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For any fundamental quantum field theory, unitarity, renormalizability, and relativistic

invariance are considered to be essential properties. Unitarity is inevitably connected to

the probabilistic interpretation of the quantum theory, while renormalizability guarantees

its completeness. Relativistic invariance, in turn, is a symmetry that derives from the

structure of spacetime. So far, the perturbative attempt to formulate a fundamental local

quantum field theory of gravity based on the metric field seems to be in conflict with at

least one of these properties. In quantum Hořava gravity, a quantum Lifshitz field theory

of gravity characterized by an anisotropic scaling between space and time, unitarity and

renormalizability can be retained while Lorentz invariance is sacrificed at high energies

and must emerge only as approximate symmetry at low energies. This article reviews

various approaches to perturbative quantum gravity, with a particular focus on recent

progress in the quantization of Hořava gravity, supporting its theoretical status as a

unitary, renormalizable, and ultraviolet-complete quantum theory of gravity.

Keywords: quantum gravity, perturbation theory, renormalization, Lorentz violation, anisotropic scaling

Hořava-Lifshitz gravity

1. INTRODUCTION

The search for a consistent quantum theory of gravity can be dated back almost 90 years to the
work of Rosenfeld [1]. Since then, many different approaches have been suggested, each with its
own assumptions, predictions (if any), and limitations; see [2] for an overview. Prominent roads
to quantum gravity include canonical approaches, such as quantum geometrodynamics [3, 4] and
loop quantum gravity [5–8], discrete approaches, such as causal dynamical triangulations [9–11],
and unified approaches, such as string theory [12–16].

In this review, I restrict the discussion to local field theories, in which gravity is fundamentally
described by the metric field. For non-local (infinite-derivative) theories of gravity, (see e.g. [17–
26]), and for non-metric theories of gravity, (see e.g. [27–32]). In view of the tremendous success
of perturbative quantum field theory in different areas of physics, including the standard model
of particle physics, it seems natural to quantize gravity within this highly developed and strongly
tested unified framework along with the fundamental interactions between the matter fields. For
most of this review, I will focus on the covariant perturbative approach to quantum gravity. Much
of the progress in this direction can be attributed to Bryce S. DeWitt, who pioneered the field and
set the standards for most of its developments in the subsequent decades [33–35].

While the direct approach to quantizing general relativity perturbatively is considered a failure
because of its non-renormalizability in the strict sense [36, 37], the perturbative quantization and
renormalization can be consistently carried out when general relativity is treated as an effective field
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theory [38–40]. However, by construction the effective
description breaks down at a finite energy scale and therefore
does not extend to the arbitrarily high energies required for
a fundamental theory of quantum gravity. In this respect,
the non-perturbative asymptotic safety program towards
quantum gravity might offer a solution in providing a consistent
ultraviolet completion [41–44]. A different strategy, which
retains the perturbative treatment, is based on the quantization
of modifications of general relativity. Quadratic gravity, the
extension of the Einstein-Hilbert action by all quadratic
curvature invariants, is a perturbatively renormalizable quantum
theory of gravity [45]. While the higher derivatives in quadratic
gravity improve the ultraviolet behavior, relativistic invariance
necessarily implies the inclusion of higher time derivatives,
which in turn results in an enlarged particle spectrum,
including a massive spin-2 ghost. At the classical level, the
presence of the ghost leads to runaway solutions, known as
Ostrogradsky instability [46]. At the quantum level, within the
usual quantization prescription, the ghost was found to lead to
a violation of unitarity [45]. Recent proposals, which involve
different quantization prescriptions for the ghost, preserve
unitarity but instead lead to a violation of micro-causality
[47, 48].

In view of these problems, it has been suggested to explore
the consequences of the assumption that Lorentz invariance is
not a fundamental symmetry but only emerges as an approximate
symmetry at low energies. In this way, higher spatial derivatives
can be introduced to tame the ultraviolet divergences, while
retaining only second-order time derivatives to avoid the
problems associated with the occurrence of higher-derivative
ghosts. The breaking of relativistic invariance at a fundamental
level is naturally realized in Lifshitz theories by an anisotropic
scaling between space and time [49, 50].

After a brief overview of various relativistic covariant
approaches to quantum gravity, I will review several aspects of
the Lifshitz theory of gravity, Hořava gravity [50], in D = 2+ 1
and D = 3+ 1 dimensions, including the consequences
of the reduced invariance group of foliation-preserving
diffeomorphisms, the geometrical formulation in terms of
Arnowitt-Deser-Misner variables, the phenomenological
implications of the additional propagating gravitational scalar
degree of freedom, and the current status of the experimental
constraints. I discuss the quantization of projectable Hořava
gravity, a particular version of Hořava gravity in which the lapse
function is not a propagating degree of freedom. I will also sketch
the proof that projectable Hořava gravity is a perturbatively
renormalizable quantum theory of gravity [51, 52] and report
recent results on its renormalization group flow [53, 54].

The article is structured as follows. In section 2, I introduce
the general formalism for the perturbative quantization of
local field theories. In section 3, I summarize the essential
properties of general relativity and the major drawback of its
perturbative quantization: non-renormalizability. In section 4,
I briefly comment on the status of general relativity as an
effective field theory. In section 5, I discuss several aspects of
the asymptotic safety conjecture in the context of gravity and its
status as a possible ultraviolet-complete scenario for a quantum

theory of gravity. In section 6, I review the perturbatively
renormalizable theory of quadratic gravity and discuss the ghost
problem. In section 7, I present various aspects of the classical
theory of Hořava gravity inD = 2+1 andD = 3+1 dimensions.
In section 8, I discuss the perturbative quantization of projectable
Hořava gravity, its perturbative renormalizability, and its status
as an ultraviolet-complete theory. Finally, I conclude in section 10
with a short summary and a brief outlook on important further
steps towards a unitary, renormalizable, and ultraviolet-complete
quantum theory of gravity in D = 3+ 1 dimensions.

2. PERTURBATIVE QUANTUM FIELD
THEORY: GENERAL FORMALISM

Consider a local field theory, which is defined by the action
functional S,

S[φ] =
∑

n

∫

dDXcnOn(φ, ∂). (1)

Locality means that the operators On(φ, ∂) are functions of a
finite number of derivatives (including no derivative) of the
generalized field(s) φi = φA(x) evaluated at the same point x.
The operators On are restricted by the symmetries of S. The
cn are coupling constants characterizing the strength of the
interaction associated with the operator On

1. The main object in
the quantum field theory (QFT) is the quantum effective action Ŵ.

2.1. Perturbation Theory
The starting point for the formal derivation of the Euclidean
effective action is the partition function Z, which is defined by
the functional integral over the field configurations φi and is a
functional of the external source Ji,

Z[J] : = e−W[J] =
∫

Dφ e−(S[φ]+Jiφ
i). (2)

The mean field ϕi is defined as the quantum average in the
presence of the source Ji,

ϕi
: = 〈φi〉J =

δW[J]

δJi
. (3)

The quantum effective action Ŵ is defined as the functional
Legendre transformation of the Schwinger functionalW,

Ŵ[ϕ] : = W[J]− ϕiJi. (4)

Combining (2) and (3) yields the functional integro-differential
equation2

e−Ŵ[ϕ] =
∫

Dφ e−{S[φ]−(ϕi−φi)Ŵ,i[ϕ]}. (5)

1I use the ultra-condensed DeWitt notation, in which the generalized index
i = {A,X} of a generalized field φi = φA(X) encompasses the discrete bundle index
A and the continuous spacetime point X. Summation over i implies summation
over A as well as integration over X, i.e., φiφ

i =
∫

dDXφA(X)φA(X).
2Post-fix notation with indices separated by a comma is used to denote functional
derivatives with respect to the argument, e.g., Ŵ,i = δŴ[ϕ]/δϕi.
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Equation (5) provides the starting point for the perturbative
expansion of Ŵ (reinserting powers of h̄),

Ŵ[ϕ] = S[ϕ]+ h̄Ŵ1[ϕ]+ h̄2Ŵ2[ϕ]+O(h̄3). (6)

The diagrammatic representation of the expansion (6) is given
in terms of vacuum diagrams in which the number of loops
corresponds to the power of h̄ in (6), as shown in Figure 1.

In the background field method (BFM), φi is decomposed into
a background field φ̄i and a linear perturbation δφi,

φi = φ̄i + δφi. (7)

The first two orders of the expansion (6) correspond to the
vacuum diagrams shown in Figure 1:

Ŵ1 =
1

2
Tr ln Fij,

Ŵ2 =
1

8
GijS,ijkℓG

kℓ +
1

12
S,ijkG

iℓGjmGknS,ℓmn. (8)

Here, Tr is the functional trace, Fij is the fluctuation operator, and
the Green’s function Gij (propagator) is its inverse, such that

FijG
ik = −δ k

i . (9)

The operator Fij, which propagates the linear perturbations δφi

on the background φ̄i, is defined as the Hessian of S,

Fij(∇̄) : = S,ij
∣
∣
φ=φ̄

. (10)

The covariant derivative ∇µ defines the commutator (“bundle”)
curvature

R
i

µν jφ
j
: = [∇µ,∇ν]φ

i. (11)

The effective action is the generating functional of off-shell one-
particle-irreducible (1PI) n-point correlation functions

〈φi1 , . . . ,φin〉 = Ŵ,i1 ,...,in . (12)

In particular, for Ji = 0, the mean field ϕi = 〈φ〉 is the solution of
the quantum effective equations of motion

Ŵ,i = 0. (13)

Physical observables that derive from the S-matrix of scattering
amplitudes are calculated from the off-shell correlation functions
(12) via the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula [55].

2.2. Gauge Theories
In gauge theories, different field configurations that correspond
to the same physical state are related by an infinitesimal gauge
transformation

φi
ε : = δεφ

i = Riαεα . (14)

The Riα(φ) are the generators of the gauge transformations, and
εα is the infinitesimal gauge parameter3. For linearly realized
symmetries (considered here), R α

i ,jk = 0. For gauge algebras that

close off-shell, the generators satisfy

Riα,jR
j
β − Riβ ,jR

j
α = RiγC

γ
αβ . (15)

The C
γ
αβ are the structure functions (here assumed to be field

independent, Cγ
αβ ,i = 0) and satisfy the Jacobi identity

Cǫ
αβC

δ
ǫγ + Cǫ

γ αC
δ
ǫβ + Cǫ

βγC
δ
ǫα = 0. (16)

Gauge invariance δεS = 0 of the action (1) implies the
Noether identity

S,iR
i
α = 0. (17)

Differentiation of (17) shows that the fluctuation operator (10)
for gauge theories is degenerate (on shell S,i = 0),

FijR
i
α = 0. (18)

The gauge degeneracy Det(Fij) = 0 prevents the construction
of the inverse (F−1)ij, and the associated Green’s function Gij

does not exist. In order to break the gauge degeneracy, a gauge-
breaking action must be added:

Sgb = χαOαβ (∇̄)χβ . (19)

The background covariant gauge condition χα(φ̄; δφ) depends
linearly on the difference δφi − φ̄i between the “quantum
field” δφi, i.e., the variable that is integrated over in the path
integral, and the background field φ̄i. But, like the operator
Oαβ (φ̄; ∇̄), it may have an arbitrary (non-linear) parametric
dependence on the background field φ̄i. In this way, invariance
of the effective action under background gauge transformations is
realized. For the linear split (7), an infinitesimal, linearly realized
gauge transformation (14) can be distributed in different ways, in
particular by

δQε ϕ̄i = 0, δQε δφi = Riα(φ̄ + δφ)εα ,

or

δBε ϕ̄i = Riα(φ̄)ε
α , δBε δφi = Riα(δφ)ε

α . (20)

While the linearity of the generators ensures that in both

cases δεφ
i = δ

Q
ε (φ̄i + δφi) = δBε (φ̄

i + δφi) = Riα(φ)ε
α ,

the “quantum gauge transformation” δ
Q
ε does not affect the

background field φ̄i but only the “quantum” field δϕi, whereas
for the background gauge transformations δBε , the transformation
(14) is split between the background field and the quantum

3The generalized DeWitt gauge index α = (a,X) is taken from the beginning of
the Greek alphabet and not to be confused with indices µ, ν, . . . from the tangent
bundle.
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FIGURE 1 | The diagrammatic expansion of the quantum effective action in powers of loops.

field according to (7). The gauge-breaking action (19) must be
compensated for by the ghost action

Sgh = c∗αQ
α
βc

β . (21)

The anticommuting independent ghost field cα and anti-ghost
field c∗α have fermionic statistics. The ghost operator Qα

β

is defined as the variation of the gauge-transformed gauge
condition,

Qα
β (∇̄) : =

δχα[φi
ε]

δεβ
. (22)

Summarizing, for gauge theories the partition function (2)
generalizes to

Z[J] = Det(Oαβ )
1/2
∫

D[φ, c, c∗] e−{Stot[φ,c,c∗]+Jiφ
i}, (23)

with the total action Stot defined as the sum of (1), (19) and (21),

Stot[φ, c, c
∗] = S[φ]+ Sgb[φ̄;φ]+ Sgh[φ̄, c, c

∗]. (24)

In particular, the gauge-fixed fluctuation operator is no longer
degenerate and can be inverted:

F
gb
ij (∇̄) := (S+ Sgb)ij

∣
∣
∣
φ=φ̄

. (25)

The structure of the effective action and the proof of perturbative
renormalizability of a local gauge theory are described in more
general terms by exploiting the residual non-linearly realized
Becchi-Rouet-Stora-Tyutin (BRST) symmetry of the gauge-fixed
action [56, 57]. For the application of these methods in the
context of general relativity and Yang-Mills theories, (see [58]);
for a generalization to non-relativistic theories, (see [52]).

2.3. Functional Traces and the Heat-Kernel
Technique
In addition to the abstract formalism presented in section 2,
explicit calculations in the perturbative expansion (6) require
the evaluation of functional traces, for which the combination
of the BFM with heat-kernel techniques provides a manifest
covariant and efficient tool4. For the connection between the

4The heat kernel is in particular very efficient for the extraction of the one-
loop divergences. For calculations involving higher loop orders, it is not so
well-developed, but see [59].

heat-kernel technique and position space Feynman diagrams in
curved spacetime (see e.g., [60, 61]). For an introduction to the
background field method, (see [62–64]). For an overview of flat-
space Feynman-diagrammatic calculations in momentum space,
see e.g., [65], as well as [66] for an introduction to modern on-
shell methods. An explicit illustration of the connection between
the different techniques is given section 9 in the context of the
one-loop divergences for projectable Hořava gravity.

The heat-kernel technique, originally developed in
mathematics in the context of asymptotic expansions, partial
differential equations, and geometric analysis of the Laplace
operator [67–72], has turned out to be a very useful tool
in physics also, especially in the context of renormalization
in Quantum Field Theory (QFT) on a curved background
[33, 60, 73, 74]. Recalling the ultra-condensed DeWitt notation,
the (gauge-fixed) fluctuation operator (25) takes the general form
Fij(∇̄) = FAB(∇̄XA )δ(XA,XB). The operator with proper index
positions FA B , acting on the fluctuation field δφA(X), is obtained
from FAB by raising the bundle index A with the (ultra-local)
configuration space metric CAB

5,

F(∇) : = FAB(∇) = CACFCB(∇). (26)

Inverse powers and the logarithm of the operator (26), which
appear in the perturbative expansion (6), are conveniently
expressed in terms of the Schwinger integral representation6 over
“proper time” s,

1

Fn
=
∫ ∞

0

ds

(n− 1)!
sn−1 e−sF, ln F = −

∫ ∞

0

ds

s
e−sF.

(27)

5If the configuration space of fields C is viewed as a differentiable manifold, the
configuration space metric defines the invariant line element dS2 = Cij dφi dφj.
Ultra-locality means that Cij = CABδ(XA,XB) with CAB involving no derivatives.
For 2kth-order derivative theories, defined by an action functional (1), the
configuration space metric CAB could be defined by the coefficient of the
(minimal part of the) highest derivative term in the fluctuation operator
FAB = CAB1

k + . . .. The inverse is defined via CACCCB = δAB = 1. The boldface
notation is exclusively reserved for matrix-valued operators with proper index
positions. Since the content of this section holds for general operators F, no
background tensors appear in what follows.
6The inverse F−1 of the operator F is denoted by 1/F. It is assumed that F is positive
definite. In the integral relation for the logarithm (27), an (infinite) constant
has been neglected. The precise relation can be defined by a regularizing mass

damping factor, i.e., by defining G(m2) : =
∫∞
0 ds e−sm2

e−sF, with the logarithm

of F obtained as a limit, lnF = limm2→∞
[

lnm21−
∫ m2

0 dµ2 G(µ2)
]

.
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The heat kernel KF(s|X,Y) associated with the operator F

formally satisfies the heat equation

KF(s|X,Y) : = e−s F(∇X)δ(X,Y),
[

∂

∂s
+ F(∇)

]

KF(s|X,Y) = 0. (28)

In terms of the heat kernel (28), the one-loop contribution to the
effective action (8) takes the form

Ŵ1 = −
1

2

∫ ∞

0

ds

s
TrKF(s|X,Y)

= −
1

2

∫ ∞

0

ds

s

∫

ddx tr [KF]
A
B(s|,X,X). (29)

Equation (29) can be viewed as the definition of the functional
trace Tr and requires evaluation of the spacetime integral over
the internal trace tr of the coincidence limit y → x of
the matrix-valued two-point kernel [KF]AB(s|,X,Y). Ultraviolet
(UV) divergences arise from the lower integration bound in (29),
i.e., the s → 0 limit.

