
ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fphy.2020.00160

Frontiers in Physics | www.frontiersin.org 1 May 2020 | Volume 8 | Article 160

Edited by:

Karl Hess,

University of Illinois at

Urbana-Champaign, United States

Reviewed by:

Andrei Khrennikov,

Linnaeus University, Sweden

Juergen Jakumeit,

Access e.V., Germany

*Correspondence:

Hans De Raedt

deraedthans@gmail.com

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 18 March 2020

Accepted: 17 April 2020

Published: 12 May 2020

Citation:

De Raedt H, Jattana MS, Willsch D,

Willsch M, Jin F and Michielsen K

(2020) Discrete-Event Simulation of an

Extended

Einstein-Podolsky-Rosen-Bohm

Experiment. Front. Phys. 8:160.

doi: 10.3389/fphy.2020.00160

Discrete-Event Simulation of an
Extended
Einstein-Podolsky-Rosen-Bohm
Experiment
Hans De Raedt 1,2*, Manpreet S. Jattana 1,3, Dennis Willsch 1, Madita Willsch 1,

Fengping Jin 1 and Kristel Michielsen 1,3

1 Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany, 2 Zernike

Institute for Advanced Materials, University of Groningen, Groningen, Netherlands, 3 RWTH Aachen University, Aachen,

Germany

We use discrete-event simulation to construct a subquantum model that can

reproduce the quantum-theoretical prediction for the statistics of data produced by

the Einstein-Podolsky-Rosen-Bohm experiment and an extension thereof. This model

satisfies Einstein’s criterion of locality and generates data in an event-by-event and

cause-and-effect manner. We show that quantum theory can describe the statistics of

the simulation data for a certain range of model parameters only.
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1. INTRODUCTION

The Einstein-Podolsky-Rosen thought experiment was introduced to question the completeness
of quantum theory [1], “completeness” being defined in reference [1]. Bohm proposed a modified
version that employs the spins instead of coordinates and momenta of a two-particle system [2],
and is experimentally realizable [3–10]. A key issue in the foundations of physics is whether there
exist “local realist” models that yield the statistical results of the quantum-theoretical description of
the Einstein-Podolsky-Rosen-Bohm (EPRB) experiment.

In this paper, we take, as operational definition of a local realist model, any model for which

1. all variables, including those representing events which occur at specific locations and specific
times, always have definite values,

2. all variables change in time according to an Einstein-local, causal process.

In the literature, one often finds the statement that Bell’s theorem [11, 12] rules out any local realist
model for the EPRB experiments. In references [11, 12], Bell gives a proof that a correlation C(a, b)
of the form

C(a, b) =
∫

dλ µ(λ)A(a, λ)B(b, λ) , |A(a, λ)| ≤ 1 , |B(b, λ)| ≤ 1 , 0 ≤ µ(λ),
∫

dλ µ(λ) = 1 , (1)

cannot arbitrarily closely approximate the correlation−a · b for all unit vectors a and b. According
to Bell (see reference [12]), this is the theorem. On the other hand, the quantum-theoretical
description of the EPRB experiment in terms of two spin-1/2 particles in the singlet state yields
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the correlation −a · b. Clearly, there is a conflict between
the quantum-theoretical model of the EPRB experiment and
the model defined by Equation (1). While there can be no
doubt about the mathematical correctness of Bell’s theorem, the
physical relevance of the theorem and its applicability to the
data gathered in laboratory EPRB experiments has been under
scrutiny since its conception [13–49]. A fundamental problem
with the application of Bell’s model Equation (1) to this data is
the following.

Evidently, in a laboratory EPRB experiment, before one can
even think about computing correlations of particle properties,
it is necessary to first classify a detection event as corresponding
to the arrival of a particle or as something else. Any laboratory
EPRB experiment with photons employs a specific, well-defined
procedure to identify photons [3–10]. Such a procedure is
definitely missing in the model Equation (1) proposed and
analyzed by Bell [12]. If the aim is to describe the outcome of
a laboratory EPRB experiment, then not incorporating such a
procedure in the model is a fallacy which, logically speaking,
is not much different from trying to model electrodynamics in
terms of electrical phenomena without taking into account the
magnetic phenomena. Although it is good practice to analyze
the most primitive model first, the observation that it does
not agree with experimental results only suggests that it is
too primitive. The failure of the primitive model to account
for the identification process is the fundamental reason why
Bell’s theorem cannot have the status of a “no-go” theorem
for the existence of a local realist model for a laboratory
EPRB experiment.

In this paper, we use the term “subquantum model” to refer
to a local realist model of an experiment which satisfies the
requirements 1 and 2 and

3. themodel can reproduce the statistical results of the quantum-
theoretical description of the experiment in an event-by-event,
cause-and-effect manner.

The main aim of this paper is to present a subquantum model
for the EPRB experiment and an extended version thereof. The
latter, which we abbreviate by EEPRB, differs from the standard
EPRB experiment in that all the measurements for the four
different pairs of settings, required to perform Bell-inequality
tests, can be made in one single run instead of four runs of the
experiment. As such, the EEPRB experiment is not vulnerable
to the contextuality loophole [44]. We adopt the discrete-event
simulation (DES) approach, introduced in reference [50], to
construct a subquantum model for both the EPRB and EEPRB
experiment. This approach has proven fruitful for constructing
subquantum models for many fundamental quantum-physics
experiments with photons and neutrons [51].

2. DISCRETE-EVENT SIMULATION:
GENERAL ASPECTS

DES is a general methodology for modeling the time evolution
of a system as a discrete sequence of consecutive events [52, 53].
DES is used in many different branches of science, engineering,
economics, finance, etc. [52], but has only fairly recently been

adopted as a methodology to construct subquantum models for
basic, fundamental quantum physics experiments [50, 51].

In the following, whenever we use the term DES, we mean
DES modeling applied to quantum physics problems, not DES in
general. The salient features of this particular application of DES
are the following.

