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The asymptotic safety program builds on a high-energy completion of gravity based

on the Reuter fixed point, a non-trivial fixed point of the gravitational renormalization

group flow. At this fixed point the canonical mass-dimension of coupling constants is

balanced by anomalous dimensions induced by quantum fluctuations such that the

theory enjoys quantum scale invariance in the ultraviolet. The crucial role played by

the quantum fluctuations suggests that the geometry associated with the fixed point

exhibits non-manifold like properties. In this work, we continue the characterization of this

geometry employing the composite operator formalism based on the effective average

action. Explicitly, we give a relation between the anomalous dimensions of geometric

operators on a background d-sphere and the stability matrix encoding the linearized

renormalization group flow in the vicinity of the fixed point. The eigenvalue spectrum of

the stability matrix is analyzed in detail and we identify a “perturbative regime” where the

spectral properties are governed by canonical power counting. Our results recover the

feature that quantum gravity fluctuations turn the (classically marginal) R2-operator into

a relevant one. Moreover, we find strong indications that higher-order curvature terms

present in the two-point function play a crucial role in guaranteeing the predictive power

of the Reuter fixed point.

Keywords: quantum gravity, asymptotic safety, renormalization group, quantum geometry, scaling dimension

1. INTRODUCTION

General relativity taught us to think of gravity in terms of geometric properties of spacetime. The
motion of freely falling particles is determined by the spacetime metric gµν which, in turn, is
determined dynamically from Einstein’s equations. It is then an intriguing question what replaces
the concept of a spacetime manifold once gravity is promoted to a quantum theory. Typically, the
resulting geometric structure is referred to as “quantum geometry” where the precise meaning of
the term varies among different quantum gravity programs.

An approach toward a unified picture of the quantum gravity landscape could then build on
identifying distinguished properties which characterize the underlying quantum geometry and lend
themselves to a comparison between different programs. While this line of research is still in its
infancy, a first step in this direction, building on the concept of generalized dimensions, has been
very fruitful. In particular, the spectral dimension ds, measuring the return probability of a diffusing
particle in the quantum geometry, has been computed in a wide range of programs including Causal
Dynamical Triangulations [1], Asymptotic Safety [2–5], Loop Quantum Gravity [6], string theory
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[7], causal set theory [8–10], the Wheeler-DeWitt equation [11],
non-commutative geometry [12–14], andHořava-Lifshitz gravity
[15] [see [16, 17] for reviews]. A striking insight originating
from this comparison is that, at microscopic distances, ds = 2
rather universally. The interpretation of ds as the dimension
of a theories momentum space, forwarded in Amelino-Camelia
et al. [18], then suggests that the dimensional reduction of the
momentum space may be a universal feature of any viable theory
of quantum gravity.

Following the suggestion [19]1, a refined picture of quantum
geometry could use the (anomalous) scaling dimension
associated with geometric operators, comprising, e.g., spacetime
volumes, integrated spacetime curvatures, and geodesic
distances. Within the asymptotic safety program [22, 23], also
reviewed in Percacci [24], Litim [25], Reuter and Saueressig [26],
Ashtekar et al. [27], and Eichhorn [28], these quantities have been
studied based on the composite operator formalism [19, 29–32].
This formalism allows to determine the anomalous scaling
dimension of geometric operators based on an approximation
of the quantum-corrected graviton propagator2. For the Reuter
fixed point in four dimensions the quantum corrections to the
scaling of four-volumes Vd=4 ∼ L4−γ0 were determined in
Pagani and Reuter [19]. The result γ0 = 3.986 lent itself to
the interpretation that “spacetime could be much more empty
than expected.” Recently, Houthoff et al. [32] generalized this
computation by determining the anomalous scaling dimensions
associated with an infinite class of geometric operators

On ≡
∫

ddx
√
g Rn, n = 0, 1, 2, · · · ∈ N (1)

where R denotes the Ricci scalar constructed from gµν . While
it was possible to extract analytic expressions for all γn, it
also became apparent that the single-operator approximation
underlying the computation comes with systematic uncertainties.
In parallel, the anomalous scaling properties of subvolumes and
geodesic distances resulting from the renormalization group
fixed points underlying Stelle gravity and Weyl gravity have
recently been computed in Becker et al. [31]. In combination,
the results show that the scaling of geometric quantities
carries information about the renormalization group fixed point
providing the high-energy completion of the theory.