For a minimal second-order operator with (positive-definite)
Laplacian 1 = −gµν∇µ∇ν1 and potential P,

F(∇) = 1 + P, (30)

there is an ansatz for the associated heat kernel at non-coincident
points, introduced in [33]:

K(s|X,Y) =
g1/2(y)

(4π s)d/2
D

1/2(X,Y) e−
σ (X,Y)
2 s �(s|X,Y). (31)

Synge’s world function σ (X,Y) is a bi-scalar [75], whichmeasures
one-half of the geodesic distance squared between the points X
and Y , and D(X,Y) is the de-densitized Van Vleck determinant,
a bi-scalar defined as

D(X,Y) : = g−1/2(X) det

(
∂2σ (X,Y)

∂Xµ∂Yν

)

g−1/2(Y). (32)

The bi-tensor � can be obtained in the form of an asymptotic
expansion in proper time,

�(s|X,Y) : =
∞
∑

n=0

an(X,Y) s
n,

an(X,X) ∝ ∇X . . .∇X
︸ ︷︷ ︸

2p

R . . .R
︸ ︷︷ ︸

m

, n = p+m. (33)

The Schwinger-DeWitt (SDW) coefficients at coincidence points
an(X,X) are local functions of the background fields, and the
generalized curvature R encompasses three different types of
background curvature,R = {Rµνρσ 1,RRRµν ,P}.

For the minimal second-order operators (30), a closed-
form algorithm for calculating the one-loop divergences
Ŵdiv
1 is available. In general, dimensional regularization

annihilates all power-law divergences and is sensitive only to
logarithmic divergences, which are isolated as poles in dimension

TABLE 1 | Coincidence limits required for the calculation of a2(X,X ).

R R
0

R
1/2

R R
3/2

R
2

σ ∇2σ ∇3σ ∇4σ ∇5σ ∇6σ

D D ∇D ∇2
D ∇3

D ∇4
D

a0 a0 ∇a0 ∇2a0 ∇3a0 ∇4a0

a1 a1 ∇a1 ∇2a1

a2 a2

ǫ−1 = 2/(4− D). In D = 4, the logarithmically UV-divergent
part of the one-loop contributions to the effective action (29) for
the minimal second-order operator (30) is determined by the
coincidence limit of a2(x, x) [33],

Ŵdiv
1 = −

1

ǫ

1

32π2

∫

d4X g1/2 tr a2(X,X). (34)

The coincidence limits of the SDW coefficients an(x, x) can be
calculated iteratively by inserting the ansatz (31) into the heat
Equation (28), leading to the recurrence relation (for n ≥ 0),

[

(n+ 1)+ σµ∇µ

]

an+1 = D
−1/2F(∇)

(

D
1/2an

)

= 0. (35)

In order to obtain a2(X,X) in this way, the coincidence limits
of σ , D, a0, a1, and their derivatives must be calculated. The
successive pattern of this calculation is illustrated in Table 1.

The coincidence limits of σ ,D, a0, and their derivatives can be
obtained by successive differentiation of the “defining equations”
for σ ,D, and a0,

σµσµ = 2σ , D
−1∇µ(D σµ) = d, σµ ∇µa0 = 0, (36)

with the “initial conditions” σ
∣
∣
y=x

= 0, D
∣
∣
y=x

= 1, and

a0
∣
∣
y=x

= 1. In this way, the coincidence limit of a2(X,Y) is found

as [33, 60],

a2(X,X) =
1

180

(

RµνρσR
µνρσ − RµνR

µν − 61R
)

1

+
1

2

(

P2 −
1

6
R1

)2

+
1

12
RRRµνRRR

µν +
1

6
1P. (37)

For higher-order and non-minimal operators there is no closed-
form expression for the one-loop divergences (34) in terms of a
single SDW coefficient as for the minimal second-order operator
(30). Nevertheless, in [60] a closed algorithm was developed,
which reduces the calculation of the one-loop divergences for
higher-order and non-minimal operators to the heat kernel of
the second-order minimal operator (31) and a few universal
functional traces,

UUU
(p,n)
µ1...µp

: = ∇µ1 . . .∇µp

1

1n

∣
∣
∣
∣

div

Y=X

. (38)

The perturbative algorithm underlying the generalized SDW
technique relies on the non-degeneracy of the principal
symbol D of the operator F. There are, however, important
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physical theories for which the principal symbol of the
fluctuation operator is degenerate so that the (generalized)
SDW algorithm is not directly applicable. In such cases, more
general methods are required; see [76–78] for heat-kernel
calculations involving operators with degenerate principal part
and [79, 80] for operators with Laplacians constructed from an
effective (background field-dependent) metric. In the context of
Lifshitz theories, the development of heat-kernel techniques for
anisotropic operators has recently been initiated [81–83].

3. PERTURBATIVE QUANTUM GENERAL
RELATIVITY

3.1. Classical General Relativity
In the theory of general relativity (GR), the gravitational
interaction manifests itself geometrically as curvature of
spacetime and couples universally to all fields, which, combined
with the attractive nature of gravity, implies that it cannot
be shielded. In Einstein’s theory, the dynamical character
of the spacetime geometry is encoded in the dynamics of
the metric field gµν(X). The action functional of GR is the
Einstein-Hilbert action

SEH =
M2

P

2

∫

dDX
√

−g (R− 23) . (39)

The action (39) involves the invariant volume element with
determinant g = det(gµν), the Ricci scalar R = gµνRµν , and the
cosmological constant 37. The dynamics of gµν is determined
by Einstein’s field equations, obtained from extremizing the total
action S[g,9] = SEH[g]+ SM[g,9] with respect to gµν ,

Rµν −
1

2
gµνR+ 3gµν = M−2

P Tµν . (40)

The energy momentum tensor Tµν derives from the “matter”
action SM[9], with all non-geometrical “matter” fields
collectively denoted by 9 :

Tµν = −
2

√−g

δSM[g,9]

δgµν
. (41)

Infinitesimal spacetime distances dsmeasured by the metric field
gµν are defined by the line element

ds2 = gµν(X) dX
µ dXν . (42)

7I work on a D-dimensional (pseudo)-Riemannian manifold M with
local coordinates Xµ, µ = 0, 1, 2, 3, a metric structure gµν with inverse
gµν defined by gµρgρν = δ

µ
ν , and the torsion-free metric-compatible

Christoffel connection Ŵ
ρ
µν = gρσ (∂µgσν + ∂νgµσ − ∂σ gµν )/2, which

defines the covariant derivative ∇µ. I use the following conventions for the
Lorentzian signature sig(g) = diag(−1, 1, 1, . . . , 1), the Riemann curvature
tensor R

ρ
µσν = ∂σ Ŵ

ρ
µν − ∂νŴ

ρ
µσ + Ŵλ

µνŴ
ρ
λσ − Ŵλ

µσ Ŵ
ρ
λν , and the Ricci tensor

Rµν = R
ρ
µρν . I use natural units in which the speed of light c and Planck’s constant

h̄ are set to one, c = h̄ = 1, and Newton’s constant GN can be expressed in terms
of the reduced Planck mass,MP : = 1/

√
8πGN.

Denoting themass dimension by [ · ]M and assigning coordinates
Xµ the dimension of a length, [X]M = −1, implies that

[∂µ]M = 1, [gµν]M = 0, [Rµνρσ ]M = 2,

[GN]M = − (D− 2), [3]M = 2. (43)

The Ricci scalar R is the only curvature invariant involving
exactly two spacetime derivatives. Except for the cosmological
constant, all other curvature invariants necessarily contain higher
derivatives. In D = 4, these are the only two classically relevant
local curvature operators8.

The metric field transforms as a rank-(0, 2) tensor under
D-dimensional coordinate transformations Xµ → X̃µ(X),

gµν(X) 7→ g̃µν(X̃) = gαβ (X)
∂Xα

∂X̃µ

∂Xβ

∂X̃ν
. (44)

The invariance group of GR consists of the D-dimensional
diffeomorphisms Diff(M). The change of the metric field under
an infinitesimal diffeomorphism δξ generated by the vector field
ξµ is given by the Lie derivative of gµν along ξµ:

δξ gµν =
(

Lξ g
)

µν
= ξρ∂ρgµν + 2gρ(ν∂µ)ξ

ρ = 2∇(µξν). (45)

Round brackets in (45) denote symmetrization among the
enclosed indices with unit weight and ξµ = gµρξρ . Since the
gravitational field equations (40) relate geometry with matter,
consistency requires that SM[g,9] must also be invariant under
Diff(M), which implies the “on-shell” covariant conservation of
the energy-momentum tensor, ∇µTµν = 0.

3.2. Quantum GR
In order to establish a connection with the general formalism
of perturbative QFT reviewed in section 2, the generalized field
φi in GR is identified with the metric field, φi 7→ gµν(X).
Comparison of (1) with the Einstein-Hilbert action (39) implies
that the operators Oi(g, ∂) and the coupling constants ci should
be identified as follows:

O1(g) 7→
√

−g, c1 7→ −M2
P3,

O2(g, ∂) 7→
√

−gR, c2 7→
M2

P

2
. (46)

The particle spectrum of GR is derived by expanding the action
(39) to quadratic order in the linear perturbations

hµν = gµν − ḡµν (47)

around a flat background ḡµν = ηµν
9. Absorbing a factor of

MP/2 in the definition of hµν , i.e., hµν 7→ 2hµν/MP, and defining

8I call an operator O classically relevant if [O]M < D, classically marginal if
[O]M = D, and classically irrelevant if [O]M > D.
9The particle spectrum of a QFT is usually derived by expanding the action up
to quadratic order in the linear perturbation around the vacuum. In relativistic
QFTs, the natural vacuum is Minkowski space, which, even in the presence of
gravity, could be justified locally by the equivalence principle. Minkowski space
is a maximal symmetric space whose isometries are generated by the D(D+ 1)/2
linearly independent Killing vectors, which correspond to the generators of
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h = ηµνhµν and ∂2 : = ηµν∂µ∂ν , upon integration by parts the
result reads

S
(2)
EH|ḡ=η =

∫

dDX
[

hµν∂2hµν − h∂2h− 2hµν∂ν∂ρhµ
ρ

+ 2hµν∂ν∂µh
]

. (48)

After Fourier transformation ∂µ 7→ iPµ with four momentum
Pµ and square P2 = ηµνP

µPν , the fluctuation operator (10) in
momentum space can be expressed in terms of spin-projection
operators as

Fµν,ρσ (−P2) =
[

5(2)µνρσ − (D− 2)5(0,ss)µνρσ
]
(

−P2
)

. (49)

The spin-projection operators acting on the symmetric rank-two
tensor hµν read

5(2) ρσ
µν =

1

2

(

5(T) ρ
µ 5(T) σ

ν + 5(T) σ
µ 5(T) ρ

ν

)

−
1

D− 1
5(T)

µν5
(T)ρσ , (50)

5(1) ρσ
µν =

1

2

(

5(T) ρ
µ 5(L) σ

ν + 5(T) σ
µ 5(L) ρ

ν +

5(T) ρ
ν 5(L) σ

µ + 5(T) σ
ν 5(L) ρ

µ

)

, (51)

5(0,ss) ρσ
µν =

1

D− 1
5(T)

µν 5(T)ρσ , (52)

5(0,ww) ρσ
µν = 5(L)

µν 5(L)ρσ , (53)

5(0,sw) ρσ
µν =

1
√
D− 1

5(T)
µν 5(L)ρσ , (54)

5(0,ws) ρσ
µν =

1
√
D− 1

5(L)ρσ 5(T)
µν . (55)

Here, 5(T) and 5(L) are the transversal and longitudinal vector
field projectors

5(T) ν
µ = δν

µ −
PµP

ν

P2
, 5(L) ν

µ =
PµP

ν

P2
. (56)

Note that the scalar sector (52–55) is non-diagonal, such that
apart from the diagonal projection operators P(0,ss) and P(0,ww)

there are the two intertwining operators5(0,sw) and5(0,ws) which
connect the two spin-0 representations s and w. The operators
satisfy the algebra (orthogonality and idempotency relations)

5
(I,ij) αβ

µν 5
(J,kl) ρσ

αβ = δIJδik5
(J,jl) ρσ

µν , (57)

infinitesimal transformations of the Poincaré group. In this way, the Minkowski
vacuum is connected to the representation theory of the Poincaré group, ultimately
giving rise toWigner’s classification [84], in which particles are classified according
to their mass and their spin, i.e., the eigenvalues of the Casimir operators of the
Poincaré group. A positive cosmological constant 3 > 0 suggests, however, that
the global vacuum is De Sitter space rather than Minkowski space. De Sitter space
is also amaximally symmetric space, whose Killing vectors are the generators of the
De Sitter group. More generally, this also suggests that for an arbitrary spacetime
without any symmetry, the very concept of a particle is not really well-defined.

with J = 2, 1, 0 labeling the spin of the representation and
i, j, k, l = s,w labeling the different spin-0 operators. In addition,
the diagonal operators (50–53) satisfy the completeness relation

5(2) ρσ
µν + 5(1) ρσ

µν + 5(0,ss) ρσ
µν + 5(0,ww) ρσ

µν = δρσ
µν , (58)

with δ
ρσ
µν = (δρ

µδσ
ν +δ

ρ
ν δσ

µ)/2 denoting the identity in the space of
symmetric rank-two tensors. Finally, the traces of the operators
(50–53) yield the dimensions of the invariant subspaces, which,
according to (58), add up to the D(D + 1)/2 components of a
symmetric rank-two tensor hµν ,

tr5(2) =
1

2
(D+ 1) (D− 2) , tr5(1) = D− 1,

tr5(0,ss) = 1, tr5(0,ww) = 1. (59)

Despite the appearance of the spin-0 projector in (49), the
spectrum of propagating particles in GR in D dimensions
encompasses only the massless spin-2 graviton; the scalar mode
can be eliminated by a residual gauge transformation and is not
a physical degree of freedom. As explained in (18), the operator
(49) is degenerate and a gauge-fixing is required for its inversion.
Choosing Oµν = −ηµνδ(x − y) for the operator in (19) and the
DeDonder gauge condition on a flat background,

χµ[η, g] =
(

ηµρηνσ −
1

2
ηρσ ηµν

)

∂νhρσ , (60)

the flat gauge-fixed fluctuation operator (25) of GR in
momentum space reads

F
µν,ρσ

gf
(−P2) =

1

2

[

ηµρηνσ + ηµσ ηνρ − ηµνηρσ
] (

−P2
)

. (61)

Inversion of (61) leads to the spin-2 propagator on a flat
background10,

Pµν,ρσ (−P2) =
1

2

(

ηµρηνσ + ηµρηνσ −
2

D− 2
ηµνηρσ

)
1

(−P2)
.

(62)

The propagator Pµν,ρσ defines the free theory and hence the
particle spectrum in perturbation theory. The massless graviton
in D dimensions has D(D− 3)/2 polarization states, obtained by
subtracting the 2D components of the independent ghost fields
in (21) from the D(D + 1)/2 independent components of the
symmetric rank-two tensor hµν .

The interactions in momentum space are defined by the

higher n-point functions V
(n)
µ1ν1...µnνn (P1, . . . , Pn), which derive

from the Fourier transforms of the nth functional derivative of
the action

V
(n)
µ1ν1···νnµn

(X1, . . . ,Xn) : =
δnSEH[g]

δgµ1ν1 (X1) . . . δgµnνn (Xn)
, n > 2.

(63)

10I reserve the symbol G for the general Green’s function in position space defined
in (9), and use P instead for the flat-space Green’s function in momentum space.
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The essential non-linearity of GR [i.e., the non-polynomial
dependence of (39) on gµν] is the origin of the infinite tower
of interaction vertices (63) with an increasing number of legs
n. The diagrammatic representation of the propagator and the
interaction vertices in GR are shown in Figure 211.

The fact that the Einstein-Hilbert action is linear in the scalar
curvature implies that GR is a second-order derivative theory,
such that (suppressing the index structure) the propagators have
a momentum scaling of P ∝ P−2, while all n-point vertices in
momentum space scale as V(n) ∝ P2. Feynman diagrams with
loops, such as in Figure 1, correspond to a momentum space
integral I that could diverge in UV. A generic Feynman integral
I in GR with L-loops, I internal propagators, and V vertices has
the momentum scaling

I ∝
∫
(

dD P
)L 1
(

P2
)I

(

P2
)V

. (64)

The superficial degree of divergence Ddiv(I) provides a simple
way of estimating the leading divergence of I by power counting.
Scaling each loop momentum by a constant factor b, taking the
limit b → ∞, and counting powers of b defines Ddiv(I). If
Ddiv(I) < 0, the associated diagram is superficially finite (i.e.,
finite modulo subdivergences); and if Ddiv(I) ≥ 0, it is divergent.
Using the topological relation I−V = L− 1, valid on an abstract
graph level (i.e., independent of the underlying physical theory),
the superficial degree of divergence of quantum GR reads

Ddiv
GR = DL− 2(L− 1). (65)

This equality shows that inD = 4, the degree of divergence grows
with the number of loops L as Ddiv

GR = 2 (L + 1) and signals
the perturbatively non-renormalizable character of GR, which in
D = 4 is directly connected to the negative mass dimension (43)
of the gravitational coupling constant GN = M−2

P .
In addition to this simple power-counting argument, the UV

divergences of GR and its coupling to matter fields have been
calculated in various approximations. For GR with and without
a scalar field, the one-loop divergences were first derived in [36].
In subsequent works, the one-loop divergences were extended,
including to GR coupled to abelian and non-abelian gauge fields
[91, 92], GR coupled to fermions [93], GR with a cosmological
constant [94, 95], GR with non-minimal gauges [60], and GR
coupled non-minimally to a scalar field [96–98]. At the two-loop
order, the calculations of the UV divergences for pure gravity
were first performed in [37, 99] and later confirmed in [100]; see
also [59].

11This can also be seen as follows: Starting from a spin-2 particle freely propagating
in flat spacetime with a linear field equation, locality and diffeomorphism
invariance require non-linear self-interactions to be added iteratively in a
consistent way such that, when summed, the full non-linear theory of GR is
recovered (see [85]). The explicit expressions for the vertices in momentum space
are rather lengthy and not very illuminating. The expressions for the three-point
and four-point vertices can be found in [35], for example. For these calculations
computer-algebra programs, such as FORM or the Mathematica-based xAct
bundle (in particular, the core package xTensor and the extension packages
xPert and xTras) are indispensable [86–90].

