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The present work investigates the applicability and effectiveness of the generalized

Riemann-Liouville fractional integral operator integral method to obtain new Minkowski,

Grüss type and several other associated dynamic variants on an arbitrary time scale,

which are communicated as a combination of delta and fractional integrals. These

inequalities extend some dynamic variants on time scales, and tie together and expand

some integral inequalities. The present method is efficient, reliable, and it can be used

as an alternative to establishing new solutions for different types of fractional differential

equations applied in mathematical physics.
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1. INTRODUCTION

Fractional calculus has also been comprehensively utilized in several instances, but the concept has
been popularized and implemented in numerous disciplines of science, technology and engineering
as a mathematical model (see [1, 2]). Numerous distinguished generalized fractional integral
operators consist of the Hadamard operator, Erdlelyi-Kober operators, the Saigo operator, the
Gaussian hypergeometric operator, the Marichev-Saigo-Maeda fractional integral operator, and so
on.; out of the ones, the Riemann-Liouville fractional integral operator has been extensively utilized
by researchers in theory as well as applications (see [1, 3–8]).

Stefan Hilger began the theories of time scales in his doctoral dissertation [9] and combined
discrete and continuous analysis (see [10, 11]). From this moment, this hypothesis has received
a lot of attention. In the book written by Bohner and Peterson [12] on the issues of time scale, a
brief summary is given and several time calculations are performed. Over the past decade, many
analysts working in specific applications have proved a reasonable number of dynamic inequalities
on a time scale (see [13–15]). Several researchers have created various results relating to fractional
calculus on time scales to obtain the corresponding dynamic inequalities (see [16–20]).

Recently, the idea of the fractional-order derivative has been expounded by Bastos et al. [16] via
Riemann-Liouville fractional operators on scale versions by considering linear dynamic equations.
Another approach on time scales shifts to the inverse Laplace transform [18]. Following such
innovator work, the investigation of fractional calculus on time scales created in a mainstream
look into research studies on time scales (see [18, 21–29] and references therein). Since the
publications in 2015, several researchersmade significant contributions to the history of time scales.
Sun and Hou [30] employed the fractional q-symmetric systems on time scales. Yaslan and Liceli
[29] obtained the three-point boundary value problem with delta Riemann-Liouville fractional

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00165
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00165&domain=pdf&date_stamp=2020-06-03
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:n.sooppy@psau.edu.sa
https://doi.org/10.3389/fphy.2020.00165
https://www.frontiersin.org/articles/10.3389/fphy.2020.00165/full
http://loop.frontiersin.org/people/912467/overview
http://loop.frontiersin.org/people/917230/overview
http://loop.frontiersin.org/people/809231/overview
http://loop.frontiersin.org/people/73178/overview
http://loop.frontiersin.org/people/970551/overview


Rashid et al. New Dynamic Scheme on Time Scale

derivative on time scales. Yan et al. [31] adopted the Caputo
fractional techniques on differential equations on time scales.
Zhu and Wu [32] employed Caputo nabla fractional derivatives
in order to find the existence of solutions for Cauchy
problems. As certifiable utilities, we refer to the study of
calcium ion channels that are impeded with an infusion of
calcium-chelator ethylene glycol tetraacetic acid [33]. Actually,
physical utilization of initial value-fractional problems in
diverse time scales proliferates [10, 34, 35]. For instance, the
continuous time scale T = R, the fractional differential
equations that oversee the practices of viscoelastic materials
with memory and creep tendencies have been investigated in
Chidouh et al. [36].

Integral Inequalities are an excellent way to investigate many
scientific fields of research, including engineering, flow dynamics,
biology, chaos, meteorology, vibration analysis, biochemistry,
aerodynamics and many more. Since the productions of the
above outcome in 1883, several works have been published in
the literature of time calculus, with varied evidence, various
speculations and improvements [37–51]. Recently, numerous
analysts examined various inequalities, such as Hermite-
Hadamard inequalities, Ostrowski inequalities and the expanded
version of Hardy-type inequalities (see [13–15, 24, 52] and the
references therein).

Here, we broaden accessible outcomes in the literature [53]
by presenting increasingly broad ideas of fractional integral
inequalities on time scales in the frame of generalized Riemann-
Liouville fractional integral. At that point, we study the dynamic
variants of corresponding generalized fractional-order on time
scales. We obtain the inequalities Grüss, Minkowski and several
others using the delta integrals in arbitrary time scales. For
δ = 1, the integral will become delta integral and for δ =
0, it advances toward turning out to be nabla integral. An
astounding audit about the time scale calculus can be found
in the paper [54]. The proposed dynamical integral method is
reliable and effective to obtain new solutions. This method has
more advantages: it is direct and concise. Thus, the proposed
method can be extended to solve many systems of non-
linear fractional partial differential equations in mathematical
and physical sciences. Also, the new exact analytical solutions
can be obtained for the generalized ordinary differential
equations to obtain new theorems related to stability and
continuous dependence on parameters for dynamic equations on
time scales.

