violate the unitarity of time evolution. The details are
given by

h̄2

2m∗
q
= h̄2

2mq
+ B3ρ + B4ρq,

Uq(r) = 2B1ρ + 2B2ρq + B3(τ + i∇ · j)+ B4(τq + i∇ · jq)
+2B5△ρ + 2B2△ρq + (2+ α)B7ρα+1

+B8

{

αρα−1(ρ2n + ρ2p )+ 2ραρq + B9(∇ · J + ∇ · Jq)
}

+αρα−1{B12s2 + B13s
2
n(s

2
n + s2p)}

+
[

e2
∫ ρp(r

′)
|r−r′|dr

′ − e2
(

3ρp
π

)1/3
]

δq,p,

Vq(r) = B9(∇ × j+ ∇ × jq)+ 2B10s+ 3B11sq

+2ρα(2B12s+ 2B13sq)+ B9(∇ × J +∇ × Jq),

Cq(r) = 2B3j+ 2B4jq − B9(∇ × s+ ∇ × sq),

Wq(r) = −B9(∇ρ + ∇ρq),
(27)

where a part shown inside the parenthesis [·] in Uq(r) shows the
Coulomb interaction acting only on protons. Thirteen different
coefficients (B1,B2, · · · ,B13) must be determined, while they
are reduced to only 10 parameters (t0, t1, · · · , x3,α). For the
derivation of the above effective nuclear interaction, see [27,
29].

Although more than 100 parameter sets are proposed for
the Skyrme-type effective nuclear interaction (the values for
{t0, t1, t2, t3,W0, x0, x1, x2, x3,α}), the ultimate parameter set is

TABLE 1 | Parameter setting in the TDDFT.

(a) Reduced coefficients (b) Skyrme parameter set (SV-bas) [30]

B1 = t0(1+ x0/2)/2 t0 = −1879.640018 [MeV · fm3]

B2 = −t0 (x0 + 1/2)/2 t1 = 313.7493427 [MeV · fm5]

B3 = (t1 + t2)/4+ (t1x1 + t2x2)/8 t2 = 112.6762700 [MeV · fm5]

B4 = (t2 − t1)/8− (t2x2 − t1x1)/4 t3 = 12527.38921 [MeV · fm3+3α ]

B5 = (t2 − 3t1)/16+ (t2x2 − 3t1x1)/32 W0 = 124.6333000 [rmMeV · fm5]

B6 = (3t1 + t2 )/32+ (t1x1 + t2x2)/16 x0 = 0.2585452462

B7 = t3(1+ x3/2)/12 x1 = −0.3816889952

B8 = −t3 (x3 + 1/2)/12 x2 = −2.823640993

B9 = −W0/2 x3 = 0.1232283530

B10 = −t0x0/4 α = 0.3

B11 = −t0/4
B12 = −t3x3/24
B13 = −t3/24

The reduced coefficients (a) and a Skyrme parameter set (b) are shown. Among many

parameter sets (models for the effective nuclear force), the SV-bas model is taken in this

paper.

not known to include such an existence. Here we take SV-bas
parameter set (Table 1). The SV-bas parameter set is known
well for reproducing the neutron skin thickness of heavy
nuclei such as 208Pb (for a compilation of experimental and
theoretical results, see von Neumann-Cosel [31]). The quality
of SV-bas in some relevant heavy nuclei can be found in
Iwata and Stevenson [7]. On the other hand, the description
of light ions (helium isotopes) using SV-bas is also confirmed
to be sufficiently good [32]. The pairing interaction is not
introduced in the present density functional, as the collision
energy of the present study is sufficiently high for pairing
interaction not to play a significant role. Indeed, from an
energetic point of view, the nuclear pairing is the effect of
less than a few 100s of keV per nucleon. A set of equations
(25), (26), and (27) are called the nuclear TDDFT or the
nuclear TDHF equations. The nuclear TDDFT is known to
reproduce the result rather sufficiently nowadays (for recent
reviews, see [33–35]).

