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Finding exact analytic solutions to the partial equations is one of the most challenging

problems in mathematical physics. Generally speaking, the exact solution to many

categories of such equations can not be found. In these cases, the use of numerical

and approximate methods is inevitable. Nevertheless, the exact PDE solver methods

are always preferred because they present the solution directly without any restrictions

to use. This article aims to examine the perturbed Gerdjikov-Ivanov equation in an

exact approach point of view. This equation plays a significant role in non-linear fiber

optics. It also has many important applications in photonic crystal fibers. To this end,

firstly, we obtain some novel optical solutions of the equation via a newly proposed

analytical method called generalized exponential rational function method. In order to

understand the dynamic behavior of these solutions, several graphs are plotted. To the

best of our knowledge, these two techniques have never been tested for the equation

in the literature. The findings of this article may have a high significance application while

handling the other non-linear PDEs.

Keywords: PDEs, generalized exponential rational function method, non-linear Schrödinger equation, exact

solutions, the perturbed Gerdjikov-Ivanov equation

1. INTRODUCTION

Non-linear Schrödinger equations (NLSE) are often studied from different points of view. In recent
years a great variety of analytical and numerical methods have been proposed for solving these
equations [1–4]. The most studied NLSE equation is that which has a cubic non-linearity. In the
present paper, we will explore an NLSE that has a quintic non-linearity, namely the perturbed
Gerdjikov-Ivanov (pGI) equation.

The main achievement of this research is to utilize a new method to derive some novel solutions
to a variant form of NLSE. In particular, we consider the pGI equation is given by [5–11]

i
∂q

∂t
+ a

∂2q

∂x2
+ b|q|4q = i

[

cq2
∂q

∂x
+ λ1

∂q

∂x
+ λ2

∂
(

|q|2q
)

∂x
+ θ

∂|q|2

∂x
q

]

, (1)

provided that q(x, t) indicates the macroscopic complex-valued wave profile of temporal and
spatial independent variables of t and x, respectively. In this equation, ∂q/∂t is linear temporal
evolution, ∂2q/∂x2 stands for the group velocity dispersion (GVD), and |q|4q is the present
quintic non-linearity of the model. The parameters a, b are the coefficients of these quantities,

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00167
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00167&domain=pdf&date_stamp=2020-05-15
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:b.ghanbary@yahoo.com
https://doi.org/10.3389/fphy.2020.00167
https://www.frontiersin.org/articles/10.3389/fphy.2020.00167/full
http://loop.frontiersin.org/people/710684/overview
http://loop.frontiersin.org/people/73178/overview


Ghanbari and Baleanu New Optical Solutions of the Fractional Gerdjikov-Ivanov

respectively. Moreover c is the non-linear dispersion coefficient.
Finally, the constants λ1, λ2, and θ are known parameters related
to perturbative effects. More information on this model can be
found in the references as mentioned earlier.

In recent years, because of its high importance, the model
has attracted the attention of many researchers. For instance,
Biswas and Alqahtani [6] have presented two varieties of bright
soliton solutions by the use of the semi-inverse variational
principle. The sine-Gordon equation approach has been used
to extract the dark, bright, dark-bright, singular, and combined
singular optical solitons of the equation in Yaşar et al. [7].
Biswas et al. [8] have retrieved some bright and singular optical
soliton solutions to the pGI equation by the implementation of
the extended trial equation method. The exp(φ(ξ ))-Expansion
and the Kudryashov methods are two reliable techniques that
have been used in Arshed [9] to investigate some solitary wave
solutions of the equation. In Kaur and Wazwaz [10], several
hyperbolic, trigonometric or rational function solutions have
been proposed using two efficient techniques, namely exp(φ(ξ ))-

Expansion and G′

G2 -expansion methods. Very recently, Hosseini
et al. [11] have listed several Kink, bright, and dark optical
solitons of the model by the aid of the expa-function method and
a new version of the Kudryashov method.

In light of previous work, we will apply the generalized
exponential rational function method (GERFM) to retrieve some
new analytical optical solutions of the fractional pGI equation
with the conformable derivative [12]. This new definition of
derivative is based on the basic limit definition of the derivative
that has been successfully tackled in solving many different
problems [13–22]. The main structure of the present article is as
outlined. In the second section of this paper, some mathematical
preliminaries have been reviewed. This section includes the
necessary steps of applyingGERFM, and the definition and basic
properties of the conformable derivative will be presented. The
main results of this article are achieved by following these steps
in section 3 of this contribution. In section 4, we have performed
some numerical simulations of the obtained results. These graphs
can help us in better understanding of their dynamic properties.
Finally, the article concludes with some conclusions.