The present work investigates the applicability and
effectiveness of the several dynamic variants that are presented,
which are based primarily on the generalized Riemann-
Liouville fractional integral operators. We will show that the
Grüss and Minkowski type, that we participated in are very
specific to the current work. From an application point of
view, the results ultimately relate to the study of Young’s
inequality, arithmetic, and geometry inequality. Our computed
outcomes can be very useful as a starting point of comparison
when some approximate methods are applied to this non-
linear space-time fractional equation. Furthermore, there
are likewise some occurrences that can be derived from
our outcomes.

2. PRELIMINARIES

A non-empty closed subsets R of T is known as the time scale.
The well-known examples of time scales theory are the set of real
numbers R and the integers Z . Throughout the paper, we refer
T as time scale and a time-scaled interval is ϒT = [υ1, υ2]T. We
need the concept of jump operators. The forward jump operator
is denoted by the symbol ♦ and the backward jump operator is
denoted by ϑ , are said through the formulas:

♦(t) = inf{λ ∈ T : ρ > t} ∈ T, ϑ(ω) = sup{ρ ∈ T : ρ < ω} ∈ T.

We accumulate as:

inf∅ := supT, sup ∅ := infT.

If♦(t) > t, then the term t is allude to be right-scattered and ω is
allude to be left-scattered ̺(ω) < ω. The elements that are most
likely all the while appropriate-scattered and scattered are known
as isolated. The term t is said to be right dense, if ♦(t) = t, and
ω is said to be left dense, if ̺(ω) = ω. In addition, the focuses
t,ω are known to be dense if they are most likely right-dense
and left-dense.
The mappings µ, ν :T → [0,+∞) defined by

µ(t) := ♦(t)− t,

ν(t) := t − ϑ(t)

are called the forward and backward graininess
functions, respectively.

Definition 2.1. [12, 55] “Let h̄ :T → R be a real-valued function.
Then h̄ is said to beRD-continuous onR if its left limit at any left
dense point ofT is finite and it is continuous on every right dense
point of T. AllRD-continuous functions are denoted by CRD .”

Definition 2.2. “A function F :T → R is called a delta
antiderivative of h̄ :T → R if F1(t) = h̄(t), for all t ∈ T

k. Then,

one defines the delta integral by
t
∫

υ1

h̄(s)1s = F(t)− F(υ1).”

Theorem 2.1. [55]. If h̄ ∈ CRD and t ∈ T
k, then

♦(t)
∫

t

h̄(s)1s = µ(t)h̄(t).

Theorem 2.2. [55]. Let υ1, υ2, υ3 ∈ T, β ∈ R and h̄,ω ∈ CRD,
then

(i).
υ2
∫

υ1

(

h̄1(ρ)+ h̄2(ρ)
)

1ρ =
υ2
∫

υ1

h̄1(ρ)1ρ +
υ2
∫

υ1

h̄2(ρ)1ρ;

(ii).
υ2
∫

υ1

βh̄(ρ)1ρ = β
υ2
∫

υ1

h̄(ρ)1ρ;
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(iii).
υ2
∫

υ1

h̄(ρ)1ρ = −
υ1
∫

υ2

h̄(ρ)1ρ;

(iv).
υ2
∫

υ1

h̄(ρ)1ρ =
ς3
∫

υ1

h̄(ρ)1ρ +
υ2
∫

ς3

h̄(ρ)1ρ;

(v).
υ2
∫

υ1

h̄♦1 (ρ)h̄
1
2 1ρ =

(

h̄1h̄2
)

(υ2) −
(

h̄1h̄2
)

(υ1) −
υ2
∫

υ1

h̄1
1 (ρ)h̄2(ρ)1(ρ);

(vi).
υ2
∫

υ1

h̄1(ρ)h̄
1
2 1ρ =

(

h̄1h̄2
)

(υ2) −
(

h̄1h̄2
)

(υ1) −
υ2
∫

υ1

h̄1
1 (ρ)h̄

♦
2 (ρ)1(ρ);

(vii).
υ2
∫

υ1

h̄(ρ)1(ρ) = 0;

(viii). If h̄(ρ) ≥ 0 for all ρ, then
υ2
∫

υ1

h̄(ρ)1(ρ) ≥ 0;

(ix). If |h̄1(ρ)| ≤ h̄2(ρ) on [υ1, υ2], then
∣

∣

∣

υ2
∫

υ1

h̄1(ρ)1ρ

∣

∣

∣
≤

υ2
∫

υ1

h̄2(ρ)1(ρ).