• Events are the basic building blocks of any DES model, just
as points are the basic building blocks of Euclidean geometry.
In DES an event is a defined concept, represented by a model
variable taking a particular value (e.g., a bit changing from zero
into one) at a specific point in time. In contrast to quantum
theory, there is no need to invoke the elusive wave function
collapse to “explain” how quantum theory may eventually be
reconciled with the fact that a measurement yields a definite
yes/no answer, or to appeal to Born’s rule.
• It may be difficult to analyze the behavior of a DES model by

means of differential equations, probability theory, or other
mathematical techniques of theoretical physics. Of course, we
may use e.g., probability or quantum theory to model the
statistics of the data produced by a DES.
• It is not practicable to perform a DES without using a

digital computer. A digital computer itself is a physical
device that changes its internal state (all the bits of the
CPU and memory) in a discrete, step-by-step (clock cycle)
manner. Therefore, a DES algorithm running on a digital
computer (which we assume is error-corrected and operating
flawlessly) can be viewed as a metaphor for an idealized
experiment on a physical device (the digital computer) [54].
All aspects of such an experiment are under the control of
a programmer. In the context of EPRB experiments, this
means that any loophole [55] can be opened or closed at
the discretion of the programmer. For instance, the so-called
contextuality loophole, which is impossible to avoid in a
laboratory EPRB experiment [49], can be trivially closed in a
DES (see below).
• The outcomes of genuine laboratory experiments are subject

to unknown influences but in a DES on a digital computer
(operating flawlessly), there are no such influences. If there
were, it would not be possible to exactly reproduce the results
of a DES. Therefore, DES is “the experiment” to confront a
theory with facts obtained under the same premises as those
on which the theory is based.
• Although a DES algorithm changes the state of a physical

device (the digital computer), the events and variables in a
DES are only metaphors for the “real” detector click, etc. On
the other hand, once it has been established that a DES of a
subquantummodel yields the correct results, one could build a
macroscopic mechanical device that performs exactly the same
as DES.
• DES on a digital computer complies with the notion of realism,

meaning that at any time during the DES, the internal state
of the digital computer is known exactly, all variables of the
simulation model taking definite values. Of course, we can
always “hide” an algorithm and data on purpose. For instance,
we can do this to create the illusion that the “visible” data
is unpredictable (a standard technique to generate pseudo-
random numbers).
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• In a digital computer, there are no signals traveling faster
than light. Therefore, on the most basic level, the internal
operation of a digital computer complies with Einstein’s notion
of local causality. However, there is nothing that prevents us
from performing an acausal analysis of the data. For instance,
if we generate and store a sequence of numbers and then
wish to compute the sum, we may do this by summing the
numbers in the reverse order of how they were generated. This
trivial example shows that one has to distinguish between the
generation of the raw data and the processing of this data. For
the purpose of constructing a local realist DES model, it is
essential that the process that generates the raw data complies
with Einstein’s notion of local causality. It is not permitted to
accumulate data, perform e.g., a discrete Fourier transform or
compute acausal correlations, and use the results to describe a
quantum physics experiment. While both these techniques are
very useful for a wide variety of data processing tasks [56], they
are “forbidden” in a DES of a subquantum model.
• Consistency of the DES methodology demands that a

subquantum model for, say, a beam splitter, must be re-
used, without modification, for all experiments in which
this beam splitter is used. Our DES approach seems to
satisfy this requirement of consistency, at least for a vast
number of fundamental quantum-physics experiments with
photons and neutrons [51]. Our motivation for considering
both the EPRB and extended EPRB (EEPRB) experiments is
to scrutinize the consistency of the DES approach for this
category of experiments.

Finally, to head off misunderstandings, the DES models that
we construct do not, in any way, make use of the quantum-
theoretical predictions for the statistics of the data. Instead,

a DES builds up these statistics by an event-by-event, cause-
and-effect, Einstein-local process. Under appropriate conditions,
these statistics can be described by quantum theory, while in
other cases they cannot (see below).

3. EXTENDED
EINSTEIN-PODOLSKY-ROSEN-BOHM
EXPERIMENT: THEORY

3.1. Thought Experiment
Figure 1 shows the layout of an extended Einstein-Podolsky-
Rosen-Bohm (EEPRB) experiment with spin-1/2 particles [26].
A source is emitting a pair of particles in two spatially separated
directions toward beam splitters BS1 and BS2. In this idealized
experiment, all beam splitters are assumed to be identical,
performing selective (filtering) measurements [57, 58]. Selective
measurements allow us to attach an attribute with definite value
(e.g., the direction of themagneticmoment or of the polarization)
to the particle. For instance, assuming that BS1, BS3, and BS4
perform ideal selective measurements, a particle leaving BS1
along path S1 = +1 (S1 = −1) will always leave BS3 (BS4)
along path S3 = +1 (S3 = −1) if c = a. In case of selective
measurements, we can attach an attribute to the particle, the value
of this attribute being given by S1. We use the same procedure for
attaching attributes to particles leaving the other beam splitters.

Particles leaving BS3, . . . , BS6 are registered by detectors.
All detectors are assumed to be identical and to have a 100%
detection efficiency (we relax this assumption later). The binary
variables xi,j = 0, 1 for i = 1, . . . , 4 and j = 1, 2 (see Figure 1)
indicate which of the four detectors at the left (j = 1) and right
(j = 2) fire. For each pair of emitted particles, exactly one of

FIGURE 1 | Layout of the extended Einstein-Podolsky-Rosen-Bohm experiment with spin-1/2 particles emitted by the source S. The observation station OS1 (OS2)

contains three beam splitters BS1, BS3, and BS4, (BS2, BS5, and BS6) and a clock C1 (C2). The directions of the beam splitters BS1, BS2, BS3, BS4, BS5, and

BS6 are represented by vectors a, b, c, c, d, and d, respectively.
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the detectors on the left and exactly one of the detectors on the
right side of the source will register a particle. This implies that
for j = 1, 2, only one of x1,j, x2,j, x3,j, and x4,j can be non-zero.
The four new variables defined by

S1 = x1,1 + x2,1 − x3,1 − x4,1 ,

S2 = x1,2 + x2,2 − x3,2 − x4,2 ,

S3 = x1,1 − x2,1 + x3,1 − x4,1 ,

S4 = x1,2 − x2,2 + x3,2 − x4,2 , (2)

all take values +1 or −1 (see Figure 1). Clearly, S1 and S3 (S2
and S4) encode, in a unique manner, the path that the left (right)
going particle took. In the following, we use the S’s to formulate
the DES model.

For practical reasons, most laboratory EPRB experiments
are carried out with photons [3–10], the polarization of the
photons playing the role of the spin. From a quantum-theoretical
viewpoint, there is no loss of generality in doing so because
mathematically, the description of the photon polarization is
in terms of Pauli-spin matrix algebra. In the following, to
keep the discussion concise and concrete, we only focus on
(E)EPRB experiments that employ the photon polarization as the
“quantum system” of interest.