2. MATHEMATICAL PRELIMINARIES AND
BACKGROUNDS

This section first deals with the structure of the GERFM. Then
in the next subsection, the basic concepts of the conformable
derivative are expressed.

2.1. Analysis of GERFM
GERFM is a newly developed method introduced by Ghanbari
and Inc [23] to solve the resonance non-linear Schrödinger
equation [23]. Other successful applications of the technique
in solving different types of PDEs have also been reported in
references [24–27].

We will review how to use the method below.

1. Let us consider a typical non-linear PDE for q = q(x, t),
giving by

N (q, qx, qt , qxx, . . .) = 0. (2)

Under the wave transformations of q(x, t) = Q(ξ ) and ξ =
σx−lt, Equation (2) becomes an ordinary differential equation
given by:

N (Q, σQ′,−lQ′, σ 2Q′′, . . .) = 0. (3)

2. Now, we assume that Equation (3) admits the exact solution
giving by

Q(ξ ) = A0 +
N
∑

k=1

Ak8(ξ )k +
N
∑

k=1

Bk8(ξ )−k, (4)

where

8(ξ ) =
m1e

n1ξ +m2e
n2ξ

m3en3ξ +m4en4ξ
. (5)

and mi, ni’s and A0,Ak, and Bk’s are disposal parameters.
Finally, N is a constant, which is evaluated by applying the
homogeneous balance to Equation (3).

3. Inserting Equation (4) into (3) with Equation (5), and then
gathering all possible powers of Ei = eniξ for i = 1, . . . , 4,
forms a polynomial equation as P(E1, E2, E3, E4) = 0. Equating
coefficients of P to zero, one derives a simultaneous system of
equations regarding mi, ni(1 ≤ i ≤ 4), and σ , l,A0,Ak and
Bk(1 ≤ k ≤ N).

4. Finally, solving the non-linear system and substituting the
obtained solutions in Equations (4) and (5), the explicit form
of the solutions of (2) will be extracted.

2.2. The Conformable Derivative
Definition: Let q :R+ → R, then the conformable derivative of
q of order α, is giving by [12]

D
α
t (q)(t) = lim

η→0

q(t + ηt1−α)− q(t)

η
, α ∈ (0, 1]. (6)

Theorem: For any α ∈ (0, 1], and two α-differentiable functions
p, q, the following propositions hold
• Dα

t (c1p+ c2q) = c1D
α
t (p)+ c2D

α
t (q), for c1, c2 ∈ R.

• Dα
t (t

c) = ctc−α , for c ∈ R.
• Dα

t (pq) = pDα
t (q)+ qDα

t (p).

• Dα
t (

p
q ) =

qDα
t (p)−pDα

t (q)

q2
.

• If q is a differentiable function (in standard sense), thereupon

Dα
t (q)(t) = t1−α dq

dt
holds.

Theorem [14]: Let p :(0, 1] → R be a function such that p is
classical, and α-conformable differentiable. Moreover, consider
q as a differentiable function defined in the range of p. Thus,
we have

Dα
t (poq)(t) = t1−αq′(t)p′(q(t)),

where prime stands for standard derivatives respect to t.
Some of the benefits of the conformable derivative compared

to other new definitions for the derivative are as follows:

Frontiers in Physics | www.frontiersin.org 2 May 2020 | Volume 8 | Article 167

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ghanbari and Baleanu New Optical Solutions of the Fractional Gerdjikov-Ivanov

• According to this definition of the operator, the derivative of a
constant function is zero. This feature is not available in many
other definitions.

• Unlike many existing definitions, this definition satisfies the
known formula of the derivative of the product of two
functions.

• The conformable derivative does satisfy the known
formula of the derivative of the quotient of
two functions.

• The conformable derivative does satisfy the well-known
chain rule.

• The conformable derivative satisfies the well-known semi
group property.

The mentioned properties are very important and valuable
features for any derivative definition that the conformable
derivative has all of them.