From Theorem 2.2 (ix), for h̄2(ρ) = |h̄1(ρ)| on [υ1, υ2], we have

∣

∣

∣

υ2
∫

υ1

h̄(ρ)1ρ

∣

∣

∣
≤

υ2
∫

υ1

∣

∣h̄(ρ)
∣

∣1(ρ).

Proposition 2.1. [56] Consider a time scale T and h̄ is an
increasing continuous function on ϒT. An extension of h̄ on ϒT

is F given as

F(θ) :=















h̄(θ), if θ ∈ T

h̄(η), if θ ∈ (η, σ (η)) 6⊂ T,

then

υ2
∫

υ1

h̄(η)1h̄ ≤
υ2

∫

υ1

F(h̄)dh̄.

Next we demonstrate the idea of fractional integral on time scale,
which is mainly due to [16].

Definition 2.3. [16] “For 0 < δ < 1, let ϒT ⊂ T is a time scale
and F be an integrable function on ϒT. Then the (left) fractional
integral of order δ of F is defined by

T

υ1
J

δ
η (η) =

1

Ŵ(δ)

η
∫

υ1

(η − θ)δ−1
F(θ)1θ , (1)

where Ŵ is the gamma function.”

Again, we demonstrate the concept of generalized Riemann-
Liouville fractional integral operator which is proposed by [24].

Definition 2.4. [24] “For 0 < δ < 1, let T is a time scale and
[υ1, υ2] is an interval of T. Suppose F be an integrable function
on [υ1, υ2] and 8 is monotone having a delta derivative 81 with
81 6= 0 for any η ∈ [υ1, υ2]. Let 0 < δ < 1, then the (left)
generalized fractional integral of order δ ofF with respect to8 is
defined by

T

υ1;8J
δ
η (η) =

1

Ŵ(δ)

η
∫

υ1

(8(η)− 8(θ))δ−181(θ)F(θ)1θ .′′ (2)

Remark 2.1. If T = R, then Definitions 2.3 and 2.4 reduces
to the well-known Riemann-Liouville and generalized Riemann-
Liouville fractional integral, respectively (see [7]).

3. MINKOWSKI TYPE INEQUALITIES FOR

GENERALIZED RIEMANN-LIOUVILLE

FRACTIONAL INTEGRAL ON TIME SCALE

This section is inaugurated to establishing generalizations
of some reverse Minkowski inequality by introducing the
generalized Riemann-Liouville fractional integral on time scale.

Theorem 3.1. Let δ, γ > 1, and T is a time scale. Suppose
F ,G be two positive functions on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η >

0, T

0+;8J δ
η F(η) < ∞, T

0+;8J δ
η G(η) < ∞. If 0 < m ≤ F(θ)

G(θ)
≤

M, θ ∈ [0, η], then

[

T

0+;8J
δ
η F(η)

]
1
α
[

T

0+;8J
δ
η G(η)

]
1
β

≤
(

M

m

)
1

αβ
[

T

0+;8J
δ
η

(

F(θ)
)
1
α
(

G(η)
)
1
β

]

. (3)

Proof: Since F(θ)
G(θ)

≤ M, θ ∈ [0, η], η > 0, we find that

(

G(θ)
)
1
α ≥ M

− 1
β
(

F(θ)
)
1
β (4)

and

(

F(θ)
)
1
α
(

G(θ)
)
1
β ≥ M

− 1
β F(θ). (5)

Taking product on both sides of (5)

(

8(η)−8(θ)
)δ−1

81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)
(

F(θ)
)
1
α
(

G(θ)
)
1
β 1θ

≥
M

− 1
β

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)F(θ)1θ , (6)
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which implies that

T

0+;8J
δ
η

(

F(θ)
)
1
α
(

G(η)
)
1
β ≥ M

− 1
β T

0+;8J
δ
η F(η). (7)

It follows that

(

T

0+;8J
δ
η

(

F(θ)
)
1
α
(

G(η)
)
1
β

)
1
α

≥ M
− 1

αβ

(

T

0+;8J
δ
η F(η)

)
1
α

. (8)

Accordingly, mG(θ) ≤ F(θ), θ ∈ (0, η), η > 0, therefore
we have

(

F(θ)
)
1
α ≥ m

1
α
(

G(θ)
)
1
α . (9)

Taking product (9) by (G(θ))
1
β , we arrive at

(

G(θ)
)
1
β
(

F(θ)
)
1
α ≥ m

1
α G(θ). (10)

Taking product on both sides of (11)

(

8(η)−8(θ)
)δ−1

81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)
(

G(θ)
)
1
β
(

F(θ)
)
1
α 1θ

≥ m

1
α

1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)G(θ)1θ . (11)

Hence, we can write

(

T

0+;8J
δ
η

(

F(θ)
)
1
α
(

G(η)
)
1
β

)
1
β

≥ m

1
αβ

(

T

0+;8J
δ
η G(η)

)
1
β

. (12)

Conducting product between (8) and (12), we can draw the
desired conclusion easily.