A source is emitting a pair of photons in two spatially
separated directions toward beam splitters BS1 and BS2. BS1
sends one photon of the pair to either BS3 or BS4. BS2 sends the
other photon of the pair to either BS5 or BS6. In an ideal model,
all beam splitters are identical. Each beam splitter represents a
combination of wave plates, an electro-optical modulator (EOM),
and a polarizing beam splitter (PBS), see for example Figure 1C in
reference [9]. The EOM acts as a switchable (voltage controlled)
polarization rotator, the rotation being characterized by a two-
dimensional unit vector (indicated by the arrow through the
beam splitter), relative to local frames of reference attached to the
observation stations OS1 and OS2, respectively.

It is expedient to introduce the vectors a = (cos a, sin a),
a⊥ = (− sin a, cos a), b = (cos b, sin b), b⊥ = (− sin b, cos b),
c = (cos c, sin c), c⊥ = (− sin c, cos c), d = (cos d, sin d), and
d⊥ = (− sin d, cos d). Photons leave BS1 with linear polarization
along either a (S1 = +1) or a⊥ (S1 = −1). For the other beam
splitters, we have similar relations between the direction of the
linear polarization of the photons that leave the beam splitters
and the value of the corresponding S-variable.

3.2. Classical Electrodynamics
It is instructive to first consider the case in which the detector
signal is linearly proportional to the intensity of the impinging
light. This case is covered by classical optics, described by
Maxwell’s theory of electrodynamics.

According to empirical evidence, the intensity of light passing
through a polarizer is given by Malus’ law I = I0 cos2(φ − ψ),
where φ is the polarization of the light beam andψ is the rotation
of the polarizer, both relative to a laboratory frame of reference.
I0 is the intensity of the incident light.

We assume that the source emits “special” randomly polarized
light toward BS1 and BS2, special in the sense that the difference

between the polarizations of the two beams φ0 is fixed in time.
Then, using Malus’ law for BS1 and BS2, the correlated intensity
for one particular, random realization of the polarization angle φ
is given by

I1(S1, S2|a, b,φ,φ0)

= I20
1+ S1 cos 2(φ − a)

2

1+ S2 cos 2(φ − b+ φ0)
2

, (3)

where I0 denotes the light intensity of a single beam. Integrating
over all polarizations φ with a uniform density 1/2π yields

I1(S1, S2|a, b,φ0) =
I20
4

[
1+

1

2
S1S2 cos 2(a− b+ φ0)

]
. (4)

Repeated use of Malus’ law and exploiting the fact that the
polarizations of the two beams leaving a beam splitter are
orthogonal, the correlated intensity of the different beams is then
given by

I(S1, S2, S3, S4|a, b, c, d,φ0) =
I20
16

[
1+

1

2
S1S2 cos 2(a− b+ φ0)

]

[
1+ S1S3 cos 2(a− c)

]
[
1+ S2S4 cos 2(b− d)

]
. (5)

The moments of the correlated intensity Equation (5) are

K̂i =
∑

S1 ,S2 ,S3 ,S4=±1
SiI(S1, S2, S3, S4|a, b, c, d,φ0) = 0,

i = 1, 2, 3, 4 ,

K̂ij =
∑

S1 ,S2 ,S3 ,S4=±1
SiSjI(S1, S2, S3, S4|a, b, c, d,φ0),

1 ≤ i < j ≤ 4 ,

K̂ijk =
∑

S1 ,S2 ,S3 ,S4=±1
SiSjSkI(S1, S2, S3, S4|a, b, c, d,φ0) = 0,

i 6= j 6= k 6= i ,

K̂1234 =
∑

S1 ,S2 ,S3 ,S4=±1
S1S2S3S4I(S1, S2, S3, S4|a, b, c, d,φ0)

= I20 cos 2(a− c) cos 2(b− d) . (6)

For φ0 = π/2 (orthogonally polarized beams) and I0 = 1, the
explicit expressions for the two-S correlations are

K̂12 = −
1

2
cos 2(a− b), K̂13 = cos 2(a− c),

K̂14 = −
1

2
cos 2(a− b) cos 2(b− d),

K̂23 = −
1

2
cos 2(a− b) cos 2(a− c),

K̂24 = cos 2(b− d),

K̂34 = −
1

2
cos 2(a− b) cos 2(a− c) cos 2(b− d). (7)

The factor 1/2 which appears in Equation (4) and in four of the
six second moments K̂ij is characteristic of the correlation of two
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light intensities. Here and in the following, we use the hat on
top of the symbols to emphasize that the expressions have been
obtained from a theoretical model.

3.3. Quantum Theory
Classical electrodynamics describes the intensity of light and does
not discriminate between individual events. In contrast, quantum
theory can be used to describe the statistics of events, particularly
in cases, such as the EPRB experiment, where detectors can
discriminate between them.

For a pair of photons whose polarizations are described by
the singlet state, Appendix A shows that the joint probability to
observe one photon in the path labeled by S1 and the other one
in the path labeled by S2 is given by De Raedt et al. [59]

P(S1, S2|a, b,Z) =
1− S1S2 cos 2(a− b)

4
, (8)

where Z denotes a valid proposition that represents all conditions
under which the experiment is performed with the exception of
a and b. Note that for φ0 = π/2, Equation (4) differs from
Equation (8) through the factor 1/2 only.

In Appendix A, we show that the joint probability to observe
one photon in the path labeled by (S1, S3) and the other in the
path labeled by (S2, S4) is given by

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[
1− S1S2 cos 2(a− b)

]

[
1+ S1S3 cos 2(a− c)

]
[
1+ S2S4 cos 2(b− d)

]
. (9)

As already mentioned in the introduction, a subquantum model
for the EEPRB experiment must not make use of Equation (9) to
generate the quadruples (S1, S2, S3, S4).

Note that the only non-trivial difference between
Equations (5) and (9) is that in the former case, the absolute value
of the pre-factor of the S1S2 term never exceeds 1/2 whereas in
the latter case, it is equal to −1. The expressions of the second
moments of Equation (9) read

Ê12 = − cos 2(a− b), Ê13 = cos 2(a− c),

Ê14 = − cos 2(a− b) cos 2(b− d),

Ê23 = − cos 2(a− b) cos 2(a− c), Ê24 = cos 2(b− d),

Ê34 = − cos 2(a− b) cos 2(a− c) cos 2(b− d), (10)

which are not all equal to the corresponding expressions of the
K̂’s, see Equation (7). From Equation (9) it follows that Ê1 =
Ê2 = Ê3 = Ê4 = Ê123 = Ê124 = Ê134 = Ê234 = 0 and
Ê1234 = cos 2(a− c) cos 2(b− d).