In order to make connections with the general formalism
outlined in section 2, I briefly illustrate the calculation of the one-
loop divergences for the Euclidean version of the Einstein-Hilbert
action (39) in D = 4,

SEH[g] = −
M2

P

2

∫

d4X
√
g (R− 23) . (66)

The gauge-breaking action (19) for the second-order theory (66)
is given by

Sgb[ḡµν; hµν] = −
1

2

∫

d4X χµgµνχ
ν , (67)

where the ultra-local operator Oαβ and De Donder gauge
condition χα are

Oαβ = −
√

ḡ

2
ḡµνδ

(4)(X,Y),

χµ[ḡµν; hµν] =
(

ḡµρ ḡνσ −
1

2
ḡρσ ḡµν

)

∇̄νhρσ . (68)

Adding (67) to (66) results in a gauge-fixed fluctuation operator
(25), which is of the minimal second-order type (30),

Fµν,ρσ = Ḡ
µν,τλ

F
ρσ

τλ = Ḡ
µν,τλ (

1̄δ
ρσ
τλ + P̄

ρσ
τλ

)

, (69)

where 1̄ = −ḡµν∇̄µ∇̄ν is the positive-definite background
Laplacian and the background values of the DeWitt metric Gµν,ρσ

and the potential P ρσ
τλ are defined as

G
µν,ρσ

: =
g1/2

4

(

gµρgνσ + gµσ gνρ − gµνgρσ
)

, (70)

P ρσ
µν : = − 2Rρ σ

(µ ν) − 2δ(ρ(µR
σ )
ν) + gµνR

ρσ + gρσRµν

−
1

2
gµν g

ρσR+ (R− 23)δρσ
µν . (71)

According to (22), the ghost operator derives from (68) and reads

Q ν
µ = δν

µ1̄ − R̄ν
µ. (72)

The divergent part of the one-loop approximation (8) reduces to
the evaluation of the two functional traces

Ŵdiv
1 =

1

2
Tr ln

(

Fµν
ρσ

)
∣
∣
∣

div
− Tr ln

(

Q ν
µ

)
∣
∣
∣

div
. (73)

Terms proportional to δ(4)(0) that arise from Tr ln(Gµνρσ ) are
zero in dimensional regularization. The divergent parts of the
functional traces (73) are most efficiently evaluated by the heat-
kernel techniques presented in section 2.3. The operators (69)
and (72) in (73) are both of the form (30), for which the divergent
part is given by (34). The final result for the one-loop divergences
(73) reads

Ŵdiv
1 =

1

16π2ε

∫

d4X
√

ḡ

[

−
53

90
Ḡ−

7

20
R̄µν R̄

µν

−
1

120
R̄2 +

13

6
3R̄−

5

2
32
]

. (74)
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FIGURE 2 | Diagrammatic representation of the propagator and the interaction vertices in GR.

The Euler characteristic χ(M) is a topological invariant, defined
in terms of the quadratic Gauss-Bonnet invariantG as

χ(M) : =
1

32π2

∫

M
d4X

√

−g G,

G : = RµνρσR
µνρσ − 4RµνR

µν + R2. (75)

This allows us to eliminate squares of the Riemann tensor in
(74) in favor of squares of the Ricci tensor and squares of the
Ricci scalar. For gravity with a cosmological constant in vacuum,
the field equations (40) imply Rµν = 3gµν . Therefore, on-
shell, quantum Einstein gravity with a cosmological constant
at the one-loop order can be expressed in terms of the Euler
characteristic (75) and the volume V(M) : =

∫

dDX
√

ḡ as

Ŵdiv
1,on-shell =

1

ε

[

−
53

45
χ(M)+

87

20

32

12π2
V(M)

]

. (76)

As discussed in [95], the result (76) shows that, within the one-
loop approximation, pure Einstein gravity in D = 4 is on-shell
renormalizable, as the divergences in (76) can be absorbed by
adding the topological term χ(M) (which does not affect the
field equations) with some coefficient to the action (66) and
renormalizing this coefficient as well as the cosmological constant
3. For the case of a vanishing cosmological constant, the fact
that Einstein gravity is on-shell one-loop finite was first found in
[36]. However, as soon as matter fields are coupled, the one-loop
divergences remain even on-shell [36]. For example, the one-loop
divergences of GR with a minimally coupled scalar field ϕ with
quartic self-interaction induce a non-minimal coupling to gravity
proportional to Rϕ2, an operator not present in the original
action [36, 96–98]. At the two-loop order, even for a vanishing
cosmological constant 3 = 0, a divergent contribution of a
single operator among the cubic curvature invariants survives the
on-shell reduction [37, 99, 100],

Ŵdiv
2,on-shell =

1

ε

1

(16π2)2
209

1470

1

M2
P

∫

d4X
√

−g C̄ ρσ
µν C̄ αβ

ρσ C̄
µν

αβ ,

(77)

thereby showing explicitly that GR is perturbatively non-
renormalizable12. In (77), the cubic Riemann curvature invariant

12In a recent calculation of the two-loop divergences with modern on-shell
methods, it was found that by using dimensional regularization, evanescence
operators (such as the Gauss-Bonnet term) in divergent subdiagrams can alter the
coefficient of the pole term [101].

is expressed in terms of the Weyl tensor Cµνρσ , which on-shell
coincides with the Riemann tensor Rµνρσ in view of the vacuum
on-shell identity Rµν = 0,

Cµνρσ = Rµνρσ

−
2

D− 2

(

Rµρgνσ + Rνρgµσ + Rµσ gνρ + Rνσ gνρ
)

−
R

(D− 1)(D− 2)

(

gµρgνσ − gνρgµσ

)

. (78)

In a perturbatively renormalizable QFT, finitely many free
parameters (fields, masses, and coupling constants) are sufficient
to absorb all UV divergences to all orders in the perturbative
expansion. As demonstrated in (65) based on power-counting
arguments and in (77) based on explicit calculations, GR is not
of that form. New higher-dimensional operators with divergent
coefficients are induced at every loop order and have to be
renormalized by introducing the corresponding counterterms,
each of which introduces a new coupling constant with a finite
part that needs to be determined by a measurement. In this way,
more and more free parameters are introduced at each order in
the perturbative expansion, and the theory ultimately loses its
predictive power.

4. EFFECTIVE FIELD THEORY OF GRAVITY

For many physical systems, an effective coarse-grained
description is sufficient to accurately describe phenomena
at low energies by the relevant degrees of freedom [38]. Such an
effective description might arise in two complementary ways,
often referred to as the top-down and bottom-up approaches.
In the case where a (more) fundamental theory is known at
high energy scales, a top-down approach leads to an effective
low-energy theory by “integrating out” the heavy degrees of
freedom13. Denoting the heavy degrees of freedom collectively
by 8, with characteristic mass scale M8, and denoting the
light degrees of freedom by φ, with characteristic mass scale
Mφ , in a “top-down” scenario there is a natural mass hierarchy
M8 ≫ Mφ . Integrating out the 8-fields from the combined

13Only when the more fundamental theory is valid up to arbitrarily high energy
scales does it qualify as UV-complete theory. Instead of integrating out certain
heavy particles, in the Wilsonian approach the effective action is defined at a given
energy scale E by integrating out all particles with momenta P2 > E.
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FIGURE 3 | In the diagrammatic representation, to first order in the expansion

(80), the 8-propagator is shrunk to a point, leading to an effective four-point

contact interaction between the φ-fields.

action S[8,φ] in the path integral defines the effective action
Seff[φ] for the φ-fields,

∫

D[φ]e−Seff[φ]
: =

∫

D[8,φ] e−S[φ,8].

In general, the process of integrating out 8-fields results in a
non-local effective action Seff[φ]. Within an energy expansion
E/M8≪1, it can be expanded in terms of local operatorsOn(φ, ∂)
for the φ-fields as

Seff[φ] = S[φ]+
∑

n

∫

dDXwn
On(φ, ∂)

Mn−D
8

,

[

On(φ, ∂)
]

M
= n, [wn]M = 0. (79)

The higher-dimensional local operators On(φ, ∂) parameterize
the impact of the heavy degrees of freedom 8 on the effective
low-energy theory for the light degrees of freedom φ, and
their interacting strength is characterized by the dimensionless
Wilson coefficients wn. In terms of momentum space Feynman
integrals, this expansion is associated with an expansion of the
8-propagators in inverse powers of the heavy mass scaleM8,

1

(−P2)−M2
8

= −
1

M2
8

−
1

(−M8)
(−P2)

1

(−M2
8)

+ · · · . (80)

For example, in this way, a φφ-φφ interaction from a trivalent
vertex ∝ g8φ2 in S[8,φ] leads to an effective quartic contact
interaction between the φ-fields ∝ (g2/M2

8)φ
4 in Seff[φ], as

illustrated in Figure 3.
Since in the top-down approach calculations can be performed

both ways, i.e., in the more fundamental theory as well as in the
effective theory, scattering amplitudes can be compared at some
scale below (but usually close to) M8 in order to fix the Wilson
coefficients in terms of the parameters of the more fundamental
theory, a procedure called matching. Assuming wn = O(1), the
accuracy of the effective description is limited only by the ratio
E/M8, which controls the energy expansion, and completely
breaks down for energies E ≈ M8, where the propagation of the
8 particles is no longer suppressed.

Importantly, the effective field theory (EFT) description is still
applicable, even if no (more) fundamental theory in the UV is
known. This is the situation for GR, i.e., the EFT approach to
gravity is necessarily a bottom-up one [39, 40]. In this case, the
cutoff scale M that limits the range of validity of the effective

FIGURE 4 | Different energy scales. Is there new physics beyond the EW

scale and the Planck scale or a “big desert”?

description is not known a priori. Assuming no new physics at
scales in between the electroweak (EW) scale of the standard
model (SM) of particle physics and the scale at which gravity
becomes comparable to the other interactions (see Figure 4), the
Planck scale might be the natural cutoff scale,M = MP

14.
It could be considered a particular strength of the bottom-

up approach that it is agnostic about the gravitational degrees
of freedom in the UV: the low-energy limit of the EFT defines
the field variables, symmetries, and particle spectrum. In the
case of GR, these are the metric field, the diffeomorphisms,
and the massless spin-2 graviton. The ignorance of a more
fundamental theory in the UV is parameterized by the systematic
inclusion of higher-dimensional operators, which are compatible
with the symmetries of the defining low-energy theory and
suppressed by inverse powers of the cutoff scale. In the case
of gravity, diffeomorphism invariance requires that the higher-
dimensional purely gravitational operatorsO(g, ∂) have the form
of curvature invariants proportional to g1/2∇2nRm/M2(n+m)−D.
For energy scales well below the cutoff ∇/M ≪ 1, R/M2 ≪ 1,
these higher-dimensional operators are strongly suppressed and
the expansion can be truncated at a finite order determined by
the required accuracy of the EFT. In contrast to a fundamental
theory, the higher-dimensional operators in an EFT are viewed
merely as correction terms, i.e., they lead to additional interaction
vertices but do not modify the propagators of the theory and
hence do not affect the particle spectrum, which is defined
by the relevant operators at low energy15. While the higher-
dimensional operators in an EFT are included in a controlled
way, the precise way in which such an expansion scheme
is realized can differ. Depending on the requirements of
the underlying physical model, such an expansion could be
realized as a derivative expansion, as a vertex expansion, as the
aforementioned combined “energy expansion,” or according to a
different scheme.

In principle, the presence of the infinite tower of operators
∇2nRm/M2(n+m)−D is required in an EFT to absorb all UV
divergences by renormalizing the wi. However, according to the
GR power counting (65), the Lth loop correction in D = 4
induces divergent operators of the form ∇2nRm/M2(n+m)−D with
n+m = L+1. Thus, within a finite truncation, the EFT of gravity
can be perturbatively renormalized in the standard way, and only

14This naive estimate might be modified in the presence of matter; see e.g., the
discussion in the context of scalar-tensor theories with a strong non-minimal
coupling, such as in the model of Higgs inflation [102–107].
15Note, however, that a summation of operators with a fixed number of external
fields but an arbitrary number of derivatives results in non-local form factors that
lead to IRmodifications of the propagator. For a discussion of these non-local form
factors in the context of gravity and the heat kernel (see e.g., [108, 109]).
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finitely many renormalized parameters wi have to be measured,
ultimately rendering the EFT predictive16.

However, ultimately absorbing the UV divergences within
a finite truncation provides a consistency condition rather
than a prediction. In contrast to the local but unphysical
UV divergences, true predictions of the quantum theory are
connected with infrared (IR) effects that arise from long-
range interactions dominated by massless particles. These
contributions are connected to the non-analytic parts in
scattering amplitudes. The most prominent example of how
such IR effects can be extracted from QFT scattering amplitudes
within the EFT of GR concerns the corrections to the Newtonian
potential for two point masses M1 and M2, which after Fourier
transformation read [111]

V(r) = −
GNM1M2

r

[

1+ 3
GN(M1 +M2)

rc2
+

41

10π

GNh̄

r2c3
+ · · ·

]

.

(81)

The second term is a purely classical relativistic correction

related to the
√
P2 part, while the third term is of genuine

quantum origin and related to the P2 log(P2) part of the one-loop
contribution [111]. Both contributions correspond to those parts
of the scattering amplitude that have a non-analytic momentum
dependence. They are independent of the higher curvature terms
in the EFT expansion and therefore do not depend on a UV
completion. While the general structure of the correction terms
in (81) follows from dimensional analysis, the coefficients (in
particular the signs) have to be calculated and provide a true
prediction of quantum gravity.

While the quantum gravitational corrections are accompanied
by powers of GNh̄ and are therefore very hard to measure,
classical post-Minkowskian (PM) corrections are in powers
of GN. High-order PM corrections have been calculated with
classical techniques [112–115]. Since the advent of gravitational
wave astronomy, there have been increasing efforts to extract the
classical PM corrections within an EFT framework from QFT
scattering amplitudes, which, in turn, can be efficiently calculated
using modern on-shell techniques (see e.g., [116–122]).

The EFT of GR is a powerful and universal approach that
yields universal quantum gravitational predictions from long-
range effects of massless particles, but its scope of applicability
is limited by construction. Therefore, certain questions cannot
be addressed within this framework but require a fundamental
quantum theory of gravity.

5. ASYMPTOTIC SAFETY

Although the question about a fundamental theory of gravity
cannot be addressed in the framework of the perturbative EFT

16An important technical requirement for the consistent renormalization is that
the counterterms have the same structure as the operators in the EFT expansion.
Since the latter are restricted by symmetry, the process of renormalization is
required to preserve this symmetry; see e.g., the discussion in [110]. This property
is non-trivial to show and has been proven for GR and Yang-Mills theory in
[58]. Recently, the proof was extended to effective and non-relativistic theories by
combining the BRST cohomology with the background field method [52].

approach, the asymptotic safety (AS) program, initiated in [123,
124], might offer a UV-complete theory of quantum gravity.
The basic underlying idea is that the renormalization group
(RG) flow drives the (dimensionless) essential couplings gn of
a theory toward a UV fixed point g∗n

17. In this way, the AS
scenario prevents the couplings from running into divergences
at finite energy scales (Landau poles) and allows the RG flow to
be extrapolated to arbitrary energy scales k → ∞. However, in
contrast to the asymptotic freedom scenario corresponding to a
free (i.e., non-interacting or “Gaussian”) UV fixed point g∗n = 0,
the AS scenario only requires the weaker condition g∗n = const.,
which includes the possibility of an interacting fixed point for
g∗n 6= 0 [123]. In particular, the couplings gn are not required to
remain within the perturbative regime gn ≪ 1 and consequently
allow for a strongly interacting UV fixed point at which (at least
some of) the couplings g∗n≫1. Clearly such a strongly interacting
UV fixed point cannot be found within a perturbative approach.
Thus, the AS scenario is an inherently non-perturbative approach,
which can be addressed with the Wilsonian approach to the
RG [125].

The main object is the averaged effective action Ŵk, which
defines the full quantum theory at a given RG scale k. The sliding
scale k interpolates between the bare action Ŵ∞ = S in the UV,
corresponding to k = ∞, and the full effective action Ŵ0 = Ŵ in
the IR, corresponding to k = 0. Once the propagating degrees
of freedom φi and their symmetries are identified, Ŵk can be
expressed in terms of symmetry-compatible operators On(φ, ∂)
with coupling strengths gn(k) as

Ŵk =
∞
∑

i=1

∫

dDX gi(k)On(φ, ∂). (82)

The space of all coupling constants gi is called theory space. A
suitable tool for a non-perturbative analysis is the Wetterich
equation [126–128], which describes the exact functional RG flow
of the averaged effective action Ŵk,

k∂kŴk =
1

2
Tr

(

k∂kRk

Ŵ
(2)
k

+Rk

)

. (83)

Here, Tr is the functional trace,Rk is a scale-dependent regulator

and Ŵ
(2)
k

is the Hessian of the averaged effective action Ŵk. The
Wetterich equation (83) has a similar structure to the one-loop
approximation (8) but involves the scale-dependent regulator
function Rk defined such that it acts as an effective mass term of
the full propagator for quantum fluctuations with momenta P2 ≤

17In this section, I denote the coupling constants by gn to contrast with the cn
in (1) and the ωn in (79), although when put in the right context they are all
the same objects. The RG flow gn(k) is defined as the solution to the RG system
k∂kgn = βgn , with the abstract RG scale k and beta functions βgn . A fixed point g∗n
is defined by the condition βgn (g

∗
m) = 0 for all n. The couplings g̃n, which carry

a canonical physical dimension [g̃n]M = αn, are made dimensionless by rescaling
with the appropriate power of the RG scale [k]M = 1, i.e., gn = g̃nk

−αn , such that
[gn]M = 0. Moreover, since only essential couplings enter physical observables,
only they are required to take finite values in the UV. In contrast, inessential
couplings, which can be changed by a field redefinition, do not enter physical
observables and so may diverge in the UV.
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k2 and vanishes for momenta P2 ≫ k2. Together with the factor
∂kR in (83), which cuts off fluctuations with momenta P2 ≥ k2,
the presence of the regulator ensures that only fluctuations with
momenta peaked around P2 ≈ k2 contribute to the trace in (83),
thereby realizing the Wilsonian “shell-by-shell” integration18.
Owing to the presence of the regulator, no divergences occur. In
general, the Wetterich equation cannot be solved exactly. Instead
of a semiclassical expansion in powers of loops, such as in (6),
a finite truncation of the (in general infinite) set of operators
included in Ŵk is performed:

Ŵk =
N
∑

n=1

∫

dDX gn(k)On(φ, ∂). (84)

According to which criteria such a truncation is chosen
practically may depend on the underlying physical problem.
In most applications the operators are organized in terms
of an energy expansion, i.e., ordered by increasing canonical
mass dimension. There are, however, cases where a derivative
expansion or a vertex expansion is more appropriate. In the case
of gravity, diffeomorphism invariance requires that the O(g, ∂)
be curvature invariants, schematically O(g, ∂) = √

g(∇)2pRm.
By substituting the ansatz (84) into (83), choosing a regulator
Rk, and evaluating the functional trace on the right-hand side
of (83), the RG flow of the couplings gn(k) can be extracted
by “projecting” to the operator basis On(φ, ∂). Contributions
of operators that are induced by the flow and lead out of the
truncation (84) are neglected19.