The purpose of present work is two-fold: Firstly, we extend
the analysis [32] beyond the single-operator approximation
and compute the complete matrix of anomalous dimensions
associated with the class (1). This information allows to access
the spectrum of the scaling matrix. We expect that the data
linked to the scaling dimensions of the geometrical operators
gives a refined characterization of the quantum spacetime
underlying the Reuter fixed point. Our results are closely related
but complementary to the ones obtained from solving the
Wetterich equation [34–37] for effective average actions of f (R)-
type [38–60]. The comparison between the two complementary

1For related ideas advocated in the context of two-dimensional gravity (see

[20, 21]).
2Recently, the formalism has been generalized to the computation of operator

product expansions [33].

computations indicates that one indeed needs to go beyond the
single-operator approximation in order to reconcile the results.
Secondly, our work gives information on the gauge-dependence
of the anomalous dimensions associated with the operators (1).
In this light, the value γ0 = 3.986 found in Pagani and Reuter [19]
may be rather extreme and quantum corrections to the scaling of
volumes could be less drastic.

The rest of this work is organized as follows. Section
2 introduces the composite operator formalism and the
propagators entering in our computation. The generating
functional determining the matrix of anomalous dimensions
is computed in section 3. The link to the stability matrix
governing the gravitational renormalization group flow in the
vicinity of the Reuter fixed point is made in section 4.1 and
the spectral properties of the matrix are analyzed in section 4.2.
Section 5 contains our concluding remarks and comments on
the possibility of developing a geometric picture of Asymptotic
Safety from random geometry. The technical details underlying
our computation have been relegated to three appendices:
Appendix A reviews the technical background for evaluating
operator traces using the early-time expansion of the heat-
kernel, Appendix B derives the beta functions governing the
renormalization group flow of gravity in the Einstein-Hilbert
truncation employing geometric gauge [61, 62], andAppendix C
lists the two-point functions entering into the computation.

2. COMPUTATIONAL FRAMEWORK AND
SETUP

Functional renormalization group methods provide a powerful
tool for investigating the appearance of quantum scale invariance
and its phenomenological consequences [63]. In particular, the
Wetterich equation [34–37],

k∂kŴk =
1

2
Tr

[(
Ŵ
(2)
k

+Rk

)−1
k∂kRk

]
, (2)

plays a key role in studying the renormalization group (RG)
flow of gravity and gravity-matter systems based on explicit
computations. It realizes the idea of Wilson’s modern viewpoint
on renormalization in the sense that it captures the RG flow of a
theory generated by integrating out quantum fluctuations shell-
by-shell in momentum space. Concretely, Equation (2) encodes
the change of the effective average action Ŵk when integrating
out quantum fluctuations with momentum p close to the coarse
graining scale k. The flow of Ŵk is then sourced by the right-

hand side where Ŵ
(2)
k

denotes the second variation of Ŵk with
respect to the fluctuation fields, the regulator Rk provides a k-
dependent mass term for quantum fluctuations with momentum
p2 . k2, and Tr includes a sum over all fluctuation fields and an
integral over loop-momenta. Lowering k “unsuppresses” further
fluctuations which are then integrated out and change the value
of the effective couplings contained in Ŵk. For later convenience,
we then also introduce the “RG-time” t ≡ ln(k/k0) with k0 an
arbitrary reference scale.

In practice, the Wetterich equation allows to extract non-
perturbative information about a theories RG flow by restricting
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Ŵk to a subset of all possible interaction monomials and
subsequently solving Equation (2) on this subspace. For gravity
and gravity-matter systems such computations get technically
involved rather quickly. Thus, it is interesting to have an
alternative equation for studying the scaling properties of sets
of operators On, n = 1, · · · ,N, which are not included in Ŵk.
Within the effective average action framework such an equation
is provided by the composite operator equation [19, 64–66]. As a
starting point, the operatorsOn are promoted to scale-dependent
quantities by multiplying with a k-dependent matrix Znm(k)

On(k) ≡
N∑

m

Znm(k)Om. (3)