Corollary 3.1. Letting T = R, then under the assumption of
Theorem 3.1, we have the following inequality in generalized
Riemann-Liouville fractional integral:

[

8J δ
η F(η)

]
1
α
[

8J δ
η G(η)

]
1
β ≤

(M

m

)
1

αβ
[

8J δ
η

(

F(θ)
)
1
α
(

G(η)
)
1
β

]

.

Theorem 3.2. Let δ, γ > 1, and T is a time scale. Suppose
F ,G be two positive functions on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η >

0, T

0+;8J δ
η F

α(η) < ∞, T
0+;8J δ

η G
β (η) < ∞. If 0 < m ≤

Fα(θ)
Gβ (θ)

≤ M, θ ∈ [0, η], then

[

T

0+;8J
δ
η F

α(η)
]

1
α
[

T

0+;8J
δ
η G

β (η)
]

1
β

≤
(

M

m

)
1

αβ
[

T

0+;8J
δ
η

(

F(θ)G(η)
)

]

, (13)

where α > 1, 1
α
+ 1

β
= 1.

Proof: Replacing F(θ) and G(θ) by Fα(θ) and Gβ (θ), θ ∈
[0, η], η > 0 in Theorem 3.1, we acquire the desired result. This
completes the proof.

4. GRÜSS TYPE INEQUALITIES VIA

GENERALIZED RIEMANN-LIOUVILLE

FRACTIONAL INTEGRAL ON TIME SCALE

Our coming result is the generalization of Grüss type inequality
via generalized Reimann-Liouville fractional integral operator on
time scale.

Theorem 4.1. Let δ, γ > 1, and T is a time scale. Suppose there
is a positive function F on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0. Assume
that the subsequent.
(I)There exist two integrable functions ϕ1,ϕ2 on [0,∞)T such that

ϕ1(η) ≤ F(η) ≤ ϕ2(η), ∀η ∈ [0,∞)T. (14)

Then, for η > 0, δ, γ > 1, one has

T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η F(η)+ T

0+;8J
δ
η F(η) T0+;8J

λ
η ϕ1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
λ
η ϕ1(η)+T

0+;8J
δ
η F(η) T0+;8J

λ
η F(η),

(15)

Proof: From (I), for all θ ≥ 0, λ ≥ 0, we have

(

ϕ2(θ)− F(θ)
)(

F(λ)− ϕ1(λ)
)

≥ 0. (16)

Therefore,

ϕ2(θ)F(λ)+ ϕ1(λ)F(θ) ≥ ϕ1(λ)ϕ2(θ)+ F(θ)F(λ). (17)

Taking product on both sides of (17)

(

8(η)−8(θ)
)δ−1

81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

F(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)ϕ2(θ)1θ

+ϕ1(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)F(θ)1θ

≥ ϕ1(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)ϕ2(θ)1θ

+F(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)F(θ)1θ , (18)

arrives at

F(λ) T0+;8J
δ
η ϕ2(η)+ ϕ1(λ)

T

0+;8J
δ
η F(η) ≥ ϕ1(λ)

T

0+;8J
δ
η ϕ2(η)

+ F(λ) T0+;8J
δ
η F(η). (19)

Taking product on both sides of (19)

(

8(η)−8(λ)
)γ−1

81(λ)

Ŵ(γ )
, which

is positive because λ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to λ from 0 to η we have
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T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)F(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)ϕ1(λ)1λ

≥ T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)ϕ1(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)F(λ)1λ.

(20)

Hence, we conclude the desired inequality. This completes
the proof.

Special cases of Theorem 4.1, we attain the subsequent results.

Corollary 4.1. Letting 8(η) = η, then Theorem 4.1 will lead to
the Riemann-Liouville fractional integral on time scales:

T

0+J
δ
η ϕ2(η)

T

0+J
γ
η F(η)+ T

0+J
δ
η F(η) T0+J

λ
η ϕ1(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
λ
η ϕ1(η)+ T

0+J
δ
η F(η) T0+J

λ
η F(η).

Remark 4.1. If T = R, then Theorem 4.1 will lead to Theorem
2.11 in [57] and corollary 4.1 will lead to Corollary 3 in [57]. Also,
if we choose T = R along with 8(η) = η, then Theorem 4.1 will
lead to Theorem 2 in [58].