3. MATHEMATICAL ANALYSIS

The main contribution in this paper is to consider the derivatives
in the Equation (1) with the conformable derivative defined by
(6), as follows

iDα
t q + aD2α

x q+ b|q|4q = i
[

cq2Dα
x q+ λ1D

α
x q

+ λ2D
α
x

(

|q|2q
)

+ θDα
x |q|

2q
]

. (7)

The main assumption is to taking the stationary soliton solution
form of

q (x, t) = Q(ξ )eiφ(x,t), ξ =
(

1

α

)

xα −
( ν

α

)

tα ,

φ =
(

−k

α

)

xα +
(ω

α

)

tα , (8)

FIGURE 1 | Dynamic behaviors of q1(x, t) for a = 0.2,b = −0.5, c = 0.5, λ1 = 3, λ2 = 3,α = 0.97. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of imaginary part. (D) Density plot of imaginary part.
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where ν, k, and ω are the phase component, the frequency of
solitons, and the wavenumber, respectively.

Substituting the stationary soliton solution form (8) into
Equation (7), we arrive at a complex equation whose real part is
as follows

(

ν + λ1 + 2ak
)

+ (c+ 3λ2 + 2θ)Q2 = 0. (9)

So, we will have

ν = −λ1 − 2ak, θ = −
1

2
(c+ 3λ2) . (10)

From the real part, the following formula is also extracted

aQ′′ −
(

ω + ak2 + λ1k
)

Q+ (c− λ2) kQ
3 + bQ5 = 0. (11)

Thus, in the following, we focus our attention on deriving
solutions of Equation (11). Now balancing between two terms

of Q5 and Q′′ in Equation (11) suggests N = 1
2 . If we want to

get a closed-form solution, we need to define a new variable of
Q(ξ ) = R2(ξ ). This substitution leads us to

a
(

2RR
′′ − (R′)2

)

− 4
(

ω + ak2 + λ1k
)

R
2

+4 (c− λ2) kR
3 + 4bR4 = 0. (12)

Now, the homogeneous balance in Equation (12) suggestsN = 1.
Setting N = 1 along with Equation (4), one gets

R(ξ ) = A0 +A18(ξ )+
B1

8(ξ )
. (13)

Inserting (13) into (12) and pursuing the steps outlined for the
method, the analytical solutions for the Equation (7) will be
determined consequently.

FIGURE 2 | Dynamic behaviors of q2(x, t) for a = −4,b = 2, c = 2, λ1 = 0.1, λ2 = 0.1,α = 0.95. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of imaginary part. (D) Density plot of imaginary part.
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Category 1: It is attained m = [1, 1,−1, 1] and n =
[1,−1, 1,−1], which offers

8(ξ) = −
cosh (ξ)

sinh (ξ)
. (14)

Case 1:

k =
−4

√
−3ab

3 (c− λ1)
,

w =
√

−3a

b

−16ab
√
−3ab− 3

(√
−3ab (λ2 − c) + 4λ1b

)

(λ2 − c)

9 (λ2 − c)2
,

A0 =
1

2

√

−3a

b
,A1 = 0,B1 =

−1

2

√

−3a

b
.

Inserting these values in Equation (13), yields

R (ξ) =
√

−3a

b

1− coth (ξ)

2coth (ξ)
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q1 (x, t) =

(

√

−3a

b

1− coth (ξ)

2coth (ξ)

)1/2

× e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(15)
provided that ab < 0, and

ξ =
8a
√
3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
8
√
−3ab

3 (c− λ1)
,

w =
−64

3

√

−a

b

ab
√
−ab+ 3/16

(√
−ab (λ2 − c) − 2/3λ1b

√
3
)

(λ2 − c)

(λ2 − c)2
,

A0 = −
√

−3a

b
,A1 = −

√

−3a

b
,B1 =

−1

2

√

−3a

b
.

FIGURE 3 | Dynamic behaviors of q3(x, t) for a = 1,b = −3, c = 0.5, λ1 = 1, λ2 = 4,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D plot

of the imaginary part. (D) Density plot of the imaginary part.
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Inserting these values in Equation (13), yields

R (ξ) =
√

−3a

b

(

coth (ξ) + 1
)2

2coth (ξ)
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q2 (x, t) =

(

√

−3a

b

(

coth (ξ) + 1
)2

2coth (ξ)

)1/2

×e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(16)
provided that ab < 0, and

ξ =
−16a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 2: It is attainedm = [2, 0, 1,−1] and n = [1, 0, 1,−1],
which offers

8(ξ) =
cosh (ξ) + sinh (ξ)

sinh (ξ)
. (17)

Case 1:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
−8λ1

√
−3ab (λ2 − c) + 3

(

λ22 − 2λ2c+ 16/3ab+ c2
)

a

12 (λ2 − c)2
,

A0 =
1

2

√

−3a

b
,A1 =

1

2

√

−3a

b
,B1 = 0.