The analogy of Znm to a wave-function renormalization then
suggests to introduce the matrix of anomalous dimensions γ

whose components are given by

γnm ≡
(
Z−1∂tZ

)
nm

. (4)

Following the derivation [19], the γnm can be computed from the
composite operator equation

N∑

m=1

γnm Om =

−
1

2
Tr

[(
Ŵ
(2)
k

+Rk

)−1
O

(2)
n

(
Ŵ
(2)
k

+Rk

)−1
∂tRk

]
, (5)

where O
(2)
n denotes the second functional derivative of On with

respect to the fluctuation fields. For the geometric operators (1)
the evaluation of γ has so far focused on the diagonal matrix
elements γnn [c.f. [19, 32]]. The goal of the present work is to
extend this analysis and, for the first time, study the eigenvalues
of γij associated with the operators (1).

3. COMPUTING THE MATRIX OF
ANOMALOUS DIMENSIONS

The computation of γnm requires two inputs. First, one needs
to specify the set of operators On. In the present work, these
will be given by the geometric operators (1). Secondly, one

needs to specify the gravitational propagators Ŵ
(2)
k
. These will be

derived from Ŵk approximated by the Euclidean Einstein-Hilbert
(EH) action

ŴEH
k [g] =

1

16πGk

∫
ddx

√
g (23k − R) (6)

supplemented by a suitable choice for the gauge-fixing action

(54). In practice, we obtain Ŵ
(2)
k

from the background field
method, performing a linear split of the spacetimemetric gµν into
a background metric ḡµν and fluctuations hµν :

gµν = ḡµν + hµν . (7)

In order to simplify the subsequent computation, we then chose
the background metric as the metric on the d-sphere, so that the
background curvature satisfies

R̄µνρσ =
R̄

d(d − 1)

[
ḡµρ ḡνσ − ḡµσ ḡνρ

]
, R̄µν =

R̄

d
ḡµν ,

D̄µR̄ = 0. (8)

Moreover, we carry out a transverse-traceless (TT)
decomposition of the metric fluctuations [67]

hµν = hTµν + D̄µξν + D̄νξµ +
(
D̄µD̄ν −

1

d
ḡµνD̄

2

)
σ +

1

d
ḡµνh,

(9)
where the component fields are subject to the
differential constraints

ḡµνhTµν = 0, D̄µhTµν = 0, D̄µξµ = 0, ḡµνhµν = h.
(10)

The Jacobians associated with the decomposition (9) are taken
into account by a subsequent field redefinition

√
2

[
1 −

1

d
R̄

]1/2
ξµ 7→ ξµ,

[
d − 1

d
12 −

1

d
R̄1

]1/2
σ 7→ σ ,

(11)
and it is understood that in the sequel all propagators and

the matrix elements O
(2)
i are the ones associated with the

rescaled fields. In combination with the background (8), this
decomposition ensures that the differential operators appearing
within the trace combine into Laplacians 1 ≡ −ḡµνD̄µD̄ν

constructed from the background metric [61].
We then specify the gauge-fixing introduced in Equation

(54) to geometric gauge, setting ρ = 0 and subsequently
evoking the Landau limit α → 0. Substituting the general
form of the matrix elements listed in Table 2 into the right-
hand side of (5) and tracing the α-dependence one finds that
the contributions of the transverse vector fluctuations ξµ and
the scalar σ drop out from the composite operator equation. As
a consequence, the anomalous dimensions are only sourced by
the transverse-traceless and conformal fluctuations. The relevant
matrix elements are then readily taken from Table 2. They read

O
(2)
n

∣∣∣
hThT

= −
1

2
R̄n−1

[
n1 −

(
2n(d − 2)

d(d − 1)
− 1

)
R̄

]
,

O
(2)
n

∣∣∣
hh

=
n(n− 1)(d − 1)2

d2
R̄n−212

+
n(d2 − (4n− 1)(d − 1)− 1)

2d2
R̄n−11

+
(
d − 2

4d
−

n(d − n− 1)

d2

)
R̄n,

(12)

together with

Ŵ
(2)
k
|hThT =

1

32πGk

[
1 − 23k + CT R̄

]
,

Ŵ
(2)
k
|hh = −

(d − 1)(d − 2)

32πGk d2

[
1 −

d

d − 1
3k + CSR̄

]
,

(13)
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where

CT ≡
d2 − 3d + 4

d(d − 1)
, CS ≡

d − 4

2(d − 1)
. (14)

Finally, the matrix entries for the regulator Rk are obtained
from the substitution rule (59), which corresponds to a Type I
regularization scheme in the nomenclature introduced in [40]

Rk

∣∣
hThT

=
1

32πGk
Rk, Rk

∣∣
hh

= −
(d − 1)(d − 2)

32πGk d2
Rk. (15)

Here Rk(1) = k2 r(1/k2) is a scalar regulator function which
later on will be specified to the Litim regulator (51).