For a successful realization of the AS scenario, the existence
of a UV fixed point g∗i is only a necessary condition, not a
sufficient one. In addition, an appropriate fixed point must
have a finite-dimensional UV critical surface20. The finiteness
of the UV critical surface lies at the very heart of the AS
scenario, as it implies that only a finite subset of the (in
general infinitely many) coupling constants have to be measured,
rendering the theory predictive. It is this feature that might
qualify the AS scenario in providing a UV-complete quantum
theory of gravity21. Therefore, in principle, if all UV-relevant
couplings were measured (and thus a particular RG trajectory

18In particular, once a cutoff is introduced, it does not matter whether the
underlying theory is perturbatively renormalizable in the strict sense or not. All
operators compatible with the symmetries of the theory have to be considered. This
is similar to the EFT case, but in contrast to the EFT treatment, the particle content
and the symmetries are not necessarily defined by the relevant operators of the
low-energy approximation, but rather are defined along with the averaged effective
action (82). In general the theory space is infinite, but if the symmetry restriction
is so strong that it only allows for a finite number of operators, the theory space
could be finite.
19This is a consistency requirement of the truncation. If no operators that lead out
of the truncation are induced, the flow closes and (83) is really an exact equation.
20The UV critical surface can be thought of as a subspace of the tangent space at
g∗i , consisting of those RG trajectories which are attracted toward the fixed point.
In general there can be more than just one fixed point, and the RG flow may also
allow for more exotic phenomena, such as limit cycles. It could also happen that
some of the fixed points can be discarded on physical grounds.
21Compare this with the perturbative quantization of GR, discussed in section 3.
The perturbatively non-renormalizable character requires the measurements of
an infinite number of couplings, thereby leading to a loss of predictive power.

emanating from the UV fixed point selected), all other UV-
irrelevant couplings would be fixed. They therefore constitute
predictions that could be falsified by additional measurements of
these couplings. In practice, however, calculations are limited to
finite truncations, and one must ensure that the properties of the
fixed point (and hence any prediction derived from them) remain
stable under an enlargement of the truncation. In principle, if
a reliable measure of the quality of a given truncation were to
exist, one could try to ultimately prove convergence; but as so
far no such measure exists, this is hard to realize in practice
and one has to rely on systematic step-by-step enlargements of
finite truncations. Nevertheless, as for the perturbative approach
(fundamental or EFT), a particular strength of the AS approach
to quantum gravity is its universality, i.e., gravity and matter
fields are treated within one and the same formalism. This
not only allows for a unification but also enables one to test
the techniques used in the context of quantum gravity in
more controlled environments, for which experimental data are
also available.

The functional RG flow in the context of gravity [41–43,
129, 130] has been studied in various truncations, starting
with the Einstein-Hilbert truncation [131], encompassing higher
curvature invariants [132–137] and matter fields [138–143] as
well as closed flow equations for f (R) gravity [144, 145], and
general scalar-tensor theories [146, 147]. A pattern that emerges
from most of these truncations is that an interacting UV fixed
point can be found and the dimension of the associated UV
critical surface does not grow upon enlarging the truncation
beyond the classically marginal operators. Since this program
has been pushed to high orders in various truncations, it might
provide some confidence that the observed pattern is a generic
feature and not an artifact of the truncation.

Despite these interesting results, there are a number of open
questions associated with this program (see e.g., [148]). In
general, the off-shell flow defined by Ŵk suffers from a number
of ambiguities related to the choice of regulator as well as to
the gauge dependence and field parametrization dependence of
the beta functions. Since different regulator choices, different
gauges, and different field parameterizations can even affect
qualitative features, such as the existence of a fixed point, a
satisfying resolution of these ambiguities seems to be crucial for
establishing the reliability of the predictions following from the
AS conjecture.

In connection with the gauge and parameter dependence, a
unique off-shell extension of the averaged effective action along
the lines of the construction proposed in [149] might offer
an interesting option. But even without such a construction,
the gauge and parametrization dependence should be absent
in an on-shell scheme (see e.g., [150]). However, making use
of the equations of motion in general leads to degeneracies
among different operators in a given truncation and therefore

Compare this also with the EFT approach to GR, discussed in section 4. While
only a finite number of couplings have to be measured within a finite truncation,
the EFT cannot be extrapolated beyond a certain energy scale and therefore does
not qualify as a UV-complete theory.
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the individual RG flow of the couplings for these on-shell
degenerate operators cannot be disentangled and resolved22.
Nevertheless, extracting, for example, physical observables from
the S-matrix will anyway involve an on-shell reduction. By
definition only essential couplings span the theory space.
In this sense, the “on-shellness” is already built into the
formalism of the AS conjecture from the very beginning.
However, especially in the context of gravity, the situation
is more complicated. For example, the question of whether
Newton’s constant is an essential or inessential coupling is
not so clear and leads to conceptional intricacies (see e.g., the
discussion in [151]).

In any case, the starting point for the derivation of observables
should be the effective action at k = 0, which is independent
of the regulator and is formally obtained by integrating out
all quantum fluctuations, i.e., integrating the functional flow
all the way down to the IR. One might be tempted to extract
information from the averaged effective action Ŵk at non-zero
k by performing an “RG-improvement” based on a heuristic
identification of the abstract coarse-graining RG scale k with
some characteristic physical scale. However, aside from the fact
that such an identification is typically only possible in highly
symmetric backgrounds where a single scale is present, such
as the radius in the context of spherically symmetric black
hole backgrounds, the Hubble parameter in the context of an
isotropic and homogeneous cosmological Friedmann-Lemaître-
Robertson-Walker background, the value of the scalar field
in the Coleman-Weinberg-like radiatively induced symmetry
breaking in a classically scale-invariant theory, or the momentum
transfer in the context of scattering amplitudes—it does not
seem that such a naive identification can be based on a
more general solid theoretical ground. However, even when
working with the effective action at k = 0, another problem
arises: the effective action is non-local (and non-analytic) and
therefore not appropriately described by the finite number
of local operators in a given truncation that do not capture
essential IR contributions. In this context, the introduction of
form factors in the AS program provides a more promising
route. Including form factors in the truncation goes beyond a
finite derivative expansion, as it captures the full momentum
dependence of propagators and vertices, which can be studied
either using a flat-space vertex expansion [152–154] or in a
general background by an expansion of the effective action
in powers of external fields (curvatures in the context of
gravity) [155, 156]. The manifest covariant calculations of
these non-local form factors are technically challenging and
require heat-kernel-based methods developed in [108, 109, 157–
159].

The analysis of form factors in the AS program may also shed
light on the status of the particle content, a problem shared by
higher-derivative theories of gravity, discussed in section 6. Any
truncation based on a finite derivative expansion will in general
lead to additional propagating degrees of freedom in the particle
spectrum (defined by the quadratic action expanded around a

22A similar problem occurs when working on special (in general highly symmetric)
backgrounds, even if they do not correspond to on-shell configurations.

flat background) and will almost always include higher-derivative
ghosts among them. Having access to the pole structure of the
propagators, including the full momentum dependence carried
by the form factors, may ultimately reveal the status of the ghost
degrees of freedom as an artifact of the finite truncation (realized,
for example, when the full propagators have only a single pole
with positive residue). Technically, this program is closely related
to the (ghost-free) non-local approach to quantum gravity (see
e.g., [18, 20–22, 25, 26]).

6. HIGHER-DERIVATIVE GRAVITY

Before giving up on finding a fundamental theory of quantum
gravity or abandoning the framework of perturbative QFT,
another obvious approach to try is to modify the underlying
classical theory of gravity and investigate the impact of these
modifications on the resulting quantum theory. Adding higher-
dimensional curvature invariants to the action might be the most
natural generalization of GR. In contrast to the EFT treatment,
when treating the modified theory as fundamental, the higher-
dimensional operators are no longer considered as perturbations,
and so they not only modify the interaction vertices but also the
propagators. Ultimately, this leads to new additional propagating
degrees of freedom. There are many ways to modify GR. A
simple and phenomenologically important extension of GR is
f (R) gravity, allowing for an arbitrary function f of the Ricci
scalar R,

Sf [g] =
∫

d4X
√
g f (R). (85)

In particular, (85) encompasses the Starobinsky model [160],
which is highly relevant for inflationary cosmology,

fStar =
M2

P

2

[

R+
1

6M2
0

R2
]

. (86)

In fact, (86) was the first model of inflation and is strongly
favored by the latest Planck data [161]. The one-loop divergences
for f (R) gravity (85) have recently been calculated on an
arbitrary background [76], thereby essentially generalizing
previous calculations obtained for spaces of constant curvature
[144, 145, 162],

Ŵdiv
1 =

1

32π2ε

∫

d4X
√
g

[

−
71

60
G−

259

180
RµνR

µν −
9

2

(
f

f1

)2

−
1

18

(
f1

f2

)2

+
9

2

f

f1
R+

1

3

f

f2
−

59

360
R2 +

21

2

f

f1

(

ϒ ;µ
µ

)

−
33

4
R
(

ϒ ;µ
µ

)

−
371

72
R
(

ϒµϒµ
)

+
27

4

f

f1

(

ϒµϒµ
)

+
20

9
Rµνϒ

µϒν −
137

24

(

ϒ ;µ
µ

)2
−

9

8

(

ϒµϒµ
)
(

ϒ ;ν
ν

)

−
769

96

(

ϒµϒµ
)2

]

. (87)
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The derivatives of the function f are defined by fn : = ∂nf /∂Rn,
and the vector ϒµ is defined as ϒµ : = R;µf2/f1. Even for
a general function f , the result (87) shows that f (R) gravity
is perturbatively non-renormalizable on a general background.
Although divergences accompanied by arbitrary functions of R
can be absorbed by renormalizing f (R), due to the absence of the
derivative structures ϒµ and the quadratic curvature structure

RµµR
µν in (85), the associated divergences cannot be absorbed23.

The higher derivatives in (85) lead to a fourth-order fluctuation
operator and imply the presence of an additional propagating
scalar degree of freedom, the scalaron. In the context of the
cosmological model (86), the scalaron drives the accelerated
expansion of the early universe, and its mass M0 ≈ 10−5MP

is fixed by the observed anisotropy spectrum in the cosmic
microwave background radiation [161].

What is the required extension of GR that qualifies as a
candidate for a perturbatively renormalizable quantum theory
of gravity? The power counting performed in (65) for GR can
easily be generalized to higher-derivative theories of gravity.
Diffeomorphism invariance requires that all higher curvature
invariants have a schematic structure

√−g ∇2nRm (suppressing
indices) with a total number of derivatives p = 2(n + m). The
natural candidate higher-derivative gravity (HDG) theory is the
one which includes all classically relevant andmarginal operators,
i.e., in the D = 4 case all operators with p ≤ 4. Aside from the
relevant operators (46) that are already present in the Einstein-
Hilbert action (39), the marginal operators with p = 4 have either
m = 2 and n = 0 or m = 1 and n = 1. For the latter case, there
is only one scalar invariant O3(g, ∂) =

√−g ∇µ∇µR, which is a
total derivative. For the former case there are three possible scalar
invariants that are quadratic in the curvature,

O4(g, ∂) =
√

−g RµνρσR
µνρσ ,

O5(g, ∂) =
√

−g RµνR
µν ,

O6(g, ∂) =
√

−g R2. (88)

The three curvature invariants in (88) can be more conveniently
parameterized in a different basis of quadratic curvature
invariants involving the Gauss-Bonnet term, theWeyl tensor, and
the Ricci scalar, as the latter two are more directly related to the
particle content:

SQDG[g] = SEH[g]+
∫

d4X
√

−g

×
[

c1G+ c2CµνρσC
µνρσ + c3R

2] . (89)

The power counting in the UV is dominated by the marginal
quadratic curvature operators, and the momentum scaling of the
propagator is P ∝ P−4, while that of the vertices is V(n) ∝ P4.

23Even on-shell, there remain divergences associated with operators involving
derivatives of the Ricci scalar, which are not total derivatives and cannot be
absorbed into the function f (R) [76]. On a constant-curvature background g0µν ,

for which R0µνρσ = R0(g0µρg
0
νσ − g0µσ g

0
νρ ), ϒµ = 0,

∫

d4X
√

g0 = 384π2/R20,
and the equations of motion reduce to the algebraic equation 2f − R0f1 = 0,

the one-loop divergences Ŵdiv
1

∣
∣
on-shell
0 = (1/ε)

[
97
20 + 4f /R20f2 − 8f 2/3(R0f2)2

]

can
be absorbed by a renormalization of f (R0).

Consequently, the superficial degree of divergence in quadratic
gravity (QDG) in D = 4 is

Ddiv
QDG = 4L− 4(L− 1) = 4. (90)

Hence, in D = 4, QDG is power-counting renormalizable,
suggesting that QDG is indeed the required extension of GR.
Going beyond this simple power-counting argument requires
more advanced methods; a strict proof that the QDG (89) is
a perturbatively renormalizable quantum theory of gravity was
given in [45].

However, even if the perturbative renormalizability of QDG
has been established, it remains to show that QDG is UV-
complete, i.e., that the theory can be extended to an arbitrary
energy scale. To answer this question requires studying the RG
flow determined by the divergence structure of the theory. In
particular, for a UV-complete theory the absence of Landau poles,
where couplings diverge at finite energies, must be assured. The
one-loop divergences of QDG were first calculated in [163] and
later corrected in [164]. The authors of [164] considered the
Euclidean version of (89) with a different parametrization and
basis for the quadratic curvature invariants,

SQDG[g] =
∫

d4X
√
g

[
2

k4
λ −

1

k2
R+

1

ν2
G

+
1

f 2

(

RµνR
µν −

1

3
R2
)

−
ω

3f 2
R2
]

, (91)

with 1/k2 = M2
P/2 and the dimensionless cosmological constant

λ = 23/M2
P. The beta functions can directly be read off

from the one-loop divergences and determine the running of
the coupling constants with the logarithmic parameter t : =
1/(4π2) ln(µ/µ0). Here µ is the sliding scale and µ0 an arbitrary
renormalization point. Within the standard framework with the
“ordinary” definition of the effective action as in (5), it was found
in [164] that the essential couplings 1/ν2(t), 1/f 2(t), and ω/f 2(t)
are asymptotically free, provided that 1/ν2 > 0, 1/f 2 > 0,
and ω/f 2 < 0, while λ grows in the UV limit t → ∞.
Note, however, that in [165] it was found that ω/f 2 > 0 is
required in the Lorentzian regime to avoid a tachyonic instability
of the scalaron. Fixing the correct sign, the running is no longer
asymptotically free.

Newton’s constant, or k2 in terms of the parametrization
in (91), is an inessential coupling and does not run. In order
to access the running of all couplings separately, including the
running of k2, an off-shell extension is required, which renders
the effective action gauge-independent and parametrization-
invariant24. Such an off-shell extension was proposed in [149]
by a geometrically defined (field-covariant) “unique” effective
action. At the one-loop level, the difference between the
“ordinary” definition of the effective action and the “unique”
effective action is a correction term proportional to the equations
ofmotion. The “unique” off-shell one-loop beta functions for (91)
were calculated in [164] and the running of 1/k2(t) was extracted,

24See also [166–170] for a discussion of the quantum parametrization dependence
of the effective action in cosmology.
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with the result that limt→∞ 1/k2(t) = 0 and limt→∞ 3(t) = 0.
Thus, the UV limit t → ∞ found in this way corresponds to the
induced gravity scenarioM2

P → 0 (i.e.,GN → ∞) with vanishing
(dimensional) cosmological constant 3 → 025.

While the above quoted results support the status of QDG
in D = 4 as a perturbative renormalizable theory of quantum
gravity, the reason QDG is not usually regarded as a consistent
theory of quantum gravity relates to its problem with the
additional propagating spin-2 ghost degrees of freedom. In
analogy to (49), the momentum space fluctuation operator of
QDG defined in the parametrization (89) for arbitrary D on a flat
background can be expressed in terms of the projectors (50) and
(53) and reads [171]

Fµν,ρσ (−P2) =
(−P2)

2

[

1+ 8c2
D− 3

D− 2

(−P2)

M2
P

]

P(2)µνρσ

− (D− 2)
(−P2)

2

[

1− 8c3
D− 1

D− 2

(−P2)

M2
P

]

P(0,ss)µνρσ .