Clearly, in order to have a subquantum model generate data
that agrees either withMaxwell’s theory Equation (5) or quantum
theory Equation (9), we only have to construct a subquantum
model in which we can control the pre-factor of the S1S2 term
in Equation (5). Thinking of light as a collection of photons, in
sections 3.4 and 4, we explain how this control naturally results
from the simple fact that we have to classify individual events
as photons or something else, whereas in the “classical” case

this classification is not an issue. At this point, it should be
mentioned that within the context of the classical and quantum
theory of light, changing the prefactor 1/2 of the S1S2 term in
Equation (5) is a subtle issue, intimately related to the amount
of second-order coherence one can observe by measuring either
intensities or by counting clicks of a detector [60]. A discussion
of this important issue is out of the scope of this paper and
we refer the reader who is interested in these aspects to the in-
depth analysis given in reference [60]. In our paper, Equations (5)
and (9) are only used to provide the classical/quantum results
which any valid subquantum model for the (E)EPRB experiment
has to reproduce.

An important feature of this EEPRB experiment is that
all the correlations that are required to test for violations
of Bell/Clauser-Horne-Shimony-Holt (CHSH) inequalities [12,
61] are obtained in a single run (instead of three/four
runs) of the experiment [26]. The EEPRB experiment does
not suffer from the contextuality loophole [49]. As 0 ≤
P(S1, S2, S3, S4|a, b, c, d,Z) ≤ 1, it follows directly that all Bell-
type inequalities, including all variants of the CHSH inequality,
can never be violated [62]. This is easily seen by evaluating the
sum

∑
S1 ,S2 ,S3 ,S4=±1 g(S1, S2, S3, S4)P(S1, S2, S3, S4|a, b, c, d,Z) for

various choices of the function g(S1, S2, S3, S4), such as −1 ≤
g(S1, S2, S3, S4) = S1S2 + S1S3 + S2S3 ≤ 3, or −2 ≤
g(S1, S2, S3, S4) = S1S3 + S1S4 + S2S3 − S2S4 ≤ 2, for example.
In words, the quantum-theoretical description of the EEPRB
experiment predicts that all Bell/CHSH inequalities are satisfied,
in stark contrast to the case in which the correlations that enter
the Bell/CHSH inequalities are computed from the quantum-
theoretical description of the EPRB experiment.

3.4. Practical Realization: Photon
Identification Problem
The exposition in subsection 3.1 assumes that each emitted pair
of particles triggers exactly two detectors, namely only one of the
four detectors at OS1 and one of the four detectors at OS2. In a
laboratory experiment with Stern-Gerlach magnets and magnetic
billiard balls, this assumption may hold true. However, it is not at
all evident to have a source which only creates correlated pairs
of elementary particles, such as photons which upon hitting a
detector, will trigger exactly one detector at OS1 and exactly one
detector at OS2.

With the exception of two experiments [9, 10], EPRB
experiments with photons use time coincidence to identify
photon pairs [3–8]. The two EPRB experiments [9, 10] that do
not rely on time coincidence employ local, adjustable voltage
thresholds to identify photons. This procedure is mathematically
equivalent to attaching a local time tag to each particle, or to
using time coincidence [63]. Therefore, in the following, we
only discuss the subquantum model that uses local time tags as
the vehicle for identifying pairs of photons. The modifications
required to deal with voltage thresholds are trivial [63].

As explained above, a minimal theoretical model of a
laboratory (E)EPRB experiment with photons should include
a procedure to identify (pairs of) photons. Specifically,
not including the data by which the photons and/or pairs

Frontiers in Physics | www.frontiersin.org 5 May 2020 | Volume 8 | Article 160

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


De Raedt et al. Discrete-Event Simulation of EEPRB Experiments

are identified opens the so-called photon identification
loophole [63]. By design, the EPRB experiments that claim
to be loophole free [8–10] all suffer from this loophole.

As shown in Figure 1, observation stations OS1 and OS2 are
equipped with local clocks C1 and C2, respectively. The time
t1 (t2) at which a detector in OS1 (OS2) fires is read off from
the local clock C1 (C2). The clocks C1 and C2 are synchronized
before the source starts to emit pairs of particles and, being ideal
clocks, remain synchronized for the duration of the experiment.
Similarly, the frames of reference of OS1 and OS2 are aligned
before the source starts to emit pairs of particles and do not
change afterwards.

Concretizing the aim of this paper, in the next section, we
describe a local realist model of the (E)EPRB experiment that
reproduces the statistical predictions of quantum theory given
by Equations (8) and (9). In formulating the DES model, we
call the agents that carry the information from the source to the
observation stations “photons” and use the language of optics.

4. SUBQUANTUM MODEL

Before describing all the components of the subquantum model,
we recall the basic strategy that we adopt in constructing such
a model. As quantum theory describes the most ideal version
of the (E)EPRB experiment and as our aim is to show that
the subquantum model reproduces the results of the former,
we construct a DES of the most ideal version of the (E)EPRB
experiment. The DES model for the EEPRB experiment that
we describe next contains the ideal implementation of EPRB
laboratory experiments.

In concert with our general strategy to set up the subquantum
model, we assume that the source emits pairs of photons only
and this at regular time intervals 1. The time at which the nth
pair is emitted is given by Tn = n1. The time it takes for a
photon to travel from the source to BS1 or BS2 is assumed to be
constant and the same for all photons traveling to OS1 and OS2.
We denote this time of flight by T′TOF. Similarly, the time of flight
from BS1 to BS3 or BS4 (BS2 to BS5 or BS6) and the time of flight
from BS3, BS4, BS5, or BS6 to the corresponding detectors are
denoted by T′′TOF and T′′′TOF, respectively. The total time of flight
is then TTOF = T′TOF + T′′TOF + T′′′TOF.

In the DES model, the polarization of the photon traveling to
BS1 (BS2) is represented by a two-dimensional unit vector x1 =
(cosφ, sinφ)T (x2 = (− sinφ, cosφ)T). The angle φ is chosen to
be uniformly random from the interval [0, 2π). As xT1 ·x2 = 0, the
polarizations of the photons of each pair are orthogonal, that is,
they are maximally anticorrelated and randomly distributed over
the unit circle.