Theorem 4.2. Let δ, γ > 1, and T is a time scale. Suppose there
are two positive functions F ,G on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η > 0.
Suppose that (I) holds and moreover one assumes the following.
(II) There exist ω1 and ω2 integrable functions on [0,∞)T
such that

ω1(η) ≤ G(η) ≤ ω2(η) ∀η ∈ [0,∞)T. (21)

Then, for η > 0, δ, γ > 1,the following inequalities hold:

(A1)
T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)+ T

0+;8J
δ
η F(η) T0+;8J

γ
η ω1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η ω1(η)

+ T

0+;8J
δ
η F(η) T0+;8J

γ
η G(η),

(B1)
T

0+;8J
γ
η ϕ1(η)

T

0+;8J
δ
η G(η)+ T

0+;8J
γ
η ω2(η)

T

0+;8J
γ
η F(η)

≥ T

0+;8J
γ
η ϕ1(η)

T

0+;8J
δ
η ω2(η)

+ T

0+;8J
γ
η F(η) T0+;8J

δ
η G(η),

(C1)
T

0+;8J
γ
η ω2(η)

T

0+;8J
δ
η ϕ2(η)+ T

0+;8J
δ
η F(η) T0+;8J

γ
η G(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)

+ T

0+;8J
δ
η F(η) T0+;8J

γ
η ω2(η),

(D1)
T

0+;8J
δ
η ϕ1(η)

T

0+;8J
γ
η ω1(η)

+ T

0+;8J
δ
η F(η) T0+;8J

δ
η
T

0+;8J
γ
η G(η)

≥ T

0+;8J
δ
η ϕ1(η)

T

0+;8J
γ
η G(η)

+ T

0+;8J
γ
η ω1(η)

T

0+;8J
δ
η F(η). (22)

Proof: To prove (A1), from (I) and (II), we have for x ∈ [0,∞)T
that

(

ϕ2(θ)− F(θ)
)(

G(λ)− ω1(λ)
)

≥ 0. (23)

Therefore,

ϕ2(θ)G(λ)+ ω1(λ)F(θ) ≥ ω1(λ)ϕ2(θ)+ G(λ)F(θ). (24)

Taking product on both sides of (24)

(

8(η)−8(θ)
)δ−1

81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

G(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)ϕ2(θ)1θ

+ω1(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)F(θ)1θ

≥ ω1(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)ϕ2(θ)1θ

+G(λ)
1

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)F(θ)1θ . (25)

Then we have

G(λ) T0+;8J
δ
η ϕ2(η)+ ω1(λ)

T

0+;8J
δ
η F(η)

≥ ω1(λ)
T

0+;8J
δ
η ϕ2(η)+ G(λ) T0+;8J

δ
η F(η). (26)

Again, multiplying both sides of (26) by

(

8(η)−8(λ)
)γ−1

81(λ)

Ŵ(γ )
,

which is positive because λ ∈ (0, η), η > 0, we integrate the
resulting identity with respect to λ from 0 to η we have

T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)G(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)ω1(λ)1λ

≥ T

0+;8J
δ
η ϕ2(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)ω1(λ)1λ

+ T

0+;8J
δ
η F(η)

1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)G(λ)1λ.
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This follows that

T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η G(η)+ T

0+;8J
δ
η F(η) T0+;8J

δ
η
T

0+;8J
γ
η ω1(η)

≥ T

0+;8J
δ
η ϕ2(η)

T

0+;8J
γ
η ω1(η)+ T

0+;8J
δ
η F(η) T0+;8J

γ
η G(η),

we acquire the desired inequality (A1).
To prove (B1)− (D1), we utilizes the subsequent variants:

(B1)
(

ω2(θ)− G(θ)
)(

F(λ)− ϕ1(λ)
)

≥ 0,

(C1)
(

ϕ2(θ)− F(θ)
)(

G(λ)− ω2(λ)
)

≤ 0,

(D1)
(

ϕ1(θ)− F(θ)
)(

G(λ)− ω1(λ)
)

≤ 0.

Special case of Theorem 4.2, we have the subsequent corollaries.