4.3. Solitons in Many-Nucleon Systems
4.3.1. Similarity of Master Equations
To verify the soliton existence, we begin by finding similarities
between NLS (4) and the nuclear TDDFT. For one-dimensional
cases, as the soliton solution has been obtained, Equation (18) is
essentially identical to Equation (9). For three-dimensional cases,
a term with h̄2/2m∗

q in the TDDFT corresponds to the second
term of the left hand side of Equation (9). Here we see that
the TDDFT is a Schrödinger type equation. Meanwhile the non-
linear term |u|2u in Equation (9) corresponds to terms with the
coefficients B1 and B2 (depending essentially on the parameter
t0). The terms with the coefficients B7 and B8 (depending
essentially on the parameter t3), which are known to be
indispensable to reproduce the nuclear saturation properties [29],
are also relevant, because they introduce additional fractional
power contributions (cf. α in the Skyrme parameter set: the
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fractional power). The dominance of t0 and t3 terms has been
confirmed for the binding energies of 4He and 8He [32], where
the experimental binding energy is 28.30 MeV and 31.40 for 4He
and 8He respectively. No self-bound states of 4He and 8He are
obtained if the t0 term is turned off, and even in the presence
of the t0 term the calculated binding energies are at the order of
1,000 MeV which are far from the realistic binding energy. More
quantitatively, with respect to the bindings of 4He, a large binding
(due to the attractive force property of t0 term) at the order of
1,000 MeV is obtained only by the t0 term, it is substantially
modified by the t3 term (due to the repulsive force property of
t3 term) as 63.80 MeV, and the momentum density contribution
(t1 term) reduces it to a realistic value of 27.71 MeV, where the
binding energy calculated by including all the terms is 27.73MeV.
Note that the spin-orbit contribution is known to be important in
the nuclear structure, but it does not play a prominent role in this
case because 4He is a spin-saturated system. A rough estimation
tells us that the interaction part of the TDDFT with the SV-
bas model (the inhomogeneous term of non-linear Schrödinger
type equation) is dominated by the t0 and t3 terms with
the percentage:

|63.80|
|63.80| + |63.80− 27.71| + |27.71− 27.73| × 100 = 63.9%,

where the amplitudes of the t0 and t3 terms, t1 term and the
other terms are estimated as |63.80|, |63.80−27.71|, and |27.71−
27.73|, respectively. Dominance of those terms in the nuclear
density functional implies the validity of an energy-dependent
soliton existence in which the t0 and t3 terms are responsible
for the soliton existence and energy dependence, respectively.
This similarity between NLS and the nuclear TDDFT provides
a sound motivation to investigate the soliton propagation in
nuclear TDDFT.

4.3.2. Mechanism of Soliton Propagation in the

TDDFT
Some specific physics associated with many-nucleon systems
are presented with respect to the soliton propagation. In three-
dimensional nuclear TDDFT, the existence of a solitary wave
corresponds to the existence of self-bound stationary states. For
low-energy nuclear reactions, fusion, deep inelastic collision,
and collision-fission such as fusion-fission and quasi-fission may
appear. Particularly, in case of fusion, the solitary waves are
totally destroyed. It implies that a solitary wave cannot necessarily
be the soliton, and the soliton existence is inevitably conditional.
Let us begin with the collision between 4He and 8He. Following
the usage of nuclear reaction representation, the fusion reaction
realized by collision between two self-bound nucleus 4He (helium
4: 2 protons and 2 neutrons) and 8He (helium 8: 2 protons and 6
neutrons) is represented by

8He+4 He → 12Be, (28)

where 12Be (beryllium 12: 4 protons and 8 neutrons) is produced
as a result of fusion reaction. Fusion reaction is generally
an exothermic or endothermic reaction according to the total

binding energy difference between reactants and products, where
a chemical element iron (Z = 26) is the most stable element.
On the other hand, if self-bound states 4He and 8He hold the
soliton property,

8He+4 He ⇋
4He+8 He (29)

takes place in which the total energy is conserved before and
after the collision. In the context of reaction theory, the soliton
property is included in a class of reactions with the time-reversal
symmetry. The goal is to find the condition for the appearance
of soliton events shown by Equation (29). The time reversal
symmetry arises from the energy conservation, according to
Noether’s theorem, and the total energy is strictly conserved
by the nuclear TDDFT framework. For each collision there are
two controllable parameters: the relative velocity of collision
(i.e., the collision energy) and the impact parameter of collision
(usually denoted by b fm). The condition for soliton existence is
expected to be written by these two control parameters (i.e., the
initial condition).