In the following, we specify the DES rules for BS1 only. The
rules for the other beam splitters are identical and are obtained
by a simple change of symbols. In the DES model, the operation
of beam splitter BS1 is defined by the rules

S1 =
{
+1 if cos2(φ − a) > r

−1 if cos2(φ − a) ≤ r
, x′1 =

{
a if S1 = +1
a⊥ if S1 = −1

, (11)

where 0 < r < 1 denotes a uniform pseudo-random number.
Here and in the following, it is implicitly understood that a new
instance of the pseudo-random number r is generated with each
invocation of an equation in which r appears. The unit vector
x′1 denotes the polarization of the photon leaving BS1. It is not
difficult to see that the model defined by Equation (11) generates
S1 = +1 (S1 = −1) events with a relative frequency given by
cos2(φ − a) (sin2(φ − a)), i.e., Equation (11) produces data that
is in concert with Malus’ law if the polarization of the incident
photon is constant in time.

Optical components, such as wave plates and EOMs contain
birefringent material which changes the polarization by retarding
(or delaying) one component of the polarization with respect to
its orthogonal component. In the DES, this retardation effect is
accounted for by assuming that as a photon passes through a
beam splitter, it may suffer from a time delay which may depend
on the direction of the beam splitter relative to the polarization
of the photon.

Obviously, the law of retardation in the subquantum model
cannot be derived from Maxwell’s theory or quantum theory.
We can only find the subquantum law of retardation by trial
and error. Fortunately, from earlier work we already know the
subquantum law of retardation for the EPRB experiment [64, 65]
and we only need to extend this law slightly to have the DES
reproduce the quantum-theoretical results for both the EPRB and
EEPRB experiment. Specifically, for BS1, the two DES rules for
the subquantum law of retardation read

τ1 = τEPRB(x1, a)
∣∣∣∣
1− x1 · u1

2

∣∣∣∣
β

= r′Tmax
∣∣sin 2(φ − a)

∣∣α
∣∣∣∣
1− x1 · u1

2

∣∣∣∣
β

, u1 ← x1 ,

(12)

where x1 (or equivalently φ) is the polarization of the incoming
photon, 0 < r′ < 1 is another uniform pseudo-random number,
Tmax is an adjustable parameter specifyingmaximum retardation,
and α > 0 is an adjustable parameter controlling the dependence
of the retardation on the difference between the photon
polarization x1 and the orientation of the beam splitter a. As
indicated by the subscript EPRB, τEPRB = r′Tmax

∣∣sin 2(φ − a)
∣∣α

suffices to reproduce the quantum-theoretical results of the EPRB
experiment [54, 59, 63–65].

The new features are the last factor in Equation (12), β > 0
being an adjustable parameter, and the rule u1 ← x1 which
updates the two-dimensional vector u1. The initial value of u1
can be any vector that has a norm ≤1. This vector is attached to
the beam splitter and may be thought of as representing (on a
subquantum level) the electrical polarization of the material [51].

The purpose of the factor |(1 − x1 · u1)/2|β in Equation (12)
is to turn off the generation of random retardation times if the
polarization of the incoming photons is constant. To see how
this works, first consider the case that the polarization of the
incoming photons is constant, say x1 = x̃1. Then, after the first
photon has passed by, u1 = x̃1 and |(1 − x1 · u1)/2|β = 0 for
all photons that follow. Next, assume that the polarization of the
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photons entering BS1 is randomly distributed over the unit circle.
Then, because x1 and u1 (which is equal to the polarization x1 of
the previous photon) are independent, |(1 − x1 · u1)/2|β is just
a random variable in [0, 1] multiplying τEPRB. The idea to store
and use the value of the polarization of the previous photon has
also been used to reproduce, by DES, the quantum-theoretical
results for a large variety of single-photon and single-neutron
experiments [50, 51]. The capability of the subquantum model
to disable the generation of random retardation times if the
polarization of the incoming photons is constant is essential for
reproducing the quantum-theoretical results of both the EPRB
and EEPRB experiments with the same subquantum model.

At this point, it may be of interest to mention that on the
basis of the statistics (i.e., averages and correlations) only, it is
not possible to make statements about the uniqueness of the
subquantum law of retardation. As a matter of fact, in the case
at hand, replacing Equation (12) by the rules

τ1 = τEPRB(x1, a)
∣∣∣∣
1− u1 · u1

2

∣∣∣∣
β

(13)

= r′Tmax
∣∣sin 2(φ − a)

∣∣α
∣∣∣∣
1− u1 · u1

2

∣∣∣∣
β

,

u1 ← γu1 + (1− γ )x1 , (14)

works equally well.
Equation (14) defines a deterministic learning machine

(DLM) [50, 51], which learns, event-by-event, the time average
of the polarizations x1 carried by the photons. The speed and
accuracy by which u1 approaches the time average of the x1’s is
controlled by the parameter 0 < γ < 1 [51]. The order in which
Equations (13) and (14) are executed is irrelevant. The DLM
defined by Equation (14) is the same as the one that has been used
to reproduce, by DES, the quantum-theoretical results for a large
variety of single-photon and single-neutron experiments [50, 51].
If the polarizations of the incoming photons are constant, say x̃1,
and a certain number (depending on γ ) of photons has passed by,
we have u1 ≈ x̃1 and |(1−u1 ·u1)/2|β ≈ 0. If the polarizations of
the photons entering BS1 are randomly distributed over the unit
circle, u1 → 0 and |(1−u1 ·u1)/2|β ≈ 1. Then, just as in the case
of Equation (12), the factor |(1 − u1 · u1)/2|β in Equation (4) is
used to turn off the generation of random retardation times if the
polarizations of the incoming photons are constant.

In our idealized experiment, all detectors are assumed to be
identical and to have a 100% detection efficiency. After a photon
has passed BS3 or BS4 (BS5 or BS6), it may trigger one and only
one detector in OS1 (OS2), symbolized by one of x1,1, x2,1, x3,1,
or x4,1 (x1,2, x2,2, x3,2, or x4,2) being equal to one and the other
ones being equal to zero. The time t1 (t2) at which a detector
in OS1 (OS2) fires is read off from the local clock C1 (C2).
These local clocks C1 and C2 are synchronized before the source
starts to emit pairs of photons and, being ideal clocks, remain
synchronized for the duration of the experiment. For the nth
emitted pair, the arrival times are given by

t1,n = TTOF + n1+ τ1,n +




τ3,n if S1 = +1

τ4,n if S1 = −1
, (15)

t2,n = TTOF + n1+ τ2,n +




τ5,n if S2 = +1

τ6,n if S2 = −1
, (16)

where we have attached the subscript n to keep track of which
pair of the emitted pairs we are dealing with. For each pair-
emission event n = 1, . . . ,N, Equations (11)–(16) generate the
data (S1,n, S3,n, t1,n) and (S2,n, S4,n, t2,n). Note that OS1 and OS2
only share the angle of polarization φ characterizing the pair of
photons, nothing else.