Substituting the expressions (12)–(15) into the composite
operator Equation (5) then yields

N∑

m=0

γnm Om = −
1

2

(
TrT

[
WT(n;1)

]
+ TrS

[
WS(n;1)

] )
,

(16)
where the subscripts T and S indicate that the trace is over
transverse-traceless (T) and scalar (S) fluctuations, respectively.
The explicit form of the operator-valued functionsWT andWS is

WT(n;1) ≡ 16πGk

[
Pk − 23k + CT R̄

]−2
R̄n−1

[
−n1 +

(
2n(d−2)
d(d−1)

− 1
)
R̄
]
(∂tRk − ηNRk) ,

WS(n;1) ≡−
16πGk

(d − 2)

[
Pk −

d

d − 1
3k + CSR̄

]−2

R̄n−2

[
2n(n− 1)(d − 1)12 + n(d + 2− 4n) R̄1

+ d2−2d(2n+1)+4n(n+1)
2(d−1)

R̄2
]
(∂tRk − ηNRk) .

(17)

Equation (16) should then be read as a series expansion in R̄ at
the origin where the matrix entries γnm are obtained by matching
powers of R̄ on the left- and right-hand side. We then define the
infinite family of generating functionals, Ŵn(R̄) with n ≥ 0 ∈ N,
via

∫
ddx

√
ḡ Ŵn(R̄) ≡ −

1

2

(
TrT

[
WT(n;1)

]
+ TrS

[
WS(n;1)

] )
.

(18)
The structure of the traces appearing in the definition (18)
ensures that Ŵn(R̄) is regular at R̄ = 0 and can be expressed as a
Taylor series expansion. Equating the left-hand sides of Equations
(16) and (18) one then has

γnm =
1

2π i

∮

C
R̄−(m+1) Ŵn(R̄), n,m ≥ 0, (19)

where C is an infinitesimal curve encircling the origin with
counterclockwise orientation.

Before delving into the explicit evaluation of the traces, the
following structural remark is in order. Inspecting (17), one
observes that the right-hand side associated with the nth row

starts at order R̄n−2 sinceO
(2)
n will always contribute at least n−2

powers of the background curvature. This entails that the matrix
of anomalous dimensions has the following triangular form

γ =




γ00 γ01 γ02 γ03 γ04 γ05 γ06 · · ·
γ10 γ11 γ12 γ13 γ14 γ15 γ16 · · ·
γ20 γ21 γ22 γ23 γ24 γ25 γ26 · · ·
0 γ31 γ32 γ33 γ34 γ35 γ36 · · ·
0 0 γ42 γ43 γ44 γ45 γ46 · · ·
0 0 0 γ53 γ54 γ55 γ56 · · ·



. (20)

This structure originates solely from the properties of the
operators On and is independent of the gauge choice or
regularization procedure.

The explicit values of the matrix entries (16) are readily
computed employing the heat-kernel techniques reviewed in
Appendix A. In practice, we will truncated the heat-kernel
expansion at order R2, setting the coefficients an, n ≥ 3 to
zero. This is in the spirit of the “paramagnetic approximation”
suggested in [68], that the curvature terms relevant for
asymptotic safety originate from the curvature terms contained
in the propagators. For the matrix entries γnm this entails that
all entries on the diagonal and below (marked in black) are
computed exactly while contributions to the terms above the
diagonal (marked in blue) will receive additional contributions
from higher-orders in the heat-kernel. In particular all entries
γnm with m ≥ n + 3 are generated solely from expanding the
curvature terms proportional to CT and CS in the transverse-
traceless and scalar propagators.