The soliton existence is confirmed by systematically
calculating collision events. The fast charge equilibration
mechanism, which is the generalized concept of fusion reaction,
has been suggested to govern themixing of protons and neutrons,
including fusion and deep inelastic collisions [36]. Under the
appearance of fast charge equilibration, the mixing between
protons and neutrons is known to take place quite rapidly within
the order of 10−22 s [36] that should be compared to the typical
duration time of low-energy nuclear reactions (∼10−20 s). The
charge equilibrating wave propagates at around 90% of the fermi
velocity of many-nucleon systems (corresponding to the speed of
zero sound propagation [37]), so that the propagation speed of
the charge equilibrating wave is roughly equal to a quarter of the
speed of light. Soliton existence is false if we observe the charge
equilibration. Consequently, the soliton propagation is realized
by the competition between the fast charge equilibration and the
transparency, originally due to a certain non-linearity (t0 and
t3 terms) of the TDDFT. The fast charge equilibrating wave has
been confirmed to play a role only if the collision energy is below
the charge equilibration upper-limit energy [36].

In the lower energies less than a fewMeV per nucleon, nuclear
fusion appears, and soliton cannot survive. In higher energies
larger than 50MeV per nucleon, the nucleus breaks up into small
pieces. On the other hand, the fast charge equilibration wave
can exist only below the upper-limit energy, where the upper
energy is almost 80% of the fermi energy which is in accordance
with the fact that the propagation speed is almost 90% of the
fermi velocity. In case of nuclear collisions, this energy is roughly
equal to 10 MeV per nucleon. This fact may contain a hint for
finding the soliton existence condition, i.e., it is reasonable to
search for the energy just above the fast charge equilibration
upper-limit energy.

4.3.3. Numerical Experiment
The heuristic aspect of the numerical experiment plays important
roles in the past and present soliton theory (e.g., Fermi-Pasta-
Ulam [38]). In this section systematic large-scale calculation
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TABLE 2 | Self-binding energies of the ground states [7] are calculated using the

SV-bas effective nuclear force.

(A,Z) B(AZ) B(A+4Z) B(2A+42Z)

(4,2) 6.93(7.08) 4.48(3.93) 6.07(7.06)

(16,8) 8.21(7.98) 7.84(7.57) 8.75(8.58)

Binding energy per nucleon (MeV) of the initial nuclei are compared to those of the

intermediate fused system, and the corresponding experimental values are shown in

parenthesis [40].

of the nuclear collision dynamics is carried out based on the
TDDFT. Three-dimensional nuclear TDDFT calculations with
the fully-introduced Skyrme-type interaction (10 parameters,
as in the present calculations) were initiated in the 1990’s
[39]. On the other hand, many self-bound stationary states
have already been calculated (theoretically found) by static
calculations (∂ψi(t, r, σ ) = 0 in the TDDFT) in the 1980’s, and
they are compared to the experiments. The impact parameter
dependence of the soliton existence is systematically considered
in three-dimensional calculations.