In each triple in (Si,n, Si+2,n, ti,n), we replace the time variable
by a (local) binary variable wi,n to indicate whether a detection
event is classified as a photon (wi,n = 1) or not (wi,n =
0). Specifically, the rule to decide whether a detection event
corresponds to the observation of a photon or of something else
is given by

wi,n =





1 if 0 ≤ ti,n − TTOF − n1 ≤W,
“a photon”

0 if ti,n − TTOF − n1 >W,
“something else”

i = 1, 2, (17)

where W is the time window (an adjustable parameter). We
emphasize that the decision process defined by Equation (17)
only involves variables that are local to the observation stations.

Equations (11)–(17) define the rules by which the subquantum
model generates the data sets

S1 =
{
(S1,n, S3,n,w1,n) | n = 1, . . . ,N

}
and

S2 =
{
(S2,n, S4,n,w2,n) | n = 1, . . . ,N

}
, (18)

collected by OS1 and OS2, respectively. From the data sets S1

and S2, we compute the single- and two-particle averages

Ki =
1

N

N∑

n=1
Si,n, Ei =

∑N
n=1 w1,nw2,nSi,n∑N
n=1 w1,nw2,n

, i = 1, 2, 3, 4

Kij =
1

N

N∑

n=1
Si,nSj,n,Eij =

∑N
n=1 w1,nw2,nSi,nSj,n∑N

n=1 w1,nw2,n
,

(i, j) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) , (19)

without (K’s) and with (E’s) the photon identification process
in place.

5. SIMULATION RESULTS

Below, we specify the DES parameters that have been used,
discuss the data shown in Figures 2, 3, and provide additional
information about simulation data that we do not show.

• The number of emitted pairs is N = 1, 000, 000 per setting
(a, b, c, d).
• The maximum retardation time was chosen to be Tmax =

5, 000 (dimensionless units). Pairs of particles are emitted with
a time interval1 > 2Tmax. In line with our strategy to perform
an ideal experiment, this choice eliminates the possibility of
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FIGURE 2 | DES results for the correlations between all pairs of the S-variables as a function of θ = a− b, with b = 0, c = a+ π/6, and d = π/3. The source emits

pairs of photons with orthogonal polarizations chosen randomly. Ignoring statistical fluctuations, the averages of all S-variables (not shown) are zero. (A) The

correlations Kij computed without photon identification (markers) are in excellent agreement with the corresponding correlations K̂ij [see Equation (7)] predicted by

Maxwell’s theory (solid lines) for two light beams with orthogonal, random polarization (φ0 = π/2); (B) The correlations Eij computed with photon identification

(markers) are in excellent agreement with the corresponding correlations Êij predicted by quantum theory [solid lines, see Equation (10)] for two spin-1/2 particles in a

singlet state.

FIGURE 3 | Same as Figure 2 except that the source emits pairs of photons with the same instead of orthogonal polarizations chosen randomly. (A) The correlations

Kij computed without photon identification (markers) are in excellent agreement with the corresponding correlations K̂ij (solid lines) predicted by Maxwell’s theory for

two light beams with the same, random polarization (φ0 = 0); (B) The correlations Eij computed with photon identification (markers) cannot be obtained from quantum

theory for two spin-1/2 particles (see Appendix B) but are in excellent agreement with the corresponding correlations (solid lines) obtained from the expression

Equation (9) in which the factor [1− S1S2 cos 2(a− b)] is replaced by [1+ S1S2 cos 2(a− b)].

misidentifying pairs and also ensures that at each instant of
time, there is only one photon in transit to OS1 and only one
other photon en route to OS2. For TTOF we can take any non-
negative value. In fact, from Equation (17) it follows that the
actual values of1 and TTOF do not enter in the DES algorithm.
• In Figure 2A, we show the DES results for the case without

photon identification (that is if W > Tmax or α = β = 0).
Then the DES reproduces the results of Maxwell’s theory, by
an event-by-event process [66]. Specifically, if the polarization
of the incoming photon is constant, the DES model of the
beam splitter itself generates data according toMalus’ law. The
DESmodel of the EEPRB experiment with randomly polarized
light produces data that, ignoring statistical fluctuations, is in
excellent agreement with Equation (7) (see Figure 2A).
• Using a local time window W = 1 (dimensionless units)

and for α = 4 and β = 1/2, the event-by-event process

yields results (see Figure 2B) for the E’s which are in excellent
agreement with quantum theory (data for the first, third, and
fourthmoments are not shown). The ratio of identified photon
pairs to emitted pairs depends on a and b and varies between
∼ 11% for a = b and 0.1% for |a− b| = π/4. ForW = 8, this
ratio changes to∼ 18% for a = b and 0.8% for |a− b| = π/4,
while the agreement with quantum theory is still very good
(data not shown).
• The data obtained by identifying photons using time

coincidence instead of local time windows are almost the same
and are therefore not shown. In the limit W/Tmax → 0,
N → ∞, and α = 4, it has been proven analytically that
the DES model of the EPRB experiment yields the correlation
E12 = − cos 2(a− b) exactly [65].
• Using the same pseudo-random sequence for each choice

of settings renders the DES compliant with the notion of
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a counterfactually definite theory. In this case, the DES
results (data not shown) are, for all practical purposes, the
same as those obtained by using different pseudo-random
sequences for each choice of settings. Operating in this mode,
the subquantum model of the EPRB experiment does not
suffer from the contextuality loophole [49] nor of any other
known loopholes [55]. This confirms the conclusion of an
earlier work [54], which adopted a different approach to
realize counterfactually-definite compliant simulations. The
demonstration that there exist both counterfactually-definite
and non-counterfactually-definite compliant computer
models for the EPRB experiments that produce results in
complete agreement with those of quantum theory implies
that, for the case of EPRB experiments, counterfactual
definiteness is not incompatible with quantum physics [63].
• In the DES, it is trivial to account for the detection efficiency