Corollary 4.2. Letting 8(η) = η, then Theorem 4.2 will lead to a
new result for Riemann-Liouville fractional integral on time scales:

(A2)
T

0+;8J
δ
η ϕ2(η)

T

0+J
γ
η G(η)+ T

0+J
δ
η F(η) T0+J

γ
η ω1(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
γ
η ω1(η)+ T

0+J
δ
η F(η) T0+J

γ
η G(η),

(B2)
T

0+;8J
γ
η ϕ1(η)

T

0+J
δ
η G(η)+ T

0+J
γ
η ω2(η)

T

0+J
γ
η F(η)

≥ T

0+J
γ
η ϕ1(η)

T

0+J
δ
η ω2(η)+ T

0+J
γ
η F(η) T0+J

δ
η G(η),

(C2)
T

0+;8J
γ
η ω2(η)

T

0+J
δ
η ϕ2(η)+ T

0+J
δ
η F(η) T0+J

γ
η G(η)

≥ T

0+J
δ
η ϕ2(η)

T

0+J
γ
η G(η)+ T

0+J
δ
η F(η) T0+J

γ
η ω2(η),

(D2)
T

0+;8J
δ
η ϕ1(η)

T

0+J
γ
η ω1(η)+ T

0+J
δ
η F(η) T0+J

δ
η
T

0+J
γ
η G(η)

≥ T

0+J
δ
η ϕ1(η)

T

0+J
γ
η G(η)+ T

0+J
γ
η ω1(η)

T

0+J
δ
η F(η).

Remark 4.2. If T = R, then Theorem 4.2 will lead to Theorem
2.15 in [57] and corollary 4.2 will lead to Corollary 2.16 in [57].
Also, If we choose T = R along with 8(η) = η, then Theorem 4.2
will lead to Theorem 5 in [58].

5. SOME OTHER BOUNDS VIA

GENERALIZED RIEMANN-LIOUVILLE

FRACTIONAL INTEGRAL ON TIME SCALE

Theorem 5.1. Let δ, γ > 1, and T is a time scale. Suppose there
are two positive functions F ,G on [0,∞)T, and 8 is monotone,
delta differentiable 81 with 81 6= 0 such that for all η > 0,
α,β > 1 satisfying 1

α
+ 1

β
= 1. Then, for η > 0, one has

(A3)
1

α

T

0+;8J
δ
η F

α(η) T0+;8J
γ
η G

α(η)

+
1

β

T

0+;8J
δ
η G

β (η) T0+;8J
γ
η F

β (η)

≥ T

0+;8J
δ
η F(η)G(η) T0+;8J

γ
η G(η)F(η),

(B3)
1

α

T

0+;8J
γ
η G

β (η) T0+;8J
δ
η F

α(η)

+
1

β

T

0+;8J
γ
η F

α(η) T0+;8J
δ
η G

β (η)

≥ T

0+;8J
γ
η G

β−1(η)Fα−1(η) T0+;8J
δ
η F(η)G(η),

(C3)
1

α

T

0+;8J
γ
η G

2(η) T0+;8J
δ
η F

α(η)

+
1

β

T

0+;8J
γ
η F

2(η) T0+;8J
δ
η G

β (η)

≥ T

0+;8J
γ
η F

2
β (η)G

2
α (η) T0+;8J

δ
η F(η)G(η),

(D3)
1

α

T

0+;8J
γ
η G

β (η) T0+;8J
δ
η F

2(η)

+
1

β

T

0+;8J
γ
η F

α(η) T0+;8J
δ
η G

2(η)

≥ T

0+;8J
γ
η F

α−1(η)Gβ−1(η) T0+;8J
δ
η F

2
α (η)G

2
β (η).

(27)

Proof: Taking into account the Young’s inequality [59]:

1

α
aα +

1

β
bβ ≥ ab, ∀a, b ≥ 0, α,β > 0,

1

α
+

1

β
= 1, (28)

setting a = F(θ)G(λ) and b = F(λ)G(θ), θ , λ > 0, we have

1

α

(

F(θ)G(λ)
)α +

1

β

(

F(λ)G(θ)
)β ≥ (F(θ)G(λ))(F(λ)G(θ)).

(29)

Taking product on both sides of (29)

(

8(η)−8(θ)
)δ−1

81(θ)

Ŵ(δ)
, which

is positive because θ ∈ (0, η), η > 0, we integrate the resulting
identity with respect to θ from 0 to η we have

Gα(λ)

αŴ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)Ŵ(δ)Fα(θ)1θ

+
Fβ (λ)

βŴ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)Ŵ(δ)Gβ (θ)1θ

≥
G(λ)F(λ)

Ŵ(δ)

η
∫

0

(

8(η)− 8(θ)
)δ−1

81(θ)Ŵ(δ)F(θ)G(θ)1θ ,

(30)

we get

Gα(λ)

α

T

0+;8J
δ
η F

α(η)+
Fβ (λ)

β

T

0+;8J
δ
η G

β (η)

≥ G(λ)F(λ) T0+;8J
δ
η F(η)G(η). (31)

Again, multiplying both sides of (31) by

(

8(η)−8(λ)
)γ−1

81(λ)

Ŵ(γ )
,

which is positive because λ ∈ (0, η), η > 0, we integrate the
resulting identity with respect to λ from 0 to η we have