Before moving on to the main discussion, we briefly
review the preceding results [7, 32]. According to the
calculations dealing with 8He+4He, 20O+16O, 44Ca+40Ca,
52Ca+48Ca, 104Sn+100Sn, 124Sn+120Sn reactions, the energy-
dependence of soliton emergence has been clarified only for
lighter cases: 8He+4He, and 20O+16O (cf. Figure 4 of Iwata
and Stevenson [7]). For those lighter cases, a rough sketch
of the energy-dependence is as follows: the soliton property
is not so active for low energies less than a few MeV per
nucleon; soliton property becomes active around 10 MeV per
nucleon, it achieves almost the perfect transparency around
10–30 MeV per nucleon, and the transparency again decreases
for much higher energies (Figures 2, 3 of Iwata and Stevenson
[7]). For a mass dependence, the most decisive factor for the
soliton propagation in heavier collisions has been clarified to
be the appearance of the fragmentation including the nucleon
emissions (mostly neutron emission). On the other hand,massive
momentum equilibration leading to the momentum equilibrium
of each spatial point are activated around 80–100 MeV per
nucleon, and those energies are too high to be relevant to the
suppression of nuclear soliton propagation. In this article, by
focusing on the stability of N = Z nucleus of the two colliding
nuclei, we clarify the energy-dependent soliton property of 4He
and 16O.

The initial state of the non-stationary problem is prepared by
the two stationary solutions. Let A and Z be mass number and
the proton number of a colliding nucleus AZ. We consider a set
of collisions:

AZ + A+4Z (30)

as a generalization of Equation (28), where (A,Z) = (4, 2),
(16, 8), (40, 20), (48, 20), (100, 50), and (120, 50) are considered.
Numerical solutions are obtained based on the finite difference
method (for the details, see Maruhn et al. [41]). Three-
dimensional space is incremented by 1.0 fm, and the unit time
step is set to one-third of 10−23 s. Vacuum boxes are prepared

as 24 × 24 × 24 fm3 for the stationary problems, and as 64 ×
32 × 32 fm3 for the non-stationary problems. The center-of-
mass of AZ and A+4Z are set to (10, b/2, 0) and (−10, b/2, 0),
respectively, and the initial momentum of AZ and A+4Z
to (−

√
2MAEK , 0, 0) and (

√
2MA+4EK , 0, 0), respectively. The

parameter b fm imitates the impact parameter. The quantities
MA andMA+4 denote the mass of AZ and A+4Z, respectively. The
periodic boundary condition is imposed in the three-dimensional
Cartesian grid.

In Table 2 the binding energies of initial states are shown
to confirm the quality of the present calculations. The binding
energy is not precisely the same as the experiment on the whole,
but the difference is less than 15% for the lighter nuclei, and less
than 5% is achieved for heavier nuclei. It simply shows the quality
of the SV-bas parameter set. By changingA, Z and the two control
parameters, we can examine the mass and energy dependence of
the final products. In particular, if the soliton wave is dominant,
no nucleon transfer takes place between AZ and A+4Z. If charge
equilibrating wave is dominant, two neutron transfer from A+4Z
to AZ is expected to be the most frequent reaction process. For
an astrophysical comparison it is practical to define the typical
temperature of collision using the kinetic energy per nucleon or
the relative velocity of the collision. Based on the Bethe formula
[42], the temperature of nuclear collision [7, 43] is defined by

EK =
{

κTCT (T < TC),
κT2 (T ≥ TC),

(31)

where EK is the total kinetic energy per nucleon, and TC =
κ−1 = 7.2 MeV is associated with the translation of the fermi
energy of the many-nucleon system to the relativistic center-of-
mass kinetic energy [44]. It shows that EK behaves linearly in low
temperature and quadratically in high temperature. In this article
the results are shown by the kinetic energy EK = 1, 2, 3, · · · ,
10 MeV.

According to the previous study [7], helium (Z = 2) and
oxygen (Z = 8) isotopes have been proposed as candidates
of nuclear soliton. This issue is examined from a stationary
aspect. For nuclei with Z ≤ 20, heavier nuclei become more
stable than lighter nuclei, so that lighter nuclei tend to capture
a neutron or proton easily. If this is also true for 4He and 16O,
they cannot hold the soliton property. For the verification of the
proposed mechanism, the single neutron addition energy and
single proton addition energy are approximately calculated using
the energies of even-even nuclei. From an energetic point of view,
the following quantities are calculated.