0 ≤ η ≤ 1. For each detection event, we generate a pseudo-
random number r′′ and remove the detection event from the
data set if r′′ > η. We find that the only effect of reducing η
is to increase the statistical fluctuations (data not shown). The
agreement with quantum theory is not affected.
• In Figure 3, we show the DES results for the case in which

the source emits photons with the same polarization chosen
randomly. In this case, the DES reproduces the results of
Maxwell’s theory (Figure 3A). A corresponding quantum-
theoretical result does not exist, see Appendix B. However,
the DES data are in excellent agreement with a non-quantum
probabilistic theory in which the factor

[
1− S1S2 cos 2(a− b)

]

in Equation (9) is replaced by
[
1 + S1S2 cos 2(a − b)

]
(see

Figure 3B).
• Replacing the rules Equation (12) by the rules Equations (13)

and (14), and repeating the DES with the same value of α and
β also yields data (not shown) that are in excellent agreement
with the quantum-theoretical description, for γ in the range
[0.1, 0.98].
• Our DES model also reproduces the theoretical results (see

Appendix C) if the two photons of each pair have a fixed
polarization (results not shown). In Maxwell’s theory, this
case is described by light beams with fixed polarizations. In
quantum theory, this case is described by an (uncorrelated)
product state.

Table 1 gives a compact overview of the agreement between
the DES results and the theoretical descriptions of the
(E)EPRB experiments.

6. DISCUSSION AND SUMMARY

Laboratory EPRB experiments unavoidably require a procedure
to classify a detection event as corresponding to a photon
or as something else. Independent of the precise nature of
this procedure (voltage threshold, local time window, time
coincidence, etc.), any model that aims at describing an EPRB
experiment should, from the start, account for this procedure by
introducing additional variables into the description. In contrast,
Bell’s model, while charmingly simple, does not account for
an essential aspect of laboratory EPRB experiments, namely
the classification of detection events in terms of photons or
something else. Consequently, any subquantum model that aims
at reproducing the results of quantum theory for the (E)EPRB
experiment should have features that are not included in Bell’s
model. As a matter of fact, a quick glance at how the data of
laboratory EPRB experiments are being processed reveals that
it is the photon identification process which is lacking in Bell’s
model. Including this process implies that correlations between
events are calculated only from subsets of the data, in which case
Bell’s theorem does not apply. Using only subsets of the data,
there is only the constraint that the correlation should, in absolute
value, be≤1. Apart from that “almost everything” is possible [20,
67–69], including a subquantum model that, in the appropriate
limit, yields the correlation of the singlet state [64, 65].

Clearly, on the basis of the statistical data alone, it is not
possible to reject subquantum models of the EPRB and EEPRB
experiments presented in this paper. The relevant question is
how a laboratory experiment can rule out or confirm that (i)
a subquantum level description is possible and/or (ii) the rules
by which the DES model of the beam splitter operates provide a
reasonable description.

Regarding (i): If we consider it as irrelevant to ask what kind of
process gives rise to the statistics of events, it seems very difficult
to beat quantum theory in terms of descriptive power [70].
Therefore, it is clear that addressing (i) requires the analysis of
the data on the level of individual events, without being biased by
what quantum theory predicts for the statistics.

Regarding (ii): The DES model defined by Equations (11)
and (12) or Equations (11), (13), and (14) produces data in
concert with Malus’ law, i.e., with the experiment, and therefore
seems solid. The additional feature of the DES model (which
allows us to reproduce the statistics of the EPRB and EEPRB
experiments as given by quantum theory) is the subquantum
law of retardation, defined by Equation (12) or Equations (13)

TABLE 1 | Overview of the agreement between the DES results and the theoretical descriptions of the (E)EPRB experiments.

Without photon identification With photon identification

Photon pair polarization EPRB EEPRB EPRB EEPRB

Orthogonal + random MT [Equation (4), φ0 = π/2] MT [Equation (5), φ0 = π/2] QT [Equation (8)] QT [Equation (9)]

Parallel + random MT [Equation (4), φ0 = 0] MT [Equation (5), φ0 = 0] ? ?

Fixed MT [Equation (C1)] MT [Equation (C2)] QT [Equation (C1)] QT [Equation (C2)]

MT, DES results agree with Maxwell’s theory of electrodynamics; QT, DES results agree with quantum theory of a pair of spin-1/2 particles. Question mark: DES results cannot be

described by quantum theory of a pair of spin-1/2 particles (see Appendix B).
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and (14). At first sight, there is no experimental support for
such a law. However, let us look at the EPRB experiment from
a slightly different perspective, namely, as a setup to characterize
the response of the observation stations to very feeble, randomly
anticorrelated light. Then, our DES data and also the analysis
of experimental data [65] support the hypothesis that the EPRB
experiment demonstrates that the statistics of the detection
events that have been classified as photons depend on the settings.

What if we try to measure the retardation by an experiment
that uses feeble light with fixed polarization? As explained in
section 4, in our subquantum model the retardation time does
not depend on the setting of the beam splitter if the polarization
is constant in time. Only if the polarization is not fixed in time,
our subquantum model yields retardation times that depend
on the setting of the beam splitter. This is precisely what the
EPRB experiment does: through the correlation, it provides
information about the retardation as a function of the setting of
the beam splitter. Therefore, to rule out the subquantum law of
retardation used in our DES, it is necessary to perform both the
experiments with feeble, randomly polarized light and with feeble
light of fixed polarization.

Summarizing, we have proposed a subquantum model
which satisfies Einstein’s criterion of locality and which
generates, event-by-event, data that agrees with the quantum-
theoretical description of the Einstein-Podolsky-Rosen-Bohm
and the extended Einstein-Podolsky-Rosen-Bohm experiments.
This demonstration does not build on the traditional methods
of theoretical physics but instead uses a digital computer and a
discrete-event simulation as a metaphor for idealized, realizable
laboratory experiments.
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APPENDIX A: QUANTUM THEORY OF THE
(E)EPRB EXPERIMENT

For reference, we briefly review the quantum-theoretical
description of the EPRB and EEPRB experiment. In this
appendix, for the sake of generality, we first consider magnetic
spin-1/2 particles passing through Stern-Gerlach magnets.