Evaluating (16) based on these approximations then results in
an infinite family of generating functionals Ŵn(R̄), n ≥ 0 ∈ N:

Ŵn(R̄) =
16πg

(4π)d/2

[
cT1 q

2
d/2+1(w

R̄
T)

(
R̄
k2

)−1
+ cT2 q

2
d/2(w

R̄
T)

+ cT3 q
2
d/2−1(w

R̄
T)

(
R̄
k2

)
+ cT4 q

2
d/2−2(w

R̄
T)

(
R̄
k2

)2

+ cS1 q
2
d/2+2(w

R̄
S )

(
R̄
k2

)−2
+ cS2 q

2
d/2+1(w

R̄
S )

(
R̄
k2

)−1

+ cS3 q
2
d/2(w

R̄
S ) + cS4 q

2
d/2−1(w

R̄
S )

(
R̄
k2

)

+ cS5 q
2
d/2−2(w

R̄
S )

(
R̄
k2

)2 ]
.

(21)

Here we introduced the dimensionless couplings

gk = kd−2 Gk, λk = 3k k
−2, (22)

and the anomalous dimension of Newton’s coupling ηN ≡
(Gk)

−1∂tGk. The threshold functions q
p
n(w) are defined in

Equation (46) and their arguments in the transverse-traceless and
scalar sector are

wT = −2λ, wS ≡ − d
d−1

λ,

wR̄
T = wT + CT R̄/k2, wR̄

S ≡ wS + CSR̄/k2. (23)
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TABLE 1 | Heat-kernel coefficients ain for scalars (S), transverse vectors (TV ), and

transverse-traceless symmetric tensors (T ) on a background d-sphere [69].

S TV T

ai0 1 d − 1 (d−2)(d+1)
2

ai1
1
6

(d+2)(d−3)
6d

(d+1)(d+2)(d−5+3δd,2 )
12(d−1)

ai2
5d2−7d+6
360d(d−1) − (d+1)(5d4−22d3−83d2−392d−228+1440δd,2+3240δd,4 )

720d(d−1)2

The terms proportional to δd,2 and δd,4 are linked to zero modes of the decomposition (9)

on the 2- and 4-sphere. The dash −− indicates that the corresponding coefficient is not

entering into the present computation.

The coefficients ci
k
depend on d and n. In the tensor sector they

are given by

cT1 = 1
2n d a

T
0 ,

cT2 = 1
2n(d − 2)aT1 −

(
2n(d−2)
d(d−1)

− 1
)
aT0 ,

cT3 = 1
2n(d − 4)aT2 −

(
2n(d−2)
d(d−1)

− 1
)
aT1 ,

cT4 = −
(
2n(d−2)
d(d−1)

− 1
)
aT2 .

(24)

Their counterparts in the scalar sector read

cS1 =
n(n− 1)(d − 1)d(d + 2)

2(d − 2)
aS0,

cS2 =
1

2
n(n− 1) d(d − 1) aS1 +

nd(d + 2− 4n)

2(d − 2)
aS0,

cS3 =
1

2
n(n− 1) (d − 1)(d − 4) aS2 +

1

2
n(d + 2− 4n) aS1

+
d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS0,

cS4 =
n(d − 4)(d + 2− 4n)

2(d − 2)
aS2 +

d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS1,

cS5 =
d2 − 2d(2n+ 1)+ 4n(n+ 1)

2(d − 1)(d − 2)
aS2.

(25)

Finally, the ain are the heat-kernel coefficients listed in Table 1.
Evaluating (19) for the explicit generating functional (21) then

yields the entries of the matrix γ . For instance, the two lines of
entries below the diagonal, γn,n−2, n ≥ 2, and γn,n−1, n ≥ 1,
obtained in this way are

γn,n−2 =
16πg

(4π)d/2
n(n− 1)(d − 1)d(d + 2)

2(d − 2)
k4 q2d/2+2(wS),

γn,n−1 =
16πg

(4π)d/2
n d k2

[1
4
(d − 2)(d + 1) q2d/2+1(wT)

+
1

12
(n− 1)(d − 1)q2d/2+1(wS)

+
d + 2− 4n

2(d − 2)
q2d/2+1(wS)

−
(n− 1)(d − 4)(d + 2)

2(d − 2)
q3d/2+2(wS)

]
.