En(A,Z) = E(A+2,Z)−E(A,Z)
2 ,

Ep(A,Z) = E(A+2,Z+2)−E(A,Z)
2 ,

(32)

where E(A,Z) means the binding energy for the ground state
of a nucleus consisting of Z protons and A − Z neutrons.
These quantities show the stability against adding one neutron
(En(A,Z)) or one proton (Ep(A,Z)), respectively. Neutron
capture or proton capture is not preferred if the value is positive.
The upper panel of Figure 3 shows that the formation of the
density-functional field (a kind of mean-field) is not enough
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for Z ≤ 8 cases, and the directly-interacting few-body features
are more important instead, where doubly-magic nuclei (helium
and oxygen cases) show relatively good results comparable to
experiments. The stability of 4He and 16O can be found in the
lower panel of Figure 3. A nucleus is stable against the addition
of nucleons, if both En(A,Z) and Ep(A,Z) are positive.

4He and
16O show the stability (lower panel of Figure 3), although heavier

FIGURE 3 | Single particle energy and the corresponding energy differences

are compared to experiments [40]. (Upper) For Z ≤ 20 nuclei with (A,Z)=(4,2),

(8,4), · · · (40,20), the binding energies E(A,Z), E(A+ 2,Z), E(A+ 2,Z + 2) are

shown by the connected lines in this order in each column. (Lower) The

corresponding energy difference En(A,Z) and Ep (A,Z) for each nucleus ZA is

shown by the connected lines in this order.

cases with Z ≥ 10 will find a more stable bound system by adding
neutrons. From an experimental point of view, 4He, 12C, and
16O are candidates of soliton, where 8Be itself is known to be an
unbound system even before comparing it to its neighbor nuclei.
From a theoretical and experimental point of view, 4He and 16O
are the candidates of soliton in which Eq(A,Z) values are positive.
Consequently, the stability of soliton candidates 4He and 16O are
confirmed with respect to the stability of the stationary state in
comparison to the neighbors.

A time evolution of 8He + 4He collision is shown in Figure 4.
8He is coming from the left hand side, and 4He is moving
from the right hand side. It forms a rotating merged system
around t = 28/3 × 10−22 s, and it is separated into two
fragments as a result of collision. As for Figure 4, the collision
energy is selected as the lowest energy at which the soliton wave
component starts to appear. That is, taking this energy as the
standard energy, for lower energies soliton cannot exist, and

fusion reaction takes place; for higher energies almost perfect
transparency with respect to both mass and momentum is

realized. It is a non-central collision (b 6= 0) in which the axial
symmetry along the collision axis is essentially violated. The
shape (more precisely, non-spherical property of the density and

momentum distribution) is an important factor in the multi-
dimensional case, where a less-symmetric shape of the merged
system is introduced by the parameter b. In addition to the
internal excitation, a part of the total energy is delivered to the

angular momentum of each nucleus in case of multi-dimensional

and b 6= 0 cases. To a certain degree, the appearance of rotational

motion of the merged nucleus is a specific factor for the multi-
dimensional soliton existence.

The detail of the nucleon transfer depends on the impact

parameter, therefore on the shape and geometry. For 8He + 4He

collision transferred nucleon numbers are shown in Figure 5,
where the impact parameter dependence is shown in an energy-
dependent manner. By increasing the energy, nucleon transfer
starts to disappear after EK =7.50 MeV. Indeed, for cases with

FIGURE 4 | Imperfect soliton including the spin degree of freedom, fermionic statistical property, the multi-dimensionality, and the effect due to the non-central

collision. Time evolution of 8He + 4He for EK = 7.50 MeV and b = 3.0 fm are shown. The collision energy is around the upper-limit energy of fast charge equilibration