1

α

T

0+;8J
δ
η F

α(η)
1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)Gα(λ)1λ

+
1

β

T

0+;8J
δ
η G

β (η)
1

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)Fβ (λ)1λ
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≥
T

0+;8J δ
η F(η)G(η)

Ŵ(γ )

η
∫

0

(

8(η)− 8(λ)
)γ−1

81(λ)G(λ)F(λ)1λ,

(32)

consequently, we get

1

α

T

0+;8J
δ
η F

α(η) T0+;8J
γ
η G

α(η)+
1

β

T

0+;8J
δ
η G

β (η) T0+;8J
γ
η F

β (η)

≥ T

0+;8J
δ
η F(η)G(η) T0+;8J

γ
η G(η)F(η), (33)

which implies (A3). The remaining variants can be proved by
adopting the same technique as we did in (A3).

(B3) a =
F(θ)

F(λ)
, b =

G(θ)

G(λ)
, F(λ),G(λ) 6= 0,

(C3) a = F(θ)G
2
α (λ), b = F

2
β (λ)G(θ),

(D3) a = F
2
α (θ)F(λ), b = G

2
β (θ)G(λ), F(λ),G(λ) 6= 0.

Repeating the foregoing argument, we obtain (B3)− (D3).

Theorem 5.2. Let δ, γ > 1, and T is a time scale. Suppose F ,G
be two positive functions on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0, and
α,β > 0 satisfying α + β = 1. Then, for η > 0, one has

(A4) p T

0+;8J
δ
η F(η) T0+;8J

γ
η G(η)

+ q T

0+;8J
γ
η F(η) T0+;8J

δ
η G(β)

≥ T

0+;8J
δ
η

(

F
α(η)Gβ (η)

)

T

0+;8J
γ
η

(

F
β (η)Gα(η)

)

,

(B4) p T

0+;8J
δ
η F

α−1(η) T0+;8J
γ
η

(

F(η)Gβ (η)
)

+ q T

0+;8J
γ
η G

β−1(η) T0+;8J
δ
η

(

F
β (η)G(η)

)

≥ T

0+;8J
δ
η G

β (η) T0+;8J
γ
η F

α(η),

(C4) p T

0+;8J
δ
η F(η) T0+;8J

γ
η G

2
α (η)

+ q T

0+;8J
δ
η G(η)

T

0+;8J
γ
η F

2
β (η)

≥ T

0+;8J
δ
η F

α(η)G(η) T0+;8J
γ
η G

β (η)F2(η),

(D4) p T

0+;8J
δ
η F

2
α (η)Gβ (η) T0+;8J

γ
η G

α−1(η)

+ q T

0+;8J
δ
η G

β−1(η) T0+;8J
γ
η F

2
β (η)Gα(η)

≥ T

0+;8J
δ
η F

2(η) T0+;8J
γ
η G

2(η). (34)

Proof: Taking into account the weighted AM − GM inequality

αa+ βb ≥ aαbβ , ∀a, b ≥ 0, α,β > 0, α + β = 1, (35)

by setting a = F(θ)G(λ) and b = F(λ)G(θ), λ, θ > 0, we have

αF(θ)G(λ)+ βF(λ)G(θ) ≥
(

F(θ)G(λ)
)α(

F(λ)G(θ)
)β
. (36)

Multiplying both sides of (36) by 1
Ŵ(δ)Ŵ(γ )

(8(η) −
8(θ))δ−181(θ)(8(η) − 8(λ))γ−181(λ), which is positive
because θ , λ ∈ (0, η), η > 0 and integrating the resulting
identity from 0 to η we have

α

Ŵ(δ)Ŵ(γ )

η
∫

0

η
∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)F(θ)G(λ)1θ1λ

+
β

Ŵ(δ)Ŵ(γ )

η
∫

0

η
∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)F(λ)G(θ)1θ1λ

≥
1

Ŵ(δ)Ŵ(γ )

η
∫

0

η
∫

0

(8(η)− 8(θ))δ−1(8(η)

− 8(λ))γ−181(θ)81(λ)

×
(

F(θ)G(λ)
)α(

F(λ)G(θ)
)β

1λ1θ , (37)

we conclude that

p T

0+;8J
δ
η F(η) T0+;8J

γ
η G(η)+ q T

0+;8J
γ
η F(η) T0+;8J

δ
η G(η)

≥ T

0+;8J
δ
η

(

F
α(η)Gβ (η)

)

T

0+;8J
γ
η

(

F
β (η)Gα(η)

)

, (38)

which implies (A4). The rest of inequalities can be shown
in similar way by the following choice of parameters in
AM − GM inequality.

(B4) a =
F(λ)

F(θ)
, b =

G(θ)

G(λ)
, F(θ),G(λ) 6= 0.