(92)

Clearly, this reduces to (49) for c2 = c3 = 0.Moreover, because of
the topological nature of the GB term G, c1 does not enter (92).
Just as in GR, the diffeomorphism invariance of QDG renders
the fluctuation operator (92) degenerate, and a gauge-fixing is
required to obtain the propagators. Nevertheless, the tree-level
particle spectrum of QDG can already be analyzed on the basis
of the pole structure in (92). Defining the two effective masses
for D > 3,

M2
2 : = −

1

8c2

D− 2

D− 3
M2

P, M2
0 : =

1

8c3

D− 2

D− 1
M2

P, (93)

the pole structure of the propagators in the spin-2 and spin-0
sectors becomes more transparent [45]:

P(2) ∝
−M2

2

(−P2)
[

(−P2)−M2
2

] =
1

(−P2)
−

1

(−P2)−M2
2

, (94)

P(0) ∝
M2

0

(−P2)
[

(−P2)−M2
0

] = −
1

(−P2)
+

1

(−P2)−M2
0

. (95)

The partial fraction in the second equality reveals that, compared
to GR, in QDG there are two additional propagating particles
with masses M2 and M0. The first term in (94) corresponds to
a massless spin-2 particle and, just as in GR, combines with the
first term in (95) to become the massless graviton. The second
term of (94) indicates the presence of a propagating massive
spin-2 particle originating from the CµνρσC

µνρσ term in (89),

25Since Newton’s constant GN(t) ∼ 1/k2(t) exceeds the perturbative regime, a
perturbative treatment does not seem reliable in the asymptotic limit t → ∞.
However, because Newton’s coupling is an inessential coupling in the ordinary
perturbative approach (even if it runs in the covariant Vilkovisky off-shell
extension), it should never enter an on-shell observable in an isolated way, but
only via a dimensionless combination with other couplings [including3(t)] whose
beta function is gauge-independent. Thus, independently of whether GN itself
grows beyond perturbative control in the limit t → ∞, the question should then
rather be whether the RG running of this dimensionless combination stays under
perturbative control.

while the second term in (95) indicates the presence of a massive
spin-0 particle originating from the R2 term in (89). Excluding
tachyons requires M2

2 > 0 (c2 < 0) and M2
0 > 0 (c3 > 0). The

massive spin-0 particle, which can be identified with the scalaron
in model (86), is “healthy” (neither a ghost nor a tachyon), while
the overall minus sign in the second term of (94) shows that the
massive spin-2 particle is a higher-derivative ghost. The presence
of ghosts corresponds to states of negative norm, leading to a
violation of unitarity [45] (see also [172–175]).

Within an effective low-energy treatment P2/M2
2 ≪ 1, the

propagation of the massive spin-2 ghost is strongly suppressed.
Whether such an EFT, which still includes the scalaron as a
propagating degree of freedom (since the R2 would not be treated
as a perturbation compared to the R term), can be realized
depends strongly on the characteristic mass scales M2 and M0,
i.e., the values of c2 and c3, respectively. It requires that M2

2
be large enough that the effective description is valid up to
energy scales at which the additional propagating scalaron has
interesting phenomenology, such as in the inflationary model
(86), but at the same timeM2

0 ≪ 1 must be sufficiently small that
the scalaron can be considered a propagating degree of freedom;
see e.g., [176] for discussion of such a scenario in the context
of the scalaron-Higgs model. Solar system-based experimental
constraints on both c2 and c3 are extremely weak. However, while
c2 is practically unconstrained, a large c3 = M2

P/(12M
2
0) ≈ 109

is required in (86) if the scalaron is supposed to drive inflation.
But even if the problem with the spin-2 ghost can effectively
be neglected at sufficiently “low” energies, without a mechanism
that prevents the occurrence of the higher-derivative ghost at
arbitrarily high energy scales, QDG cannot be considered a
fundamental theory.

Recently, the negative conclusion about the ghost-related loss
of unitarity inQDG at the fundamental level has been questioned.
The questions are related to early proposals about different
quantization prescriptions, which modify the pole structure of
the propagators in higher-derivative theories [177, 178]. In [47,
179] a new quantization prescription was proposed which turns
higher-derivative ghosts into “fakeons” at the expense of a loss
of micro-causality. Another resolution of the unitarity problem
was suggested in [48, 180]. A key point in this proposal is
that the coupling of light matter particles to gravity renders
the heavy spin-2 ghost unstable, such that the ghost is not part
of the asymptotic particle spectrum. Extending the conclusion
that unstable particles must be excluded from the sum of the
unitarity relation [181] to the case of unstable ghost particles
(which are nevertheless identified as such by the free-particle
spectrum), it is concluded in [48] that there is no violation of
unitarity in QDG. Nevertheless, in [48, 180] it is also found that
the ghosts “propagate backwards in time,” leading to a violation
of micro-causality. While this effect can in principle be tested
experimentally, it becomes unobservably small for sufficiently
heavy ghost masses, such as in QDG ifM2 ≈ MP.

Summarizing, the proposals [47, 179] and [48, 180] about
the correct treatment of higher-derivative ghost particles both
led to the conclusion that the unitarity violation can be avoided
at the expense of violating micro-causality, but it seems that a
conclusive agreement on this controversially debated issue has
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not yet been reached. For related work on higher-derivative
ghosts (see also [182–194]). For a discussion of the ghost problem
in the context of the non-perturbative AS program for quantum
gravity, see e.g., [135, 195–199]. For the non-local approach to a
ghost-free quantum theory of gravity (see [17–26]).

7. HOŘAVA GRAVITY

The picture emerging from the previously described approaches
to providing a consistent fundamental local quantum theory of
gravity suggests that the basic principles of relativistic invariance,
renormalizability, and unitarity are incompatible in the context
of the perturbative quantization of the gravitational interaction:
quantum GR is a relativistic and unitary but perturbatively non-
renormalizable QFT, while quantum QDG is a relativistic and
perturbatively renormalizable but non-unitary QFT. Therefore,
in [49, 50], Petr Hořava suggested exploring the consequences
of abandoning relativistic invariance while trying to preserve
unitarity and perturbative renormalizability.

One of the key motivations for Hořava’s proposal comes
from the discussion of QDG. While the higher derivatives
help to improve the UV behavior of the theory, the higher
time derivatives are responsible for the occurrence of the
additional higher-derivative ghost degrees of freedom and the
associated problems with unitarity. The desire to keep the UV-
improving effect of the higher derivatives, but at the same
time avoid the ghost problem, leads to the idea of allowing
higher spatial derivatives but restricting to second-order time

derivatives. Obviously, such a proposal is not compatible with
relativistic invariance. It is clear that “sacrosanct” principles, such
as relativistic invariance should not be recklessly sacrificed—not
only because this changes the fundamental structure of spacetime
but also since there are very strong experimental constraints on
Lorentz-violating effects.

With this proviso, I first review how the above idea can
be formalized by the notion of an anisotropic Lifshitz scaling
between space and time and how it can be incorporated into a
consistent mathematical framework by formulating the resulting
anisotropic theory of gravity in terms of the geometric Arnowitt-
Deser-Misner (ADM) variables, giving rise to the Lifshitz theory
of gravity, Hořava gravity (HG). Within the ADM formulation,
the main difference between GR and HG is the weaker invariance
group underlying HG, the foliation-preserving diffeomorphisms
DiffF, which form a subgroup of the full diffeomorphisms.

Important consequences of the anisotropic scaling and the less
restrictive invariance group in HG are the modified dispersion
relations and the presence of an additional propagating
gravitational scalar degree of freedom. After a brief discussion of
their phenomenological consequences inD = 2+1 andD = 3+1
dimensions, I review the quantumproperties of HG. I first discuss
the gauge and propagator structure of the theory and then review
the essential steps in the proof of perturbative renormalizability
of the projectable version of HG.

Finally, I discuss the UV properties of quantum HG based on
the RG flow of the projectable theory in D = 2 + 1 dimensions,

which requires explicit calculation of the one-loop divergences
within a Lifshitz theory of gravity [53]. I close with a brief
summary and an outlook on future perspectives of quantum HG.
For earlier reviews of HG with a different focus, especially on the
phenomenological constraints and the cosmological applications
(see [200–203]).

7.1. Anisotropic Scaling and Modified
Propagators
As briefly outlined before, the basic idea of Hořava gravity is to
allow higher spatial derivatives but restrict to second-order time
derivatives. Obviously, such a proposal implies that relativistic
invariance will be lost at the fundamental level. How precisely
Lorentz invariance is broken in a manner compatible with this
proposal can be made concrete by introducing the anisotropic
Lifshitz scaling between time and space [49, 50, 204],

t → b−z t, xi → b−1 xi. (96)

Here, b is a constant scaling parameter and z a dynamical scaling
exponent. In analogy to the mass dimension [ · ]M introduced
in section 3.1, the anisotropic scaling dimension is denoted by
[ · ]S. According to the anisotropic scaling law (96), the scaling
dimensions of time and space are [t]S = −z and [x]S = −1. This
implies the scaling relations

[∂t]S = z, [∂i]S = 1, [ω]S = z, [ki]S = 1, (97)

whereω and ki are the frequency and spatial momentum, Fourier
conjugates to ∂t and ∂i. The dynamical scaling exponent z can be
thought of as measuring the degree of anisotropy between space
and time, with z = 1 restoring relativistic invariance. In view of
(97), the (Euclidean) anisotropic propagator takes the form

P ∝
1

ω2 + k2 + · · · + G (k2)z
≃







1
ω2+k2

= 1
p2

in the IR,

1
ω2+G (k2)z

in the UV,

(98)

with some coupling constant G such that [G]M = −2(z − 1)
and [G]S = 0. This propagator illustrates the basic idea that
Lorentz invariance is completely broken by the anisotropic
scaling exponent z for G(k2)z ≫ k2 in the UV limit and is
effectively restored in a natural way for k2 ≫ G(k2)z in the IR
limit [50]26.

7.2. Geometrical Formulation in Terms of
ADM Variables
The anisotropic Lifshitz theory of gravity can be consistently
formulated within a geometrical framework when described
in terms of ADM variables. Following the presentation in
[205], I briefly review the ADM formulation in the context

26In general, relevant deformations also lead to different coupling constants in
front of different powers of k2 in the propagator (98), which, as discussed in
the context of HG in section 7.4, might prevent a direct restoration of Lorentz
invariance in the IR.
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of GR, and highlight the differences in HG when the full
diffeomorphism invariance Diff(M) is reduced to the foliation-
preserving diffeomorphism DiffF(M).

7.2.1. ADM Variables and GR
A point X ∈ M in the D-dimensional ambient spacetimeM can
be described by local coordinates Xµ. For a globally hyperbolic
ambient space, M can be foliated by a one-parameter family of
d-dimensional spatial hypersurfaces 6t of constant time t, where
d = D − 1. The hypersurfaces 6t can be thought of as level
surfaces of a time field t. The gradient of t defines a natural unit
covector field

nµ : = −
∇µt

√

−gµν∇µt∇ν t
,

nµ = gµνnν , nµnµ = −1. (99)

By construction, at each point, the normal vector field nµ(x, t)
is orthogonal to 6t and therefore allows an orthogonal
decomposition of tensor fields with respect to nµ. In particular,
the ambient metric decomposes as

gµν = γµν − nµnν . (100)

Here, γµν is the tangential part of gµν , i.e., γµνn
µ = 0. The

hypersurfaces 6t can be viewed as embeddings of an intrinsically
d-dimensional manifold 6̃t into the ambient space M. A point
x ∈ 6̃t can be described by the local coordinates xi, i =
1, . . . , d. The D-dimensional coordinates Xµ = Xµ(t,x) can
be parameterized in terms of the time field t and the spatial
coordinates xi. The change of Xµ with respect to t and xi is given
by the coordinate one-form

dXµ = tµ dt + e
µ
i dx

i. (101)

The time vector field tµ and the soldering form e
µ
i appearing in

(101) are defined as

tµ : =
∂Xµ(t,x)

∂t
, e

µ
i : =

∂Xµ(t,x)

∂xi
. (102)

As illustrated in Figure 5, the lapse function N(t,x) and the shift
vector Nµ(t,x) are defined as the coefficients of the orthogonal
decomposition of tµ : = N nµ + Nµ in the directions normal and
tangential to 6t , respectively.

The soldering form e
µ
i transforms like a D-dimensional

tangential vector with respect to the µ index, i.e., eµinµ = 0, and
a d-dimensional vector with respect to the i index. It defines the
pullback of tangential tensors inM to tensors in 6̃t :

e
µ
ie

i
ν = δµ

ν , eiµe
µ
j = δij . (103)

The pullbacks of γµν and Nµ define the spatial metric γij and the
spatial shift-vector Ni,

γij : = e
µ
ie

ν
jγµν , Ni

: = e i
µ Nµ. (104)

FIGURE 5 | Foliation of D-dimensional spacetime into hypersurfaces of

dimension d = D− 1 at constant time t.

In terms of dt and dxi, the ambient space coordinate one-form is
expressed as

dXµ = Nnµ dt + e
µ
i

(

Ni dt + dxi
)

. (105)

Inserting this into (42), the ambient space line element takes the
familiar ADM form [206]

ds2 = −N2 dt2 + γij
(

Ni dt + dxi
) (

Nj dt + dxj
)

. (106)

On 6̃t , the commutator of the (torsion-free and metric-
compatible ∇kγij = 0) spatial covariant derivative ∇i defines the
d-dimensional spatial curvature tensor by its action on a spatial
vector field vk,

[∇i, ∇j]v
k = Rklij(γ )v

l. (107)

The relation between the scalar curvature of the D-dimensional
ambient space R(g) and the scalar curvature R(γ ) of the d-
dimensional embedded space is given by the Gauss-Codazzi
relation (see e.g., [207])

R(g) = R(γ )−
(

K2 − KijK
ij
)

− 2 (∇i + ai) a
i + 2 (Dt + K)K. (108)

Here, K : = γ ijKij is the trace of the extrinsic curvature Kij,
defined via the covariant time derivative Dt as

Kij : =
1

2
Dtγij =

1

2N

(

∂tγij − ∇iNj − ∇iNj

)

,

Dt : =
1

N
(∂t − LN) , (109)

where LN is the Lie derivative along the spatial shift vector Ni.
The acceleration vector ai in (108) is defined as

ai : = ∂i lnN. (110)

Note that the D-dimensional diffeomorphisms Diff(M)
completely fix the structure and the numerical coefficients of
the individual terms in (108). In terms of the ADM variables
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(106), the volume element of M reads
√−g = N

√
γ , and,

modulo surface terms, the Einstein-Hilbert action (39) takes the
ADM form

SEH =
M2

P

2

∫

dt d3xN
√

γ
[

KijK
ij − K2 + R(γ )

]

. (111)

It is natural to think of the first two terms in (111), which involve
the square of the “velocities” ∂tγij, as the “kinetic term” for γij,
and to view R(γ ) as the “potential,” which involves only spatial
derivatives ∂kγij. In particular, the invariance of the action (39)
under Diff(M) implies that only the very specific combination
of ADM operators in (111) is Diff(M)-invariant. This illustrates
how strongly the underlying Diff(M) invariance in GR restricts
the possible operators allowed in the Einstein-Hilbert action
when expressed in terms of ADM variables.

7.2.2. Symmetry in GR and HG
In GR, the ADM variables derive from the decomposition of the
D-dimensional ambient space metric gµν . Consequently, in this
case, the symmetry group acting on the ADM variables consists
of the full D-dimensional spacetime diffeomorphisms Diff(M),
or general coordinate transformations,

xi 7→ x̃i(t, x), t 7→ t̃(t, x). (112)

In general, operators O(gµν , ∂ν), invariant under Diff(M), are
constructed by scalar contractions of covariant derivatives ∇µ

and curvature tensors Rµνρσ . While the action of Diff(M) on
the D-dimensional ambient metric gµν is realized linearly as
in (45), in view of (106), the action of Diff(M) on the ADM
variables N, Ni, and γij is non-linearly realized. Thus, only
very particular combinations of Diff(M)-invariant operators
O(N,Ni, γij, ∂i, ∂t) constructed by scalar contractions of the time
and space derivatives ∂t and ∂i of the ADM variables N, Ni, and
γij are allowed.

In contrast to the general coordinate transformations (112),
the coordinate transformations that preserve the foliation include
the d-dimensional time-dependent spatial diffeomorphisms and
the reparameterizations of time,

xi 7→ x̃i(t, x), t 7→ t̃(t). (113)

Under (113), the ADM fields N, Ni, and γij transform as

N 7→ Ñ = N
dt

dt̃
,

Ni 7→ Ñi =
(

Nj ∂ x̃
i

∂xj
−

∂ x̃i

∂t

)
dt

dt̃
,

γij 7→ γ̃ij = γkℓ
∂xk

∂ x̃i
∂xℓ

∂ x̃j
. (114)

Combining the action of an infinitesimal diffeomorphism (45)
on the ambient metric gµν , its decomposition in ADM variables
(100), and the decomposition of the generator of infinitesimal
diffeomorphisms εµ = (ε, εi) with εi(t, x) = εµeiµ and

ε(t, x) = tµεµ the action of an infinitesimal Diff(M) on the ADM
fields γij, Ni, and N is derived as

δεN = ∂t (εN) + LεεεN − NNi∂iε, (115)

δεN
i = ∂t

(

εNi
)

+ ∂tε
i + (LεεεN)i −

(

NiNj + N2γ ij
)

∂jε, (116)

δεγij = ε∂tγij + (Lεεεγ )ij + 2N(i∂j)ε. (117)

Here Lεεε denotes the Lie derivative along εi. The transformation
law for the shift vector with covariant index position Ni = γijN

j

can be obtained by combining the transformation laws (116) and
(117), giving

δεNi = ∂t (εNi) + (LεεεN)i + γij∂τ ε
j +

(

NjN
j − N2) ∂iε. (118)

In contrast to the linear transformation (45) of the ambient
metric gµν , the transformations (115–117) of the ADM variables
under an infinitesimal Diff(M) is not linear. The transformations
of the ADM variables under DiffF(M), for which the time
component ε of the generator εµ = (ε, εi) is a function of time
only, ε(t, x) = ε(t), are derived from (115–117) by neglecting
terms involving ∂iε, and the action of an infinitesimal DiffF(M)
on the ADM variables is given by

δεN = ∂t (εN) + LεεεN, (119)

δεN
i = ∂t

(

εNi
)

+ ∂tε
i + (LεεεN)i , (120)

δεγij = ε∂tγij + (Lεεεγ )ij . (121)

Likewise, the transformation (118) reduces to

δεNi = ∂t (εNi) + (LεεεN)i + γij∂τ ε
j. (122)

Hence, the DiffF(M) form a subgroup of the Diff(M), and
the absence of terms proportional to ∂iε has the effect that the
transformations (119–122) act linearly on the ADM variables
[50, 208].