[36]. That is, by increasing the energy, the transparent component becomes dominant. For better sights, time evolution of total density is depicted by projecting them

on the reaction plane (z = 0). The density is plotted on the vertical axis taken from 0 to 0.6 fm−1, where the horizontal area is fixed to (x, y) = 24× 20 fm2. In this

situation, 0.29 protons are transferred from 4He to 8He, and 0.26 neutrons are transferred from 8He to 4He, where we can find a weak effect of dual-way type charge

equilibration [45] leading to the contamination of pure soliton. The self-bound property of 8He and 4He contributes to recovering the original shape if the

transparencies of both mass and momentum is sufficiently high (kinetic energy loss is less than 5 MeV, see Figure 3).
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FIGURE 5 | For collisions 8He + 4He, transferred nucleon from 8He to 4He are shown depending on the relative velocity of the collisions. The impact parameter

dependence with six different energies EK are shown. Red circles show the amounts of neutron transfer, and the blue squares show those of proton transfer. In a low

energy case with EK = 2.50 MeV and b= 2, 3, 4, 5 fm, fusion appears.

EK =7.50, 10.0, 25.0, 50.0 MeV, the expectation value for the
number of nucleon transfers are always less than 0.50, so that the
soliton wave is concluded to be dominant in those cases.

With respect to the quantum mechanical observation, the
calculated results are statistically summed up for a given

collision energy (a given relative velocity). Indeed, we cannot
divide possible events by the impact parameter. Using the
concept of geometric cross section [46], the numbers of
total cross sections of all the inelastic events (events with
touching between two nuclei) for a given collision energy EK is
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TABLE 3 | The observation probability [%] of soliton state of 4He calculated by

Pm(EK ) and Pp(EK ) for given collision energies EK .

Pm(EK ) Pp(EK )

EK [MeV] Proton Neutron EK [MeV] Proton Neutron

2.50 68.3 61.4 2.50 74.5 72.5

5.00 75.2 69.4 5.00 60.2 56.2

7.50 86.5 82.1 7.50 64.6 62.4

10.0 90.7 95.0 10.0 76.9 73.7

25.0 98.5 98.2 25.0 95.0 93.5

Since the positions of center-of-mass are not so different for protons and neutrons in

the present cases, the momentum transfer is shown as the total momentum transfer of

all nucleons. According to the preceding study, the soliton is suggested to exist around

EK =25.0 MeV [7].

calculated by

π(1.50)2T(b0,EK) +
10

∑

bi=1

(π(bi + 0.50)2

−π(bi − 0.50)2)T(bi,EK))

(33)

where bi fm imitates the impact parameter; T(bi,EK) = 1
for touched cases, and T(bi,EK) = 0 for untouched cases. As
readily understood by the definition, events with a large impact
parameter hold a larger cross section. The rate of transparent
events measured by the particle transparency for a given collision
energy is calculated by

Pm(EK) = 1−

π(1.50)2|N(b0 ,EK ))|+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)|N(bi ,EK ))|

π(1.50)2T(b0 ,EK )+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)T(bi ,EK ))

(34)

where N(bi) is the transferred nucleon numbers. This definition
can be regarded as the probability, in which |N(bi,EK)| is taken
as 1 for |N(bi,EK)| > 1. According to this treatment,Pm(EK) can
be regarded as the probability for the particle transparency. Using
the same definition in the geometric cross section, the transferred
momentum rate is calculated. The rate of transparent events
measured by the momentum transparency for a given collision
energy is calculated by

Pp(EK) = 1−

π(1.50)2|M(b0 ,EK ))|+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)|M(bi ,EK ))|

π(1.50)2T(b0 ,EK )+
10

∑

bi=1

(π(bi+0.50)2−π(bi−0.50)2)T(bi ,EK ))

(35)

where−1 ≤ M(bi) ≤ 1 is the transferred momentum divided by
the initial momentum.

The soliton probability for all the possible collisions at given
energies is summarized in Table 3. To find the soliton events
at the energy just above the charge equilibration upper limit
energy, it is reasonable to focus on EK = 7.5 MeV and EK =
10.0 MeV cases. Indeed, for the reference case EK = 25 MeV,
single nucleon emission (neutron emission in most cases) took
place during and after the collision, and the shapes are not
well-conserved.