(26)

Equation (21) together with the relation (19) constitutes the main
result of this work. They give completely analytic expressions for
all entries of the anomalous dimension matrix γ .

At this stage, a few remarks are in order.

(1) The entries of the anomalous dimension matrix carry
a specific k-dependence: γnm ∝ (k2)n−m. This can be
understood by noticing that the matrix γ acts on operators
Om with different canonical mass dimensions. The k-
dependence then guarantees that the eigenvalues of γ are
independent of k.

(2) The entries γn,n−2 are solely generated from the scalar
contributions, i.e., the transverse-traceless fluctuations do
not enter into these matrix elements. Technically, this

feature is associated with the Hessians O
(2)
n (cf. Table 2): the

matrix elements in the scalar sector start at R̄n−2 while the
transverse-traceless sector starts at R̄n−1.

(3) Notably, d = 4 is special. In this case the entries above
the diagonal, γnm with m ≥ n + 3 are generated from the
transverse-traceless sector only. All contributions from the
scalar sector are proportional to at least one power of CS and
thus vanish if d = 4.

(4) The matrix γ is a function of the (dimensionless) couplings
entering the Einstein-Hilbert action. Thus γ assigns a set
of anomalous dimensions to every point in the g-λ–plane.
Since γ is proportional to g, the magnitude of the anomalous
dimensions becomes small if g≪ 1. In particular, γ vanishes
at the Gaussian fixed point g∗ = λ∗ = 0 where one recovers
the classical scaling of the geometric operators.

4. SCALING ANALYSIS FOR THE REUTER
FIXED POINT

Starting from the general result (19), we now proceed and
discuss its implications for the quantum geometry associated
with Asymptotic Safety.

4.1. Relating the Scaling of Geometric
Operators and the RG Flow
By construction, the matrix γ assigns anomalous scaling
dimensions to any point in the g-λ plane. In order to characterize
the quantum geometry related to Asymptotic Safety, we study
the properties of this matrix at the Reuter fixed point found in
Appendix B [cf. Equation (64)]

d = 3 : g∗ = 0.198, λ∗ = 0.042, λ∗g
2
∗ = 1.65× 10−3,

d = 4 : g∗ = 0.911, λ∗ = 0.160, λ∗g∗ = 0.146.

(27)

From the definition of the beta function ∂tun = βun (ui) and the
fact that at a fixed point βun (u

∗
i ) = 0, it follows that the properties

of the RG flow in the vicinity of the fixed point are encoded in the
stability matrix B = [Bnm],

∂tun(k) =
∑

m

Bnm(um(k)− u∗m), Bnm ≡
∂βum

∂un

∣∣∣∣
u=u∗

. (28)

Let us denote the eigenvalues of B by λn so that spec(B) = {λn}.
Equation (28) then entails that eigendirections corresponding

Frontiers in Physics | www.frontiersin.org 5 June 2020 | Volume 8 | Article 187

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kurov and Saueressig Quantum Geometry of Asymptotic Safety

to eigenvalues with a negative (positive) real part attract (repel)
the RG flow when k is increased, i.e., they correspond to UV-
relevant (UV-irrelevant) directions. The number of UV-relevant
directions then gives the number of free parameters which are not
fixed by the asymptotic safety condition: along these directions
the RG flow automatically approaches the Reuter fixed point as
k → ∞.

Formally, one can then derive a relation between γ and the
stability matrix B [32, 70],

Bnm = −dnδnm + γnm, (29)

where dn = d − 2n is the canonical scaling dimension of the
operator On. This relation is remarkable in the following sense:
The construction of the (approximate) fixed point solution (27) is
based on the two operators O0 and O1, comprising the Einstein-
Hilbert truncation. The relation (29) then shows that the matrix
of anomalous dimensions carries information about the stability
properties of the Reuter fixed point beyond the set of operators
which are considered when solving theWetterich equation to locate
the fixed point. We illustrate this idea by studying the spectrum
of Bnm obtained at the fixed points (27). Before embarking on
this discussion, the following cautious remark is in order though.
While the composite operator formalism may allow to obtain
information on the stability properties of a fixed point beyond
the approximation used for the propagators, it is also conceivable
that the formalism becomes unreliable for eigenvalues λn with
n ≥ Nmax

3. Heuristically, this is suggested by the following
argument: when studying fixed point solutions in the f (R)-
approximation the propagators include powers of R̄ beyond the
linear terms captured by the Einstein-Hilbert action. These terms
give rise to additional contributions in the generating functional
(19) which may become increasingly important in assessing the
spectrum of B for eigenvalues with increasing numbers of n. This
picture is also suggested by our results in section 4.24.