Mathematically, the DiffF(M) are diffeomorphisms that
respect the preferred codimension-one foliation F of (d + 1)-
dimensional spacetimeM into spatial d-dimensional leaves [50].
On such a foliation, two classes of functions can be defined:
functions that depend on all coordinates (t, xi) and functions that
are constant on each spatial leaf, i.e., which depend only on time t.
The latter are called “projectable.” From a canonical perspective
with a fundamental dynamical field γij, the shift vector Ni can
be viewed as the gauge field associated with the time-dependent
spatial diffeomorphisms with infinitesimal generator εi(t, x), and
the lapse function N can be viewed as the gauge field of the
reparameterizations of time with infinitesimal generator ε(t). It
therefore seems natural to restrict N(x, t) to be a function of time
only, although the versions N(t, x) and N(t) are both compatible
with the DiffF(M) symmetry, essentially leading to two variants
of HG.

i) Projectable HG:
The lapse function depends only on time, i.e., N(t), and is not
considered a dynamical field. By choosing a global time slicing
corresponding to the gauge in which N(t) = 1, the foliation-
preserving diffeomorphisms reduce to the time-dependent
spatial diffeomorphisms.
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ii) Non-projectable HG:
The lapse function depends on space and time, and N(t,x) is
a propagating degree of freedom, i.e., an integration variable
in the path integral. Compared to the projectable theory, the
main technical challenge is the enlarged set of DiffF(M)-
invariants that involve the acceleration vector (110).

Since the two possibilities lead to two different theories with
different particle content and different phenomenology, they
have to be investigated separately. In particular, the quantization
of the non-projectable theory is complicated due to the presence
of the fluctuating lapse function, which leads to non-regular
propagators [51]. In this paper I mainly focus on the projectable
theory but will highlight at several places important differences
from the non-projectable theory.

7.3. Projectable HG in D = 2 + 1 and
D = 3 + 1 Dimensions
The action functional of projectable HG inD = d+1 dimensions
can be formulated in terms of the ADM variables. The natural
assignment of the anisotropic scaling dimensions to the ADM
variables follows from (105) and (106):

[γij]S = 0, [Ni]S = z − 1, [N]S = 0. (123)

Compared with the stringent constraints on the ADM operators
in GR following from the invariance under Diff(M), the
less restrictive invariance under DiffF(M) allows for a richer
structure and hence more ADM invariants. Nevertheless, there
are a number of conditions which limit the possible DiffF(M)-
invariants in the projectable HG:

1. Formulated in a manifest DiffF-invariant way, the shift vector
can only arise in combination with a time derivative of the
metric γij in the form of the covariant time derivative (109).
Thus, the invariants in projectable HG can only be constructed
by scalar contractions of covariant time derivatives of the
metric field Dtγij (or, equivalently, extrinsic curvatures Kij),
covariant space derivatives ∇i, and spatial curvature tensors
Rijkl.

2. Invariance under time-reversal and parity allows
only invariants with an even number of time and
space derivatives. Writing SHG =

∫

dt ddxLHG and
LHG =

∑

n c(n)O(n)(Dt ,∇i, γij) implies that the operators
have the general schematic structure (suppressing the
summation index n)

O(Dt ,∇i, γij) =
√

γ
(

Dtγij
)2k

(∇i)
2n (Rijkl

)m
. (124)

3. For HG to be power-counting renormalizable, the action
can only include relevant and marginal operators with
respect to the anisotropic scaling [50]. Combining the
scaling [SHG]S = 0 with [

∫

dt ddx]S = −(d + z) implies that
[LHG]S = d+z. Relevant and marginal operators have scaling
[O(j)(Dt ,∇i, γij)]S ≤ d + z. Combining this with the structure
(124) yields the constraint

2(kz + n+m) ≤ d + z. (125)

4. The original motivation of HG as a means of solving the
problems with unitarity caused by higher-derivative ghosts
is to restrict the invariants in the action to include time
derivatives of the metric only up to second-order. In view of
the structure (124), this leaves the two possibilities of k = 1
and k = 0. For the kinetic term with k = 1 and n = m = 0 to
scalemarginally under (96), equality in (125) has to be satisfied
and implies the critical scaling condition

z = d. (126)

The operators with k = 0 correspond to the potential Vd and,
for the critical scaling (126), are restricted by the condition
2(n+m) ≤ 2d.

The action of projectable HG in D = d + 1 dimensions (in the
gauge N = 1), including all relevant and marginal terms with
respect to the critical anisotropic scaling, reads

SHG =
1

2G

∫

dt ddx
√

γ
(

KijK
ij − λK2 − V

(d)
)

. (127)

As a consequence of (126), the structure of the kinetic term is
universal, i.e., independent of d:

√
γ
(

KijK
ij − λK2) =

1

4

(

Dtγij
)

G
ij,kl (Dtγkl) . (128)

Here, Gij,kl is the one-parameter λ-family of “generalized DeWitt
metrics”

G
ij,kl

: =
√

γ

2

(

γ ikγ jl + γ ilγ jk − 2λγ ijγ kl
)

. (129)

There are two special values of λ. The first is the “relativistic”
value λ = 1, which leads to an enhanced symmetry [50].
The second is the “conformal” value λc = 1/d, where Gij,kl is
degenerate, which also leads to an enhanced symmetry, namely
local anisotropic Weyl invariance [49]. For non-singular values
λ 6= λc, the inverse is given by

Gij,kl =
1

√
γ

(

γikγjl + γilγjk −
2λ

dλ − 1
γijγkl

)

. (130)

For λ < λc (129) is positive definite, and for λ > λc it is
indefinite. In the context of GR, this property was found in
[209] to be directly related to the attractive or repulsive nature
of gravity.

Note the difference between (127) and the Einstein-Hilbert
action (111) in ADM variables, where the Diff(M) invariance
completely fixed the structure of the action, i.e., the relative
coefficient between the two terms KijK

ij and K2 in the kinetic
terms as well as the coefficient of the potential R. In HG, KijK

ij,

K2, and the terms in Vd are separately invariant under DiffF(M).
In particular, λ is a free parameter of the theory.

The potential V(d) of projectable HG is defined in terms of d-
dimensional curvature invariants and, according to (3), includes
all relevant and marginal operators with respect to the critical
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anisotropic scaling. In contrast to the kinetic term, the potential
is not universal and the number and complexity of invariants in
the potential grows with increasing d. Restricting to d = 2 and
d = 3, up to total derivatives the possible curvature invariants
read [210]

V
(d=2) = 23 + µR2, (131)

V
(d=3) = 23 − ηR+ µ1R

2 + µ2 RijR
ij + ν1R

3 + ν2RRijR
ij

+ ν3R
i
jR

j

k
Rki + ν4∇iR∇ iR+ ν5∇iRjk∇ iRjk. (132)

Note that in d = 2 and d = 3 all invariants involving the
Riemann tensors are absent. In addition, in d = 2, the linear
Einstein-Hilbert term

√
γR is a total derivative. In general, the

Riemann tensor in d dimensions has d2(d2 − 1)/12 independent
components. Hence, in d = 2, there is only one independent
component associated with the Ricci scalar,

R
(d=2)
ijkl

=
R

2

(

γikγjl − γilγjk
)

. (133)

Likewise, in d = 3, there are only six independent components
of the Riemann curvature tensors that are associated with the six
components of the Ricci tensor Rij. This can also be seen from the
fact that in d = 3, the Weyl tensor Cijkl ≡ 0 vanishes identically,
which allows all curvature tensors Rijkl to be expressed in terms
of Rij and R via

R
(d=3)
ijkl

= Rikγjl + Rilγjk + Rjkγil + Rjlγik −
R

2

(

γikγjl − γilγjk
)

.

(134)

The mass dimensions of the coupling constants follow from
[SHG]M = 0, [γij]M = 0, and [∂i]M = [∂t]M = [Ni]M = 1:

[G]M = 1− d, [3]M = 2, [λ]M = [η]M = 0,

[µ]M = [µ1]M = [µ2]M = −2,

[ν1]M = [ν2]M = [ν3]M = [ν4]M = [ν5]M = −4. (135)

A new set of dimensionless couplings
[G̃]M = [3̃]M =

[

µ̃i

]

M =
[

ν̃i
]

M = 0 is trivially defined by
expressing the couplings in units of a common, a priori
unspecified, mass scaleM∗:

G̃ : =
G

M1−d
∗

, 3̃ : =
3

M2
∗
,

µ̃i : = M2
∗µi, ν̃i = M4

∗νi. (136)

The parametrization (136) is useful when discussing
phenomenological bounds on HG.

7.4. Particle Spectrum, Dispersion
Relations, and Phenomenological
Constraints
The particle spectrum of projectable HG in d = 2 and d = 3 is
derived along the same lines as for GR by expanding the action

around flat space γ̄ij = δij, N̄i = 0 to quadratic order in the
linear perturbations27

hij : = γij − γ̄ij, ni : = Ni − N̄i. (137)

Substituting the irreducible decomposition of the perturbations,

ni = niT + ∂ iB,

hij = hTTij + 2∂(iv
T
j) +

(

δij −
∂i∂j

∂2

)

9 +
∂i∂j

∂2
E (138)

with the three scalars 9 , E, and B, the differentially constrained
transversal vector fields ∂iv

i
T = 0 and ∂in

i
T = 0, and the

transversal traceless tensor field hTTij δij = ∂ ihTTij = 0 into the

quadratic action, “integrating out” the non-dynamical modes vTi
and E, fixing the gauges B = 0 and niT = 0, yields after Fourier
transformation to momentum space the dispersion relations for
the physical propagating degrees of freedom hTTij and 9 . As

discussed in the previous section, in D = 2 + 1 there are no
transversal traceless (TT)modes hTTij . However, in contrast to GR,

which has no local degrees of freedom inD = 2+1 dimensions, in
HG there is an additional propagating scalar degree of freedom,
which is a consequence of the reduced DiffF(M) invariance of
HG; cf. the discussion in section 3.2. The additional scalar mode
persists even for low energies such that there is no smooth limit
of HG to GR.

In d = 2, the additional gravitational scalar has the following
non-relativistic dispersion relation expressed in terms of the
dimensionless couplings (136):

ω2
S = 4µ̃

1− λ

1− 2λ

k4

M2
∗
. (139)

Clearly, the dispersion relation for the additional scalar does not
reduce to the linear relativistic form at low energies k2/M2

∗ ≪ 1,
which again is a consequence of the absence of the relevant linear
curvature invariant in the potential (131).

In d = 3, aside from the additional scalar mode, the spectrum
encompasses a propagating TT mode. Both modes have non-
relativistic dispersion relations,

ω2
TT = k2

[

η + µ̃2
k2

M2
∗
+ ν̃5

k4

M4
∗

]

,

ω2
S =

1− λ

1− 3λ
k2
[

−η + (8µ̃1 + 3µ̃2)
k2

M2
∗
+ (8ν̃4 + 3ν̃5)

k4

M4
∗

]

.

(140)

Before discussing experimental constraints on HG, I briefly
review several theoretical restrictions:

1. Despite the critical scaling (126), which guarantees that the
non-relativistic dispersion relations depend only quadratically
on the frequency ω, it is essential to make sure that no
unitarity-violating propagating ghost degrees of freedom enter

27This implies 3 = 0. For a discussion of the cosmological constant in HG, see
e.g. [211].
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in HG. Demanding the absence of ghosts leads to the
condition G > 0, which ensures the positivity of the TT
kinetic term, and the requirement that λmust lie in the gapped
interval λ < 1/d or λ > 1, bounded by the points of enhanced
symmetry, to ensure the positivity of the scalar kinetic term.

2. In contrast to the situation in D = 2 + 1, thanks to the
presence of the relevant operator∝R in (132), for low energies
k2/M2

∗≪1 both dispersion relations (140) inD = 3+1 reduce
to the linear relativistic relations

ω2
TT = ηk2 +O

(

k2/M2
∗
)

,

ω2
S = −η

1− λ

1− 3λ
k2 +O

(

k2/M2
∗
)

. (141)

However, because of the requirement that
(1− 3λ)/(1− λ) > 0, there is no value of η 6= 0 at which
both of the relations in (141) are simultaneously positive, and
for η = 0 the linear relativistic dispersion relation is lost, just
as in D = 2+ 1. For η > 0, this leads to a tachyonic instability
of the scalar mode at low energies k2/M2

∗ ≪ 1. An obvious
attempt to circumvent this problem is to keep η > 0 and tune
λ very close to 1, in order to suppress the IR instability of
the scalar mode. Unfortunately, this leads to strong coupling
for the scalar mode at low energies [212–215], invalidating
the perturbative treatment that underlies the power-counting
renormalizability [216]; see, however [200, 217–220]. In
summary, without a mechanism by which this IR problem
can be avoided, the projectable theory seems to be excluded
on phenomenological grounds.

3. The IR instability problem can be remedied in the non-
projectable version of HG in which the potential (132)
involves invariants including the acceleration vector (110),
thanks to the propagating lapse function. To illustrate the
difference from the projectable case, I present the potential
and the dispersion relation for the non-projectable theory in
d = 2. In the non-projectable case, the action (127) acquires
a modified volume element dt ddx

√
γ 7→ dt ddxN

√
γ , and

the potential (131) for the non-projectable theory in d = 2
dimensions is enlarged by additional invariants,

V
(2)
np = 23 − ηR− αaia

i + µR+ ρ11R+ ρ2Raia
i

+ ρ3(aia
i)2 + ρ4aia

i∇ja
j + ρ5(∇ia

i)2 + ρ6∇iaj∇ iaj.

(142)

Defining the perturbation of the lapse function φ : = N − 1
(with the choice N̄ = 1 for the background value of the lapse
function), expansion of the action around the flat background
(3 = 0) up to quadratic order in the linear perturbations leads
to the dispersion relation for the single scalar propagating
degree of freedom [51],

ω2
S =

(
1− λ

1− 2λ

)
(

η2k2 + (4αµ + 2ηρ1)k
4

+ [ρ2
1 − 4µ(ρ5 + ρ6)]k

6)−α−(ρ5+ρ6)k2 . (143)

In particular, among the additional invariants in (142), there
is a relevant operator proportional to αN

√
γ aiai that leads

to the required modifications of the low-energy limit. The

freedom in tuning the additional coupling constant α can be
used to avoid the IR instability. In [221] it was found that for
0 < α < 2 the instability can be avoided in non-projectable
HG. However, as already anticipated in [50] and supported
by different arguments in [51, 214, 222], the presence of the
propagating lapse function N in the non-projectable version
leads to essential complications with the quantization, which I
briefly comment on in section 8.

Aside from these theoretical restrictions, there are
phenomenological constraints stemming from experimental
bounds on Lorentz violation (LV) (see e.g., [223–228]). In the
context of HG, these can be divided into two regimes:

1. LV in the IR:
Despite the suppression of higher-order terms in the
dispersion relations (140) for low energies k2/M2

∗ ≪ 1, HG
does not smoothly connect to GR in the IR, but rather to
a modified theory of gravity with an additional propagating
gravitational scalar degree of freedom. Deviations from GR
can be quantified by a variety of experiments and mainly lead
to restrictions on the couplings of the relevant operators in
the IR. Experimental constraints come from deviations of the
observed helium abundance during Big Bang nucleosynthesis
[221, 229, 230] from post-Newtonian parameters [214, 231,
232], binary pulsars [233], and black holes [234–236]. The
most stringent constraint, however, comes from the recent
detection of gravitational waves from the binary neutron
star merger event GW170817 [237]. The inferred speed
of propagation of the TT mode strongly constrains the
parameter, |η − 1| . 10−15, but the propagation speed of the
scalar mode remains largely unconstrained (cf., [238]).

2. LV in the UV:
LV effects in the gravitational sector at high energies are not
as strongly restricted as in the matter sector provided by
the SM particles. In particular, the scale M∗ might naturally
be identified with the LV scale in the gravitational sector.
Observations sensitive to the higher-order corrections in the
dispersion relations (140) provide a lower bound on M∗.
However, LV effects in the SM are constrained much more
tightly, and a mechanism is needed that would prevent
LV effects percolating from the gravitational sector to the
matter sector [227].While several suchmechanisms have been
suggested (see e.g., [239–246]), it remains an open question as
to whether they can ultimately be realized in HG [247, 248].
In the case of there being a universal LV scale (i.e., when
the LV scale in the matter sector can be identified with the
LV scale M∗ in the gravitational sector), the observation of
synchrotron radiation from the crab nebula would provide
a lower bound on M∗ around the grand unification scale
M∗ > 1016 GeV [130].

Summarizing, the “healthy extension” of the non-projectable
model is still phenomenologically viable [221, 238], but stronger
constraints on the IR parameter, as well as on M∗, have
the potential to rule out the theory. Moreover, regarding the
quantum theory, these properties will rely on the IR limit
of the RG flow for the couplings of the relevant operators,
as briefly discussed in section 9 for projectable HG in
d = 2+ 1 dimensions.
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8. QUANTUM HOŘAVA GRAVITY

So far, all considerations in HG have been purely classical.
However, the main motivations for proposing a Lifshitz theory of
gravity are its unitarity and perturbative renormalizability, which
was originally conjectured based on power-counting arguments
[50]. While this conjecture has stimulated a vast amount of
research devoted to specific applications of HG in various
scenarios, the question of whether HG is indeed perturbatively
renormalizable beyond power counting remained open for a
long time. It was ultimately answered in the affirmative for
the projectable version of HG in [51]. Furthermore, for HG to
qualify as a UV-complete theory, its RG structure must also be
investigated, which in turn requires explicit loop calculations. In
this section, I discuss both these aspects. In order to establish
a connection with the general formalism in section 2, in the
remaining sections I use Euclidean signature by theWick rotation
t 7→ it and Ni 7→ −iNj, which effectively leads to a sign flip of
the potential in (127).