In case of helium collisions, almost 90% of the reaction is
mass transparent for EK = 10.0 MeV, and almost 80% is for
EK = 7.5 MeV. The corresponding momentum transparency
rate is 89.6 % for EK =10.0 MeV, and 92.1 % for EK =7.5
MeV. Consequently, the probability for finding the soliton events
calculated by the product

Pp(EK)Pp(EK)

are 81 % for EK =10.0 MeV, and 76 % for EK =7.5 MeV.
In case of oxygen collisions, almost 70 % of the reaction is
mass transparent for EK = 10.0 MeV, and almost 60 % is for
EK = 7.5 MeV. The corresponding momentum transparency
rate is 92.4 % for EK =10.0 MeV, and 87.8 % for EK =7.5
MeV. Consequently, the probability for finding the soliton events
are 65 % for EK =10.0 MeV, and 53 % for EK =7.5 MeV.
In both cases with helium and oxygen collisions, the cross
section for soliton events is at the order of 1,000 mb (milli-
barn). The soliton observation probabilities are larger than 50
%, so that those collisions tend to be observed as the soliton
time-reversible events.

5. SUMMARY

The soliton existence is nothing but the existence of perfect
transparency, therefore the existence of perfect fluidity. The
theoretical evidence for the imperfect nuclear soliton existence
has been presented for the first time in a realistic setting. As a
result, 4He is concluded to be a candidate of nuclear soliton. 16O
also behaves like a soliton to a lesser degree. As the fermi energy
can be different for different fermions, the present study brings
about new insights on the validity of the different physics in
different scales. Through the competition relation, the existence
of nuclear soliton has been shown to depend essentially on
the fermi energy of many-nucleon systems. An essential role
of non-linearity in the formation of our material world is
understood by the soliton propagation, since nucleon degree of
freedom is related to the synthesis of chemical elements (H, He,
Li, Be, · · · ). In conclusion, 4He and 16O are suggested to be
candidates for nuclear soliton. From an applicational point of
view, the soliton property of these nuclei will be utilized for the
preservation of 4He matter, the condensation of 4He matter, and
the production/synthesis of certain nucleus (by adding several
4He intentionally).

As seen in the competition mechanism between soliton wave
propagation and charge equilibrating wave propagation, the
conditions for the soliton propagation depend essentially on the
fermi energy of the fermionic quantum system. Accordingly,
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there are some conjectures that need to be confirmed in the near
future. In quantum systems,

1. The fermionic soliton exists in different scales in different
ways, as the fermi energy is determined by fixing effective
degrees of freedom.

2. The solitons between fermionic and bosonic systems are
essentially different.

3. The general and special relativity effects change the soliton
existence.

4. Another type of the soliton appears in the event
when fermions and bosons are tightly correlated (e.g.,
supersymmetric systems).

5. Another type of the soliton exists in anionic systems.

Where the first, second, and third conjectures are partly
studied in this article. The third and fifth conjectures are
also associated with clarifying the difference compared to the
Maxwellian systems or anionic systems. That is, as in the present
research, the soliton propagation in quantum systems should be
examined by considering the spin degree of freedom and multi-
dimensional spatial-degree of freedom. The fourth conjecture is
expected to play a role in clarifying and identifying the theory
of everything.

As a closing remark some related open problems should be
pointed out. Although there are several unknown and interesting
topics in nuclear physics, we focus on the soliton propagation in
many-nucleon systems.

• Show the similarity/difference between the soliton “perfect
fluidity” and the bosonic “superfluidity.”

• Show quantitatively that the soliton propagation is
suppressed/enhanced by the interaction terms other than t0-
and t3-terms.

• Show the soliton existence probability under the influence
of many-body dissipation (cf. one-body dissipation in the
main text).

• Find the charge-parity symmetry breaking reaction in
terms of the conditional/unconditional soliton existence
(conditional/unconditional time-reversal symmetry).

These things will clarify the role of the imperfect soliton in many-
nucleon systems. This kind of soliton should be different from the
solitons in many-quark systems.
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