This said, we now investigate the properties of the stability
matrix (29). Here we will resort to the following frameworks:

I The spectrum of B generated by the full generating functional
(21) including the contribution of zero-modes in the heat-
kernel for d = 4.

II In the conformally reduced approximation [71]. In this case,
the contribution of the tensor fluctuations is set to zero by

3Most conservatively, one may expect that the composite operator formalism

allows a qualitatively reliable determination of the stability properties of operators

containing two additional spacetime-derivatives on top of the terms included in

the propagators. This picture is readily confirmed by comparing the spectrum of B

obtained from the composite operator equation with the solution of the Wetterich

equation for actions of f (R)-type.
4A second effect which could lead to a stabilization of the spectrum of B at

the Reuter fixed points could come from improving the truncation of the early-

time expansion of the heat-kernel. There are two reasons to expect that these

contributions will not play a relevant role though. Firstly, f (R)-type solutions of

theWetterich equation [38–40, 58], where the spectrum of B has been shown to be

stable under the inclusion of further operators, essentially use the same truncation

of the heat-kernel. Secondly, the structure of the heat-kernel expansion shows that

the higher-order terms are highly suppressed compared to the ones included in our

computation [40].

hand, so that γ contains the contribution from the scalar trace
in (16) only.

The latter choice is motivated by the observation that this
framework gives rise to the spec(B) which is the most robust
under increasing the size of the matrix B. Clearly, one could
easily envision other approximations which could be applied
to the general result (21). Examples include the exclusion of
the zero-mode terms appearing in d = 4 or the “sparse
approximation” where only two lines above and below the
diagonal are non-trivial, i.e., the entries in the upper-triangular
sector which are solely created by expanding the curvature
terms contained in the gravitational propagators are eliminated.
In order to understand the working (and limitations) of the
conformal operator formalism, the frameworks I and II are
sufficient though. We checked by explicit computations that the
exclusion of zero-modes or evaluating the spectrum of B in the
sparse approximation leads to the same qualitative picture.

4.2. Spectral Properties of the Stability
Matrix
We first give the diagonal entries γnn within framework I.
This corresponds to the “single-operator approximation” of the
composite operator formalism employed in Pagani and Reuter
[19], and Houthoff et al. [32]. At the fixed points (27) one finds

d = 3 : γ ∗
nn = 0.653− 0.872n− 0.029n2,

d = 4 : γ ∗
nn = 2.299− 3.765n.

(30)

These relations exhibit two remarkable features. Firstly, the

structure of O
(2)
n (cf. Table 2) entails that the entries of γ are

second order polynomials in n. It is then remarkable that the
diagonal entries essentially follow a linear scaling law up to n ≈
30 (d = 3) or even exactly (d = 4). Secondly, Equation (30)
entails that the diagonal entries of the stability matrix B are
always negative. Thus the single-operator approximation predicts
that all eigendirections of the Reuter fixed point in the f (R)-
space are UV-attractive. It was noted in Houthoff et al. [32]
that this is actually in tension with results obtained from solving
the Wetterich equation on the same space. On this basis, it is
expected that the off-diagonal entries in γ play a crucial role in
determining the spectrum of B.

We now discuss the properties of the stability matrix evaluated
at the Reuter fixed points (27) generated from the functional
(21). In practice, we truncate B to square-matrices of size N
choosing N = 100 if not stated otherwise. The eigenvalues λn ∈
spec(B) satisfying

BVn = λn Vn, n = 1, · · · ,N, (31)

with Vn denoting the right-eigenvectors of B, are readily found
numerically. Since B is not symmetric there is no a priori reason
that the λn are real or that the left- and right-eigenvectors of
B agree.

The structure of B then entails that there is always one
eigenvalue which is independent of the matrix size. For
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TABLE 2 | Components of the Hessians entering the right-hand side of the

composite operator equation (5) and the Wetterich equation evaluated for the

Einstein-Hilbert truncation.