In the context of (E)EPRB experiments, the case of interest
is a system of two spins in the singlet state, described by the
density matrix

ρ =
11− σ 1 · σ 2

4
=

1

2




0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0




=
(
|↑↓〉 − |↓↑〉
√
2

) (
〈↑↓| − 〈↓↑|
√
2

)
. (A1)

A selective measurement on the spin-1/2 particle is described by
the operator Ballentine [58]

M(S, σ , x) =
11+ S σ · x

2
= M2(S, σ , x), (A2)

projecting a state of the spin-1/2 system onto the eigenstate of
σ · x with eigenvalue S = ±1.

The probabilities to observe the outcomes S1 and S2 in an
EPRB experiment are given by Ballentine [58]

P(S1|a) = Tr M(S1, σ 1, a) ρ M(S1, σ 1, a) = Tr ρ M(S1, σ 1, a) ,

P(S2|b) = Tr M(S2, σ 2, b) ρ M(S2, σ 2, b) = Tr ρ M(S2, σ 2, b) , (A3)

respectively. For two spin-1/2 particles in the singlet state
Equation (A1), we have P(S1|a) = 〈σ 1 · a〉 = 1/2 and P(S2|b) =
〈σ 2 · b〉 = 1/2, The probability to observe the joint event (S1, S2)
is given by Ballentine [58]

P(S1, S2|a, b)
= Tr M(S2, σ 2, b)M(S1, σ 1, a) ρ M(S1, σ 1, a)M(S2, σ 2, b)

= Tr ρ M(S1, σ 1, a)M(S2, σ 2, b), (A4)

where we used the fact that [M(S1, σ 1, a),M(S2, σ 2, b)] = 0
for all a and b. For two spin-1/2 particles in the singlet state
Equation (A1), Equation (A4) becomes

P(S1, S2|a, b) =
1− S1S2 a · b

4
. (A5)

Similarly, the probability to observe the joint event (S1, S2, S3, S4)
is given by

P(S1, S2, S3, S4|a, b, c, d) = Tr
[
M(S4, σ 2, d)M(S3, σ 1, c)

M(S2, σ 2, b)M(S1, σ 1, a)ρ M(S1, σ 1, a)

M(S2, σ 2, b)M(S3, σ 1, c)M(S4, σ 2, d)
]

= Tr
[
ρ M(S1, σ 1, a)M(S3, σ 1, c)

M(S1, σ 1, a)M(S2, σ 2, b)M(S4, σ 2, d)

M(S2, σ 2, b)
]
. (A6)

Performing the matrix multiplications and calculating the trace
we obtain

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[
1− S1S2 a · b

]

[
1+ S1S3 a · c

]
[
1+ S2S4 b · d

]
. (A7)

The derivation of the quantum-theoretical description of an
experiment with photon polarization instead of magnetic spin-
1/2 particles is not much different, for details see reference [71].
The upshot is that we only have to replace a · b by cos 2(a − b)
etc. Thus, in the case of an EEPRB experiment that uses the
polarization of the photons, the probability to observe the joint
event (S1, S2, S3, S4) is given by

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[
1− S1S2 cos 2(a− b)

]

[
1+ S1S3 cos 2(a− c)

]
[
1+ S2S4 cos 2(b− d)

]
. (A8)

APPENDIX B: A LIMITATION OF QUANTUM
THEORY FOR TWO SPIN-1/2 PARTICLES

If the random polarizations of particles that enter BS1 and BS2
are the same instead of orthogonal, the DES generates data which,
within the usual statistical fluctuations, is characterized by E1 =
E2 = 0, and E12 = + cos 2(a−b). In this appendix, we prove that
a two-particle system with single-particle averages Ê1 = Ê2 = 0,
and pair correlation Ê12 = + cos 2(a− b) cannot be described by
the quantum theory of two spin-1/2 particles. As in Appendix A,
we consider the general case of two spin-1/2 particles and deal
with the case of photon polarization at the end.

Using the Pauli-matrices and the 2 × 2 unit matrix as a basis
of the vector space of 2 × 2 matrices, we can, without loss
of generality, write the 4 × 4 density matrix of the two-spin
system as

ρ̂ =
1

4


11+

∑

k=x,y,z

ukσ
k
1 +

∑

k=x,y,z

vkσ
k
2 +

∑

k,l=x,y,z

σ k
1wk,lσ

l
2


 ,

(B1)

where the u’s and v’s are real numbers and the w’s are the
elements of a Hermitian matrix. According to quantum theory,
we then have

Ê1 =〈σ 1 · a〉 = Tr ρ̂ σ 1 · a = u · a
Ê2 =〈σ 2 · b〉 = Tr ρ̂ σ 2 · b = v · b

Ê12 =〈σ 1 · a σ 2 · b〉 = Tr ρ̂ σ 1 · a σ 2 · b = aT · w · b . (B2)

If for all unit vectors a and b we have 〈σ 1 · a〉 = 〈σ 2 · b〉 = 0
and 〈σ 1 · a σ 2 · b〉 = −q a · b, then u = v = 0 and w = −q 11,
implying that

ρ̂q =
11− q σ 1 · σ 2

4
. (B3)
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The four eigenvalues of σ 1 · σ 2 are 1, 1, 1, and−3. Therefore, ρ̂q
has a negative eigenvalue if q < −1/3 and in this case ρ̂q does not
qualify as a density matrix whereas ρ̂q=1 = (11− σ 1 · σ 2)/4 does
(and represents the singlet state).

In summary, there does not exist a quantum-theoretical
description in terms of a 4 × 4 density matrix that yields Ê1 =
Ê2 = 0 and Ê12 = +|q|a·b or for all unit vectors a and b and |q| >
1/3. This includes the special case for which Ê12 = + cos 2(a−b)
and Ê1 = Ê2 = 0.

APPENDIX C: PRODUCT STATE

For completeness, we give the expressions for the probabilities for
the case that the two photons of each pair leave the source with
fixed polarization p and q, respectively. Instead of Equation (8),
we have

P(S1, S2|a, b,Z) =
1+ S1 cos 2(a− p)

2

1+ S2 cos 2(b− q)

2
,

(C1)

and instead of Equation (9), we have

P(S1, S2, S3, S4|a, b, c, d,Z) =
1

16

[
1+ S1 cos 2(a− p)

]

[
1+ S2 cos 2(b− q)

]
[
1+ S1S3 cos 2(a− c)

]
[
1+ S2S4 cos 2(b− d)

]
.

(C2)

Note that Equations (C1) and (C2) also apply to the case of
classical optics with I0 = 1.
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