FIGURE 4 | Dynamic behaviors of q4(x, t) for a = 1.5,b = −2.5, c = 1, λ1 = 7, λ2 = 2,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D plot

of the imaginary part. (D) Density plot of the imaginary part.
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Inserting these values in Equation (13), yields

R (ξ) =
√

−3a

b

eξ

2
(

1+ eξ
) .

Accordingly, we derive a soliton solution of given PDE in
(7) as

q3 (x, t) =

(

√

−3a

b

eξ

2
(

1+ eξ
)

)1/2

× e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(18)
provided that ab < 0, and

ξ =
−8a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
√

−3a

b

−16ab
√
−3ab− 3

(√
−3ab (λ2 − c) + 4λ1b

)

(λ2 − c)

9 (λ2 − c)2
,

A0 = 0,A1 =
1

2

√

−3a

b
,B1 = 0.

Inserting these values in Equation (13), yields

R (ξ) =
√

−3a

b

cosh (ξ) + sinh (ξ)

2 sinh (ξ)

Accordingly, we derive a soliton solution of given PDE in
(7) as

q4 (x, t) =

(

√

−3a

b

cosh (ξ) + sinh (ξ)

2 sinh (ξ)

)1/2

× e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(19)

FIGURE 5 | Dynamic behaviors of q5(x, t) for a = 0.2,b = −2, c = 0.5, λ1 = 2, λ2 = 2,α = 0.99. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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provided that ab < 0, and

ξ =
8a
√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 3: It is attained m = [3, 2, 1, 1] and n = [1, 0, 1, 0],
which offers

8(ξ) =
3eξ + 2

eξ + 1
. (20)

Case 1:

k =
−2

√
−3ab

3 (c− λ1)
,

w =
√

−a

b

−4ab
√
−ab− 3/4

(√
−ab (λ2 − c) + 8

√
3/3λ1b

)

(λ2 − c)

3 (λ2 − c)2
,

A0 =
3

2

√

−3a

b
,A1 = 0,B1 = −3

√

−3a

b
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

R (ξ) =
3

2

√

−3a

b

eξ

3eξ + 2
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

q5 (x, t) =

(

3

2

√

−3a

b

eξ

3eξ + 2

)1/2

× e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(21)
provided that ab < 0, and

ξ =
4a
√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Case 2:

k =
−10

√
−3ab

3 (c− λ1)
,

w = −
100

3 (λ2 − c)2

√

−a

b

(

ab
√

−ab

+
3λ2 − 3c

400

(

√

−ab (λ2 − c) +
40λ1b

√
3

3

))

,

A0 =
5

2

√

−3a

b
,A1 = −

1

2

√

−3a

b
,B1 = −3

√

−3a

b
.

Accordingly, we derive a soliton solution of given PDE in
(7) as

R (ξ) =
√

−3a

b

eξ

6e2ξ + 10eξ + 4
.

FIGURE 6 | Dynamic behaviors of q6(x, t) for a = 1.5,b = −5, c = 65, λ1 = 0.3, λ2 = 0.7,α = 0.9. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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Accordingly, we derive a soliton solution of given PDE in
(7) as

q6 (x, t) =

(

√

−3a

b

eξ

6e2ξ + 10eξ + 4

)1/2

×e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(22)
provided that ab < 0, and

ξ =
20a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Category 4: It is attained m = [−1, 0, 1, 0] and n = [0, 1, 0, 1],
which offers

8(ξ) = −
1

eξ + 1
. (23)

Case 1:

k =
2
√
−3ab

3 (c− λ1)
,

w =
−8

√
−3ab (c− λ2) λ1 + 16a2b+ 3ac2 − 6acλ2 + 3aλ2

2

12 (c− λ2)
2

,

A0 = 0,A1 =
1

2

√

−3a

b
,B1 = 0.

Inserting these values in Equation (13), yields

R (ξ) = −
√

−3a

b

1
(

2+ eξ
) .