8.1. Non-local Gauge-Fixing and
Propagators
Since HG is a gauge theory with invariance group DiffF(M),
its fluctuation operator (10) is degenerate and its perturbative
quantization requires a gauge-fixing. In contrast to relativistic
theories, in Lifshitz theories the situation is more complicated
because of the anisotropic scaling between space and time: a
standard local gauge-fixing causes the propagators of the theory
to behave in an irregular way, ultimately leading to spurious
non-local divergences [51]. Even if, on general grounds, it might
be expected that these non-local divergences ultimately cancel
order by order in the perturbative expansion, their presence
would greatly complicate the general analysis of renormalizability
as well as the intermediate calculations. Therefore, a new type
of non-local gauge-fixing was proposed in [51], which leads to
regular propagators.

In the background field method, the geometric fields γij and
Ni are decomposed according to (137). As in the general case
for relativistic theories (19), the gauge-breaking action in HG is
quadratic in the gauge condition χ i,

Sgb =
σ

2G

∫

dt ddxi
√

γ χ iOijχ
j, (144)

where σ is a gauge parameter. Guidance for finding a suitable
gauge condition χ i can be obtained by looking at the spatial part
of the relativistic gauges of type (68), which expressed in terms of
ADM variables (106), with the background covariant derivatives
D̄t and ∇̄i and the gauge parameter c1, have the general structure

χ i[γ̄ , N̄; h, n] = D̄tn
i +

(

γ̄ ijγ̄ kℓ − c1γ̄
ikγ̄ jℓ

)

∇̄khjℓ. (145)

A characteristic feature of these “quasi-relativistic gauge
conditions” is that they artificially render the shift perturbation
ni propagating, owing to the time derivative D̄tn

i. However,
the gauge condition in the form (145) is not adequate, as it
does not scale homogeneously under (96), which can be seen by

comparing [D̄tn
i]S = 2d − 1 with [γ̄ ijγ̄ kl∇̄khjl]S = 1. A possible

solution is to omit the term D̄tn
i from (145), but this would

lead precisely to the aforementioned irregular propagators [51].
Therefore, keeping the D̄tn

i term, the only option is to increase
the scaling dimension of the remaining terms by decorating them
with additional spatial derivatives:

χ i[γ̄ , N̄; h, n] = D̄tn
i + Bijγ̄ kℓ

(

∇̄khjℓ − c1∇̄jhkℓ
)

. (146)

Here, Bij(γ̄ ; ∇̄) is a differential operator of order 2(d − 1),
which apart from ∇̄i involves only the background metric γ̄ij.
Without introducing any new dimensional parameter, Sgb should
have a marginal anisotropic scaling [Sgb]S = 0, which in view

of the critical scaling (126) and [dt ddxi]S = 2d implies
[χ iOijχ

j]S = −2d. Therefore, while (146) with [Bij]S = 2(d − 1)
ensures a homogeneous scaling [χ i]S = 2d − 1, it requires a
scaling of [Oij]S = −2(d − 1). Consequently, if the operator

Oij(γ̄ ; ∇̄) includes only powers of γij and ∇i, it must be of the
non-local form28

Oij = (−1)d−1(1̄(d−1)γ̄ ij + ξ ∇̄ i1̄(d−2)∇̄ j
)−1

, ξ 6= −1.
(147)

For the particularly useful choice of Bij = (O−1)ij/2σ and c1 =
λ, the metric and shift fluctuations in the quadratic action of
projectable HG decouple, leading to the two-parameter family of
(ξ , σ ) gauge conditions [51],

χ i[γ̄ , N̄; h, n] = D̄tn
i +

1

2σ

(

O−1)ij γ̄ kℓ
(

∇̄khjℓ − λ∇̄jhkℓ
)

.

(148)

The gauge-fixing given by (147) and (148) leads to the
aforementioned regular propagators, discussed in more detail in
the next subsection. Unfortunately, the same gauge-fixing does
not seem to work in the non-projectable theory; it leads to
irregular terms in the propagators involving the lapse function,
which is absent in the projectable theory [51].

8.2. Regular Propagators, Superficial
Degree of Divergence, and
Renormalizability
In the context of Lifshitz theories with anisotropic scaling (96),
an important concept is the notion of a regular propagator,
which also plays a central role in the proof of perturbative
renormalizability of HG. A propagator for two generalized fields

28The order of the covariant derivatives in (147) is a matter of choice, as
different orders differ only in curvature terms that do not affect the principal
part of the fluctuation operator. When lower-derivative parts are included in the
operator (147), there may be “preferred choices” that simplify the lower-derivative
parts of the fluctuation operator. In (147), a symmetric ordering has been
chosen. Another natural symmetric choice is Oij = −

(

∇̄i1 ∇̄i2 . . . ∇̄i(d−2)/2 (1̄γ kl +
ξ ∇̄k∇̄ l)∇̄ i(d−2)/2 . . . ∇̄ i2 ∇̄ i1

)−1
.
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φ1 and φ2 with anisotropic scaling [φ1]S = s1 and [φ2]S = s2 is
of the regular form

〈φ1,φ2〉 =
∑ P(ω, k)

D(ω, k)
,

D =
M
∏

m=1

[

Am ω2 + Bm k2d + · · ·
]

, (149)

if and only if P(ω, k) is a polynomial in ω and ki with leading
anisotropic scaling [P]S ≤ s1 + s2 + 2d(M − 1) and Am > 0 and
Bm > 0 are strictly positive constants. The ellipsis represents
terms with subleading scaling dimensions, which generically
originate from relevant operators in the action. The scaling
properties ensure that the propagator has the right fall-off
properties at small distances and time intervals, i.e., it scales as
[〈φ1,φ2〉]S ≤ s1 + s2 − 2d in the UV limit for high frequencies
and momenta in momentum space.

With the choice (148), the propagators of projectable HG
in D = 2 + 1 and D = 3 + 1 dimensions are derived on
a flat background γ̄ij = δij and N̄i = 0. Upon inserting
the decomposition (138) for the fluctuations hij and ni into
the gauge-fixed quadratic action, the gauge-fixed fluctuation
operator (25) has a block-diagonal form in the scalar, vector, and
tensor sectors and can be inverted algebraically in momentum
space. The propagators for the original hij and ni fields are
recovered by using (138) again. In D = 2 + 1 the propagators
read [51],

〈hij, hkl〉 = 2G

[

δikδjl + δilδjl +
2λ

1− 2λ
δijδkl

]

PS(ω, k), (150)

〈ni, nj〉 = 4µGk2
[
2(1− λ)

(1− 2λ)
δij −

kikj

k2

]

PS(ω, k). (151)

The tensor combination in (150) is just the inverse DeWitt metric
(130) in d = 2 flat space. In order to arrive at the final forms
(150) and (151), the gauge parameters (ξ , σ ) have to be chosen
such that there is a single pole

PS(ω, k) =
[

ω2 + 4µ
1− λ

1− 2λ
k4
]−1

,

σ =
1− 2λ

8µ(1− λ)
, ξ = −

1− 2λ

2(1− λ)
. (152)

Clearly, the propagators (150) and (151) are both of the regular
form (149)29.

29The ghost field propagator 〈c∗i , ci〉 = Gδ
j
iPS(ω, k), which is derived from the

gauge-fixing (148) according to the general rule (22), also has the regular form
[51].

In D = 3 + 1 dimensions the analogous procedure yields the
propagators for the hij and ni fields [51],

〈hij, hkl〉 =2G
(

δikδjl + δilδjk

)

PTT − 2Gδijδkl

[

PTT −
1− λ

1− 3λ
PS

]

+ 2G

(

δij
kkkl
k2

+ δkl
kikj

k2

)

[PTT − PS]

+ 2G
kikjkkkl

k4

[
7λ − 5

1− λ
PTT +

1− 3λ

1− λ
PS

]

, (153)

〈ni, nj〉 = G
ν5

1− λ
k4
[

2(1− λ)δij − (1− 2λ)
kikj

k2

]

PS. (154)

Again, in order to arrive at the final forms (153) and (154), the
gauge parameters (ξ , σ ) have been chosen in such a way that there
are only the two physical poles30

PTT =
[

ω2 + ν5k
6]−1

,

PS =
[

ω2 +
(1− λ)(8ν4 + 3ν5)

1− 3λ
k6
]−1

,

σ =
1

2ν5
, ξ = −

1− 2λ

2(1− λ)
. (155)

The additional second pole in D = 3+ 1 is due to the TT mode,
which is absent in D = 2+ 1 dimensions. Again, the propagators
(153) and (154) are of the regular form (149).

The superficial degree of divergence in HG is obtained along
the same lines as in (65), but with the anisotropic scaling of loop
frequencies and momenta (97). Provided the propagators are of
the regular form, it reads [51]

Ddiv
HG = 2 d − d T − X − (d − 1) lN , (156)

where T and X are the numbers of time derivatives and spatial
derivatives, respectively, acting on external legs and ln is the
number of external n-legs. Due to the DiffF invariance of the
counterterms it is sufficient to focus on diagrams with ln =
031. From (156) it follows that Ddiv

HG < 0 with more than two
time derivatives or d space derivatives on external hij-legs. If

Ddiv
HG < 0 were indeed to imply the absence of divergences,

only local operators with at most two time derivatives or d
spatial derivatives acting on hij would have to be renormalized
and HG would be perturbatively renormalizable. However,
there are two complications that prevent us from immediately
drawing this conclusion. The first is the problem of (overlapping)

30The propagators (153) and (154) with the poles (155) are derived by taking
into account only those operators in the potential (132) that have a marginal
anisotropic scaling. If the relevant operators in (132) were taken into account, they
would lead to relevant deformations in the propagators, i.e., additional terms with
lower k-dependence. Positive definiteness of Oij requires ξ > −1, which is not
satisfied for λ > 1 in the gauge (155). This, however, does not seem to lead to
difficulties in the perturbative approach, at least as far as gauge-independent on-
shell quantities are concerned, such as the beta functions of the essential couplings
in (2+ 1)-dimensional HG discussed in section 9.
31This statement also relies on the DiffF-invariant structure of the counterterms
proven in [52], as factors of the shift vector in DiffF-invariant operators can only
occur in the form of the covariant time derivative (109).
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subdivergences, which is also present in non-relativistic theories,
i.e., a diagram might diverge despite Ddiv

HG < 0. However,
in [249] it was shown that the combinatorics of the recursive
order-by-order subtraction of the Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) scheme [250–252] works essentially the
same as in relativistic theories.

The second problem is similar but inherently related to the
non-relativistic nature of the theory. It can be illustrated by
considering a generic L-loop Feynman integral that is free of
subdivergences and has Ddiv

HG(I) < 0:

I =
∫

dω(L) d
d k(L) f

(

ω(L), k(L)
)

, (157)

f
(

ω(L), k(L)
)

=
∫ L−1
∏

ℓ=1

dω(ℓ) d
dk(ℓ) f̃

(

{ω(ℓ)}, {k(ℓ)};ω(L), l(L)
)

.

(158)

The absence of subdivergences implies that the integrations over
the L − 1 loop integrals converge and result in a function
f (ω(L), k(L)) which, upon suppressing the dependence on the
external momenta, depends only on the Lth loop frequency ω(L)

and spatial momentum k(L). The anisotropic scalings [ω]S = d

and [k]S = 1 imply that [f ]S = Ddiv(I)− 2d. However, in
contrast to relativistic theories, in which f (ω(L), k(L)) can depend
only on the relativistic combination p2(L) = ω2

(L)− k2(L), in Lifshitz

theories the anisotropic scaling is less restrictive and f (ω(L), k(L))
can take different forms, such as

f (ω(L), k(L)) =







ω−1+n
(L) k

Ddiv(I)−d(1+n)
(L) ,

ω−1−n
(L) k

Ddiv(I)−d(1−n)
(L) .

(159)

The problem is that, despite the fact that Ddiv(I) < 0, the
total integral I may diverge as the individual integrals over
the frequency [as in the first case of (159)] or the spatial
momentum [as in the second case of (159)] diverge. In [51] it
was shown that this problem is absent if the propagators are of
the regular form (156), in which case Ddiv

HG(I) < 0 really implies
convergence of I. As shown earlier, all propagators in projectable
HG can be brought into the regular form (149) by the non-
local gauge-fixing (147) and (148). Combined with the DiffF(M)
invariance of the counterterms shown in [52], this completes the
proof of perturbative renormalizability of projectable HG [51].
Unfortunately, the proof does not extend to the non-projectable
theory, as not all propagators can be brought into the regular
form (149) for the gauge-fixing (147) and (148), because of the
propagating lapse function. This, of course, does not imply that
the non-projectable theory is perturbatively non-renormalizable;
it simply means that other methods are needed to investigate the
renormalization structure of the non-projectable theory.

8.3. Auxiliary Field, Local Formulation, and
Path Integral
The Euclidean path integral (2) for projectable HG has the form

ZHG =
(

DetOij

)1/2
∫

D[Ni, γij, c
i, c∗i ] e

−Stot[Ni ,γij ,ci ,c∗i ] (160)

with the total action

Stot = SHG + Sgb + Sgh, (161)

including the HG action (127), the gauge-breaking action (144),
and the ghost action Sgh, which derives from the gauge condition
(148) according to the general definition (21) with the ghost
operator (22).

Because of the gauge condition (148) with the non-local
operator Oij defined in (147), the gauge-breaking action Sgb
introduces a non-locality in Stot. However, this non-locality only
persists in the shift-shift sector of Sgb,

Sgb =
σ

2G

∫

dt ddx
√

γ̄
(

D̄tn
iOijD̄tn

j + local terms
)

. (162)

The non-local part can be rendered local by “integrating in” the
auxiliary field πi via the Gaussian functional integral:

(

DetOij

)1/2
exp

[

−
∫

dt ddx
σ
√

γ̄

2G
D̄tn

iOijD̄tn
j

]

=
∫

D[πi] exp

[

−
∫

dt ddx

√
γ̄

G

(
1

2σ
πi

(

O−1)ij πj − iπiD̄tn
i

)]

.

(163)

TheHubbard-Stratonovich-type transformation (163) reveals the
role of πi as momentum canonically conjugated to ni. The field
πi also shares similarities with the Nakanishi-Lautrup field used
in the BRST formalism to ensure the off-shell nilpotency of the
Slavnov operator (see e.g., [52]).

The field πi has mass dimensionality [πi]M = 1 and scaling
dimensionality [πi]S = 1 (for arbitrary d). In [51] it was verified
that the 〈πi,πj〉 and 〈πi, nj〉 propagators are also of the regular
form (149) and that the presence of the πi field does not affect
the regularity of the hij and ni propagators. Therefore, within
the perturbative quantization, the procedure (163) is well-defined
such that the apparent non-locality in the shift sector, induced by
the gauge-fixing, does not lead to any problems. Moreover, (163)
has the effect of absorbing the functional determinant (DetOij)1/2

in (160), such that the partition function takes the simple form

ZHG =
∫

D[Ni,πi, γij, c
i, c∗i ] e

−Stot[Ni ,πi ,γij ,ci ,c∗i ], (164)

with a local action functional Stot[Ni,πi, γij, ci, c∗i ] that includes
the auxiliary πi field.

9. EXPLICIT CALCULATIONS AND
RENORMALIZATION GROUP FLOW

The proof that projectable HG is perturbatively renormalizable
beyond power counting [51, 52] is an important step toward
a unitary quantum theory of gravity. However, for this theory
to qualify as a fundamental theory, it must be extendable
to arbitrarily high energy scales. In other words, perturbative
renormalizability does not yet ensure the UV completeness, as
the RG flow could drive one or more coupling constants into a
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Landau pole, leading to divergent interaction strengths at finite
energy scales. Another aspect of the RG flow in HG is connected
to the IR and the question of whether relativistic invariance can
effectively be restored dynamically as an emergent symmetry at
low energies. The RG analysis and the logarithmic running of
the coupling constants requires calculation of the beta functions
determined by the UV divergences of the theory.

Various quantum aspects of Lifshitz theories, in particular
in the context of HG, have been considered in [49–51, 81, 83,
208, 253–273]. Here, I focus on the calculation of the beta
functions in HG in D = 2 + 1 dimensions. Previous work in
this context includes the contributions of Lifshitz scalars to the
gravitational beta functions [82, 274], the one-loop beta functions
for conformally reduced projectable HG inD = 2+1 dimensions
[275], and the renormalization of the cosmological constant in
D = 2 + 1 projectable HG [276]. In this section I report on the
full RG flow of all couplings in projectable HG in D = 2 + 1
dimensions, whichwas derived in [53]. The analogous calculation
in D = 3 + 1 dimensions is technically much more challenging
and has not yet been completed. However, recent partial results
provide an important first step in this direction [277].

The Euclidean action for projectable HG in D = 2 + 1
dimensions reads32

S
(d=2)
HG =

1

2G

∫

dt d2x
√

γ
(

KijK
ij − λK2 + µR2

)

. (165)

The background covariant gauge condition (148) and the non-
local operator (147) in D = 2+ 1 dimensions take the forms

χ i = D̄tn
i +

1

2σ

(

O−1)ij γ̄ kℓ
(

∇̄khjℓ − λ∇̄jhkℓ
)

,

Oij = −
(

1̄γ̄ ij + ξ ∇̄ i∇̄ j
)−1

, ξ 6= −1. (166)

In the background field method the “quantum fields” hij, ni, πi,
c∗i , and ci are integrated out in the path integral, which, within
the one-loop approximation, means performing the functional
Gaussian integration (8). Therefore, only the part of the total
action Stot = SHG+Sgf+Sgh that is quadratic in the perturbations

S
(2)
tot is required. In view of (21) and (22), this means that only
the “affine” parts of the gauge transformations on hij and ni are
required to derive the quadratic part of Sgh. In the projectable
version of HG in the gauge N = 1, the DiffF reduce to the time-
dependent spatial diffeomorphisms [corresponding to ε = 0
in (120) and (121)], and the required gauge transformations in
terms of the background covariant time derivative D̄t and the
background covariant spatial derivative ∇̄i are given by

δεhij = 2∇̄(iεj), δεn
i = D̄tε

i. (167)

32Note the flipped sign of the µR2 term compared to (127).