(C4) a = F(θ)G
2
α (λ), b = F

2
β (λ)G(θ),

(D4) a =
F

2
α (θ)

G(λ)
, b =

F
2
β (λ)

G(θ)
, G(θ),G(θ) 6= 0.

Example 5.1. Let δ, γ > 1, and T is a time scale. Suppose F ,G
be two positive functions on [0,∞)T, and 8 is monotone, delta
differentiable 81 with 81 6= 0 such that for all η > 0, and
α,β > 0 satisfying 1

α
+ 1

β
= 1. Let

m = min
0≤θ≤η

F(θ)

G(θ)
and M = max

0≤θ≤η

F(θ)

G(θ)
. (39)

Then, for η > 0, δ, γ > 1, one has the following inequalities:

(1) 0 ≤ T

0+;8J
δ
η F

2(η) T0+;8J
δ
η G

2(η)

≤
m+M

4mM

(

T

0+;8J
δ
η F(η)G(η)

)2
,

(2) 0 ≤
√

T

0+;8J δ
η F

2(η) T
0+;8J δ

η G
2(η)−

(

T

0+;8J
δ
η F(η)G(η)

)

≤
√
M−

√
m

2
√
mM

(

T

0+;8J
δ
η F(η)G(η)

)

,

(3) 0 ≤ T

0+;8J
δ
η F

2(η) T0+;8J
δ
η G

2(η)−
(

T

0+;8J
δ
η F(η)G(η)

)2

≤
M−m

4mM

(

T

0+;8J
δ
η F(η)G(η)

)2
.

Proof: From Equation (39) and the inequality

(

F(θ)

G(θ)
−m

)(

M−
F(θ)

G(θ)

)

G
2(θ) ≥ 0, 0 ≤ θ ≤ η, (40)
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then we can write as,

F
2(θ)+mMG

2(θ) ≤ (m+M)F(θ)G(θ). (41)

Multiplying both sides of (41) by 1
Ŵ(δ)

(8(η)−8(θ))81(θ), which

is positive because θ ∈ (0, η), η > 0 and integrating the resulting
identity from 0 to η, we have

1

Ŵ(δ)

η
∫

0

(8(η)− 8(θ))81(θ)F2(θ)1θ

+mM
1

Ŵ(δ)

η
∫

0

(8(η)− 8(θ))81(θ)G2(θ)1θ

≤ (m+M)
1

Ŵ(δ)

η
∫

0

(8(η)− 8(θ))81(θ)F(θ)G(θ)1θ , (42)

implies that

T

0+;8J
δ
η F

2(η)+mM
T

0+;8J
δ
η G

2(η) ≤ (m+M) T0+;8J
δ
η F(η)G(η),

(43)

on the other hand, it follows frommM > 0 and

(
√

T

0+;8J δ
η F

2(η)−
√

mM T

0+;8J δ
η G

2(η)
)2

≥ 0, (44)

that

2
√

T

0+;8J δ
η F

2(η)
√

mM T

0+;8J δ
η G

2(η) ≤
√

T

0+;8J δ
η F

2(η)

+
√

mM T

0+;8J δ
η G

2(η)

(45)

then from equation (43) and (45), we obtain,

4mM
T

0+;8J
δ
η F

2(η) T0+;8J
δ
η G

2(η) ≤ (m+M)2( T0+;8J
δ
η F(η)G(η)).

(46)

Which implies (1). By some transformation of (1), similarly, we
obtain (2) and (3).

6. CONCLUSION

The succinct view of this paper to establish numerous inequalities
on an arbitrary time scale for generalized Riemann-Liouville
fractional integrals. For the suitable selection of 8 on time
scale, one can discover numerous novel and existing outcomes
as specific cases. This shows the idea of generalized Riemann-
Liouville fractional integral is wide and unifying one, yet
additionally, improve few consequences in the study on the time
scale hypothesis. Numerous variants are explored, when T = R.
Finally, we introduced various dynamic variants by employing
generalized Riemann-Liouville fractional integral as an example.
Our consequences have potential applications in calcium ion
channels, fractional calculus of variations on time scales,
involving fractional fundamentalism in mechanics and physics,
quantization, control theory, and description of conservative,
nonconservative, and constrained systems. The performance of
the fractional dynamical integral method is reliable and effective
to obtain new solutions. This method has more advantages: it is
direct and concise. Thus, the proposed method can be extended
to solve many systems of nonlinear fractional partial differential
equations in mathematical and physical sciences. Also, the new
exact analytical solutions, can be obtained for the generalized
ordinary differential equations to obtain new theorems related
to stability and continuous dependence on parameters for
dynamic equations on time scales. Our computed outcomes can
be very useful as a starting point of comparison when some
approximate methods are applied to this nonlinear space-time
fractional equation.
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