Accordingly, we derive a soliton solution of given PDE in
(7) as

q7 (x, t) =

(

−
√

−3a

b

1
(

2+ eξ
)

)1/2

× e
i
((

−k
α

)

xα+( ω
α )tα

)

,

(24)

FIGURE 7 | Dynamic behaviors of q7(x, t) for a = −2,b = 3, c = 3.5, λ1 = 2, λ2 = 0.5,α = 0.95. (A) 3D plot of the real part. (B) Density plot of the real part. (C) 3D

plot of the imaginary part. (D) Density plot of the imaginary part.
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provided that ab < 0, and

ξ =
−4a

√
−3abtα + 3 (λ1t

α + xα) (λ2 − c)

α (3λ2 − 3c)
.

Comparing our acquired solutions with other existing reported
in the literature shows that ours are different and new. All the
acquired solutions are new and have not been reported in the
previous papers. Particularly, since the form of the equation
and derivative considered in this article are the same as those
given in reference [7], we can check that the results and the
requirements for their existence in the two papers are quite
different. Furthermore, we have checked the correctness of all
obtained solutions, and found they satisfy the original equation.

4. NUMERICAL SIMULATIONS

In this section, we have presented several numerical simulations
using the algorithm proposed in subsection 2.1. To illustrate the
dynamic behaviors of the analytical results obtained in section
3, Figures 1–7 have been depicted. Figure 1 shows the dynamic
behavior of the solution q1(x, t) defined in (15) for a = 0.2, b =
−0.5, c = 0.5, λ1 = 3, λ2 = 3,α = 0.97. The solution attributes
of q2(x, t) presented in (16), are displayed in the Figure 2, where
the parameters a = −4, b = 2, c = 2, λ1 = 0.1, λ2 = 0.1,α =
0.95 are used. The graph of the solution q3(x, t) as explained
in (18), for the given values a = 1, b = −3, c = 0.5, λ1 =
1, λ2 = 4,α = 0.9 is plotted in Figure 3. Moreover, the diagram
of q4(x, t) is displayed in Figure 4 corresponding to the choices
of a = 1.5, b = −2.5, c = 1, λ1 = 7, λ2 = 2,α = 0.9. Taking the
parameters a = 0.2, b = −2, c = 0.5, λ1 = 2, λ2 = 2,α = 0.99
into consideration, the graph of the solution q5(x, t) presented
in the Equation (21) is plotted in Figure 5. Moreover, Figure 6
illustrate the dynamic behaviors of the analytical solution q6(x, t)
obtained in Equation (22) by taking a = 1.5, b = −5, c =
65, λ1 = 0.3, λ2 = 0.7,α = 0.9. And finally, the profiles of the
exact solution q7(x, t) presented in Equation (24) is displayed in
Figure 7, when a = −2, b = 3, c = 3.5, λ1 = 2, λ2 = 0.5,α =
0.95 are chosen as parameters in the main PDE of (7). The
performed numerical simulations admit that the solutions are of
kinky and anti-kinky, and the trigonometric classifications. Also,
by carefully looking at the structure of the obtained solutions,
it can be seen that the corresponding conformable derivative
parameter of α appears in the formula of all the solutions.

5. CONCLUSIONS

Partial differential equation is a powerful and effective tool
for modeling non-linear systems. Finding the exact solution
to such equations is one of the most challenging problems
in mathematics. There is also no specific way of solving
many of these equations. In these cases, we must resort to
the approximate analytical methods due to the limitations of
exact solver methods. According to what stated above, new
approaches to solving PDE equations are of great importance
and application. The main objective of this paper is to employ
a well-known technique called GERFM to solve the perturbed
Gerdjikov-Ivanov equation with the comfortable derivative. One
of the outstanding features of the model considered in this
article is the use of the definition of the comfortable derivative
in the structure of the model. This definition is one of the
most interesting definitions for a derivative that has many
ideal features for a derivative. Applying this definition to the
model will provide us with many advantages compared to
the standard derivative. One of the advantages of the method
used in this article is the determination of various categories
of solutions during the method. Several numerical simulations
are presented to gain a better understanding of the properties
of the acquired solutions. By comparing the obtained results
with the results of the present papers, it can be seen that
the obtained results are not reported in any of the previous
literature. It is worth mentioning that GERFM is capable of
reducing the volume of needed computational compared to
some other analytical method. The straightforward application
is another advantage of the technique compared to other known
techniques. This method can also be utilized to solve many other
similar problems.
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