The vector-ghost operator Qi
j is derived from (166) according to

the general formula (22), and its quadratic part reads

Qi
j = δijD̄

2
t +

1

4σ

{

−2δij1̄
2 + 2

[

1+ 2ξ − 2λ(1+ ξ )
]

∇̄ i1̄∇̄j

+δijR̄1̄ − (1− 2λ + 2ξ )R̄∇̄ i∇̄j − 2ξ R̄;j∇̄ i

−2ξ R̄;i∇̄j − 2δijR̄;k∇̄k − δijR̄
k

;k − 2ξ R̄;ij

}

. (168)

A virtue of the manifest background covariant treatment in the
background field method is that, owing to the background DiffF
invariance, the shift vector N̄i appears only in combination with
the time derivative ∂tγij in the form of the extrinsic curvature
or, equivalently, in the form of the covariant time derivative of
the metric Dtγij = 2Kij. When performing variations of the total
action Stot = SHG+ Sgf+ Sgh, factors of the shift perturbations n

i

arise only from the variation of the covariant time derivative, as
can be seen from the operator relation

[δ,Dt] = −LδN. (169)

Moreover, a canonical ordering among mixed covariant time
derivatives and covariant space derivatives could be chosen in
such a way that the covariant time derivatives act first. This
requires repeated use of the basic commutator33

[Dt ,∇m]T
j1...jr
i1...is

=
∑

jℓ

K
jℓ
mnT

j1...n...jr
i1...is

−
∑

iℓ

K
n
miℓ

T
j1...jr
i1...n...is

, (170)

with the “anisotropic commutator curvature” tensor defined in
terms of derivatives of the extrinsic curvature,

K
k
ij : = ∇iK

k
j + ∇jK

k
i − ∇kKij. (171)

Upon introducing the auxiliary field πi according to (163),
making use of (169), integrating by parts, sorting derivatives with
(170), reducing curvature tensors by the dimension-dependent
identity (133), and arranging the fluctuations of the fields hij,

ni, and πi in a multiplet φA = (hij, ni,πi)T , the gauge-fixed
fluctuation operator acquires a block matrix structure and can be
represented in the form

FAB(D̄t , ∇̄) = CABD̄
2
t + D

ijkl
AB∇̄i∇̄j∇̄k∇̄l + TABD̄t +W

ij
AB∇̄i∇̄j

+Ŵi
AB∇̄i + PAB. (172)

The principal part of (172) is split into a temporal part CAB and

a spatial part D
ijkl
AB for which the derivatives have been made

explicit. For brevity, I do not give explicit expressions for the

matrices CAB,D
ijkl
AB , TAB,W

ij
AB, Ŵ

i
AB, and PAB, which are functions

of the background fields. The one-loop renormalization requires

33The relations (169) and (170) hold for any d, but only in the projectable
version of HG. In the non-projectable theory the operator version of (169)
reads [δ,Dt] = −N−1 (δNDt + LδN). Likewise, (170) yields an additional term

amDtT
j1 ...jr
i1 ...is

on the right-hand side, and the covariant spatial derivatives in the
definition (171) must be shifted by the acceleration vector ∇i 7→ ∇i + ai.
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calculation of the divergent part of the functional traces for the
operators (172) and (168),

Ŵdiv
1 =

1

2
Tr ln FAB

∣
∣
div − Tr lnQ

j
i

∣
∣
div

. (173)

In contrast to the relativistic case, standard heat-kernel
techniques are not available for the anisotropic case; in particular,
there is no closed algorithm based on an SDW representation
(31) for the off-diagonal kernel of (172). In addition to the
anisotropic character of these operators, they suffer from further
complications. First, the matrices in the principal parts CAB and
DAB are degenerate, as ni and π i enter FAB only with lower

derivatives and the h-h block of D
ijkl
AB is a non-minimal fourth-

order operator34.
Nevertheless, initial attempts to deal with anisotropic

operators using the heat-kernel technique were suggested in
[81, 274]. A general algorithm for anisotropic operators, based
on the resolvent method, was proposed in [83]. In the most
general case, however, this algorithm requires the evaluation of a
large number of products of nested multi-commutators as well as
non-trivial parameter integrals, which is technically challenging.

Therefore, an alternative way of calculating the one-loop
divergences might be more suitable, especially since the number
of invariants in HG in D = 2 + 1 dimensions is reasonably
small and the one-loop calculation using Feynman-diagrammatic
techniques is still manageable, particularly when combined with
the background field method. After integrating out the “quantum
fields” hij and ni as well as πi, c∗i , and ci in the path integral,
the effective action becomes a functional of the mean fields,
which at the one-loop level can be identified with the background
fields. In particular, the divergent part of the effective action is
a sum of local operators of the background fields γ̄ij and N̄i

together with their time and space derivatives, which, owing to
the renormalizability of projectable HG, are of the same form
as the manifestly DiffF(M)-invariant operators already present
in the bare action (165). This allows us to extract the one-loop
renormalization of G, λ, and µ in a simpler way by expanding
the general background field γ̄ij around a flat background in
which N̄i = 0:

γ̄ij = δij +Hij. (174)

Evaluating the bare action (165) on the background (174) and
expanding up to quadratic order in Hij yields

SHG[γ̄ij, N̄
i] =

1

2G

∫

dt d2x

{
1

4

(

ḢijḢ
ij − λḢḢ

)

+ µ
[

∂2H∂2H

− ∂k∂lH
kl(2∂2H − ∂j∂iH

ij)
]

+O(H3)
}

, (175)

34The degeneracy is a consequence of the anisotropic scaling: in contrast to [hij]S =
0, the fields ni and π i carry non-zero scaling dimension [πi]S = [ni]S, such that
the overall homogeneous scaling [FAB]S = 4 only allows for lower derivatives of ni

and π i.

FIGURE 6 | One-loop two-point 1PI diagrams in projectable HG in D = 2+ 1

dimensions (from [53]).

with ∂2 : = δµν∂µ∂ν . The divergent part of the effective action
can be expanded in the same way:

Ŵdiv[γ̄ij, N̄
i] =

∫

dt d2x
{

cdiv1 ḢijḢ
ij + cdiv2 ḢḢ + cdiv3

[

∂2H∂2H

−µ∂k∂lH
kl(2∂2H − ∂j∂iH

ij)
]

+O(H3)
}

. (176)

In order to obtain the renormalizations of the couplingsG, λ, and
µ, it is sufficient to calculate the divergent coefficients cdiv1 , cdiv2 ,

and cdiv3 of the operators quadratic inHij. The renormalization of

G is extracted from cdiv1 , the renormalization of λ/G from cdiv2 ,
and the renormalization of µ/G by any of the three operators
in (176). Disentangling this system enables extraction of the
individual renormalizations of G, λ, and µ. Diagrammatically,
the background fields Hij appear only at external legs, while the
quantum fields hij and ni, as well as πi, c∗i , and ci, propagate in
the loops. Hence, according to (175) and (176), the one-loop
renormalization of G, λ, and µ requires one to calculate the
divergent part of the 1PI diagrams with two external Hij-legs,
shown in Figure 6.

For the regular gauge (166) with gauge parameters (ξ , σ ) and
pole PS as in (152), the propagators of the quantum fields hij and
ni are the same as in (150) and (151), while those including the
πi, c∗i , and ci fields read [51],

〈πi, n
j〉 = Gωδ

j
iPS(ω, k),

〈πi,πj〉 =
Gk2

2

[

δij + (1− 2λ)
kikj

k2

]

PS(ω, k),

〈c∗i , cj〉 = Gδ
j
iPS(ω, k). (177)
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The required three-point and four-point vertices in the gauge
N̄i = 0 are obtained by expanding the background fields in
L(2) = δφAFABδφ

B, with FAB given in (172), according to
(174) up to second order in Hij. The explicit results for the
vertices are rather lengthy and therefore not presented here.
Within dimensional regularization, the divergent part of the one-
loop diagrams in Figure 6 can be extracted by expanding the
propagators in the corresponding integrals around vanishing
external frequency and momenta, resulting in a sum of vacuum
diagrams from which the logarithmically divergent contributions
can easily be extracted by power counting35. The one-loop beta
functions βG, βλ, and βµ, which determine the RG running of the
couplings G, λ, and µ, are obtained directly from the logarithmic
one-loop divergences, i.e., from the corresponding coefficient of
the pole 1/ε in dimension.

Finally, in order to discuss the physical implications of
the RG flow, it is important to extract the gauge-independent
physical information from the RG system. In general, the off-
shell effective action is parametrization- and gauge-dependent.
On the one hand, a change of the gauge-fixing induces a change
Ŵdiv 7→ Ŵdiv + E δŴdiv, which is proportional to the equations of
motion δŴdiv = S,iX

i with an arbitrary constant E [34, 279, 280].
On the other hand, this change could be compensated for by the
change δŴdiv = (∂Ŵdiv/∂G)δG+ (∂Ŵdiv/∂λ)δλ+ (∂Ŵdiv/∂µ)δµ,
which is induced by a change in the couplings. The combinations
of couplings for which the corresponding beta function is gauge-
independent are called essential; all other couplings are called
inessential and do not enter physical observables. The problem
is therefore to tell apart and disentangle the essential from the
inessential couplings. In order to find Xi explicitly, one could
exploit power counting, as S,iXi must be a local functional with
the same scaling as Ŵdiv; that is, in the context of D = 2 + 1
projectable HG, S,iXi can only involve marginal operators with
respect to the anisotropic scaling. Since the scaling and the index
structure of the S,i are known, this corresponds to a strong
constraint on the possible structure of theXi. In [53], it was found
that the unique combination XiS,i that vanishes on-shell is

δŴdiv = E

∫

dt d2x
[

KijK
ij − λK2 − µR2

]

. (178)

The variation of Ŵdiv with respect to the couplings reads

δŴdiv =
1

2G

∫

dt d2x
√

γ

[

−
δG

G
KijK

ij − λ

(
δλ

λ
−

δG

G

)

K2

+ µ

(
δµ

µ
−

δG

G

)

R2
]

. (179)

Equating (178) and (179) yields the desired transformations of
the couplings [53],

δG = −2G2
E, δλ = 0, δµ = −4GµE. (180)

35See e.g., [278] for an application of this method with a particular focus on the
combinatorial aspects in the context of relativistic higher-derivative theories.

FIGURE 7 | RG flow of essential couplings in HG in D = 2+ 1 dimensions;

arrows point from the UV to the IR (from [53]).

Thus, only λ and the combination G = G/
√

µ are essential
couplings (δλ = δG = 0), with beta functions [53]

βλ =
15− 14λ

64π

√

1− 2λ

1− λ
G,

βG = −
(16− 33λ + 18λ2)

64π (1− λ)2

√

1− λ

1− 2λ
G
2. (181)

The RG flow driven by the beta functions (181) is shown in
Figure 7. There are two UV fixed points at

(

λ∗1 ,G
∗
1

)

= (1/2, 0) ,
(

λ∗2 ,G
∗
2

)

= (15/14, 0) . (182)

The first fixed point (λ∗1 ,G
∗
1) lies exactly on the lower boundary

of the non-unitary interval 1/2 < λ < 1 for which the
gravitational scalar degree of freedom behaves like a ghost; cf.
the discussion in section 7.4. For fixed G, the beta function
βG develops a divergence in the limit λ → 1/2. At the same
time, however, the limit λ → 1/2 is accompanied by G → 0,
implying that the relevant expansion parameter in this limit
is G̃ = G(1 − 2λ)−1/2. The beta function β

G̃
vanishes for

λ → 1/2, which means that there is a one-parameter family
of UV fixed points parameterized by the asymptotic value of G̃.
Summarizing, the status of this fixed point remains inconclusive
and higher loop corrections or contributions from matter loops
are required to resolve the situation and to decide whether the
fixed point is merely an artifact of the approximation or has
physical significance.

In contrast, the second fixed point
(

λ∗2 ,G
∗
2

)

is regular, lies
in the unitary region λ > 1, and is asymptotically free [53].
Although projectable HG in D = 2 + 1 dimensions only has
the status of a toy model without propagating spin-2 particles, it
provides the first unitary, perturbatively renormalizable, and UV-
complete quantum theory of gravitational propagating degrees
of freedom. In previous calculations of the one-loop divergences
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in D = 2 + 1 projectable HG, the dynamical content of the
metric field was restricted to the conformal mode [275]. In this
conformally reduced model, only the fixed point at (1/2, 0) has
been found. This shows that the formation of the regular fixed
point at (15/14, 0) requires the full theory [53].

Another interesting feature of the RG flow is that there are RG
trajectories which emanate from the regular UV fixed point and
asymptotically approach the “relativistic value” λ → 1 in the IR.
In addition to the problems with the IR λ → 1 limit discussed
in section 7.4, the “gravitational coupling” G becomes strongly
coupled along these trajectories, necessitating a non-perturbative
analysis in this regime. Nevertheless, the observed flow toward
λ = 1 suggests that the possibility of a dynamical mechanism for
an emergent restoration of relativistic symmetry at low energies
should be investigated in more detail. First, the phenomenon that
a theory which is asymptotically free in the UV develops a strong
coupling in the IR is well-known. Second, the strong coupling of
G in the IR could just be an artifact of the absence of relevant
curvature operators in D = 2 + 1. In D = 3 + 1 dimensions
relevant deformations might be expected to naturally cut off the
strong coupling of G.

All these interesting and encouraging results justify the hope
that the RG flow of the more realistic and physically relevant
theory in D = 3 + 1 dimensions exhibits similar features.
Although there are no conceptual problems associated with the
analogous calculation in D = 3 + 1 dimensions, in view of the
increased number and complexity of the independent curvature
invariants, it is technically much more challenging. A first step
toward the RG flow of projectable HG in D = 3 + 1 dimensions
has been taken in [54], where the one-loop beta functions of G
and λ were derived with Feynman-diagrammatic methods in a
similar way to (175) and (176), by exploiting the gauge invariance
of counterterms, which allows one to restrict to a flat metric
background and focus only on diagrams with background shift
fields at the external legs. However, the gauge-invariant beta
functions for the essential coupling constants and the fixed point
structure of the theory can only be derived by having access
to the renormalizations of all couplings, including those in the
potential sector. Thus, the complete calculation of the one-loop
divergences in D = 3+ 1 projectable HG is an important task.

10. CONCLUSIONS AND OUTLOOK

In this article I have reviewed various attempts to quantize gravity
within the framework of perturbative quantum field theory, with
a particular focus on Hořava gravity. I have highlighted the
merits and difficulties that come with each of the approaches. The
different approaches to quantum gravity discussed in this work
might best be characterized by the property that each does not
share with the other approaches, as shown in Table 2.

The status of HG with critical anisotropic scaling can be
roughly summarized by dividing the discussion into “projectable”
vs. “non-projectable” and “phenomenology of the classical
theory” vs. “properties of the quantum theory.”

From a phenomenological point of view, projectable HG does
not seem to qualify as a viable theory, mainly because it suffers

TABLE 2 | Approaches to quantum gravity characterized by properties that they

do not have.

Approach Property

General relativity Not renormalizable

Effective field theory Not fundamental

Asymptotic safety Not perturbative

Quadratic gravity Not unitary or not satisfying micro-causality

Hořava gravity Not relativistic

from an IR instability of the additional scalar gravitational mode
[212–215]. Although other proposals with a more optimistic
conclusion for this problem have been made [200, 217, 218],
they are based on non-perturbative effects which are outside the
scope of the weak coupling regime where perturbation theory
is applicable.

In contrast, the non-projectable model does not suffer from an
IR instability because additional relevant operators that include
powers of the acceleration vector (spatial derivatives of the
lapse function) can remedy the IR instability [221]. Even if
the low-energy sector of the non-projectable model is strongly
constrained by observational data and a mechanism to avoid
percolation of LV effects from the gravitational sector to the
matter sector seems necessary to avoid conflicts with bounds on
LV in the matter sector [227], the non-projectable model is still
phenomenologically viable [238].

From a theoretical point of view, regarding the status of
HG as a consistent quantum theory of gravity, the situation is
somewhat opposite to that of the phenomenological assessment.
The projectable theory has been proven to be perturbatively
renormalizable (for any dimension D = d+ 1) in the strict sense
[51, 52]. Moreover, the model in D = 2 + 1 dimensions has
been shown to be asymptotically free, and its RG flow features
interesting RG trajectories which emanate from the UV fixed
point and asymptotically approach the relativistic value λ = 1
in the IR [53]. Even if the model in D = 2 + 1 dimensions
must be considered a toy model without propagating TT modes,
it is a unitary, perturbatively renormalizable, and UV-complete
quantum theory of non-trivial propagating degrees of freedom
and captures essential features of HG, which are expected to carry
over to the physically relevant D = 3 + 1 case. The situation in
D = 3+ 1 dimensions has not yet been conclusively clarified and
requires calculation of the one-loop beta functions. A first step
in this direction has been taken in [54], but in order to extract
the gauge-independent physical information about the running
of the essential couplings, the renormalization of all couplings
is needed. While there are no new conceptual difficulties, the
analogous calculation is technically much more complex than
in the D = 2 + 1 case and requires more efficient methods,
such as newly developed heat-kernel techniques for anisotropic
operators [81, 83, 274]. In any case, the calculation of the one-
loop divergences of projectable HG in D = 3 + 1 dimensions is
certainly a very important endeavor that will provide new insights
into the structure of the theory.

The situation with the quantization of the non-projectable
model is less clear. Unfortunately, the proof of perturbative
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renormalizability for the projectable theory [51, 52] does not
extend to the non-projectable theory, mainly because it relies
on the regular form of all propagators and no gauge-fixing
could be found in the non-projectable model that would render
all propagators regular. In particular, there seems to be no
gauge-fixing that could remove all irregular contributions to
the propagator involving the lapse function—interpreted in
[51] as a reflection of the instantaneous interaction induced
by the lapse function [214]. Therefore new ideas seem to be
necessary for dealing with the perturbative quantization of the
non-projectable theory.

In summary, HG is an interesting proposal, but, closing with
the words of Bryce DeWitt, the theory does not yet seem to have
been “pushed to its logical conclusion” [281]. Further important
calculations in D = 3 + 1 dimensions are required and may
decide the fate of Hořava’s proposal for a unitary, perturbatively
renormalizable, and UV-complete quantum theory of gravity.
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