Operator Value of the matrix element

O
(2)
n

∣∣
hThT

− 1
2 R̄

n−1
[
n1 −

(
2n(d−2)
d(d−1) − 1

)
R̄
]

O
(2)
n

∣∣
ξξ

2n−d
2d R̄n

O
(2)
n

∣∣
hh

n(n−1)(d−1)2

d2
R̄n−212 + n(d2−(4n−1)(d−1)−1)

2d2
R̄n−11 +

(
d−2
4d − n(d−n−1)

d2

)
R̄n

O
(2)
n

∣∣
σσ

n(n−1)(d−1)
d

R̄n−2 12 + n(d−2n)
2d R̄n−1 1 − d−2n

2d R̄n

O
(2)
n

∣∣
σh

[
n(n−1)(d−1)

d
R̄n−21 + n(d−2n)

2d R̄n−1
][

d−1
d

12 − 1
d
R̄1

]1/2

Ŵ
(2)
k

∣∣
hThT

1
32πGk

[
1 − 23k + CT R̄

]

Ŵ
(2)
k

∣∣
ξξ

1
32πGk α

[
1 − 1

d
R̄+ α (CV R̄− 23k )

]

Ŵ
(2)
k

∣∣
hh

1
32πGk α d2

[
2ρ21 − α(d − 1)(d − 2) (1 − d

d−13k + CSR̄)
]

Ŵ
(2)
k

∣∣
σσ

1
32πGk α d

[
2(d − 1)1 − 2R̄− α

(
(d − 2)1 + 2d3k + Cσ R̄

)]

Ŵ
(2)
k

∣∣
σh

2ρ+(d−2)α
32πGk α d

[
1

(
d−1
d

1 − 1
d
R̄
)]1/2

Ŵ
(2)
k

∣∣
C̄TCT

[
1 − 1

d
R̄
]

Ŵ
(2)
k

∣∣
η̄η

2
d

[
(d − 1− ρ)1 − R̄

]

Rk

∣∣
hThT

1
32πGk

Rk

Rk

∣∣
ξξ

1
32πGk α

Rk

Rk

∣∣
hh

1
32πGk α d2

[
2ρ2 − α(d − 1)(d − 2)

]
Rk

Rk

∣∣
σσ

1
32πGk α d

[2(d − 1)− α (d − 2)] Rk

Rk

∣∣
σh

2ρ+(d−2)α
32πGk α d

{[
Pk

(
d−1
d
Pk − 1

d
R̄
)]1/2 −

[
1

(
d−1
d

1 − 1
d
R̄
)]1/2

}

Rk

∣∣
C̄TCT Rk

Rk

∣∣
η̄η

2
d
[d − 1− ρ] Rk

The fluctuations are expressed by the component fields (9) and (56) followed by the field

redefinitions (11) and (57). The matrix elements are labeled by the fluctuation fields, i.e.,

O
(2)
n |hT hT results from taking two functional derivatives of On with respect to hT . The

off-diagonal terms are symmetric, e.g., O
(2)
n |hσ = O

(2)
n |σh.

framework I its value is given by

d = 3 : λI1 = −2.347,

d = 4 : λI1 = −1.701.
(32)

The eigenvector V1 associated with these eigenvalues is aligned
with the volume operator O0 entailing that V =

∫
ddx

√
g is

actually an eigenoperator of Equation (16). In the conformally
reduced approximation (framework II) in d = 3, the
independence of λn on the matrix size N extends to a
second eigenvalue

d = 3 : λII1 = −2.828, λII2 = −0.967. (33)

The normalized eigenvector associated with λII1 is again given
by the volume operator O0 while the one associated with λII2 is
almost aligned withO1, i.e., V2 = (0.07, 0.995, · · · )T for N = 5.

The properties of spec(B) beyond these universal eigenvalues
obtained from the framework I in d = 4 and d = 3 as
well as in the conformally reduced approximation in d = 3
(framework II) are shown in Figures 1–3, respectively. The left
diagrams show the real part, Re(λn) of the stability matrices of
size N = 25 (left line, green dots), N = 50 (middle line,
orange dots), and N = 100 (right line, blue dots). The lines

clearly illustrate that increasing N adds additional eigenvalues
coming with both increasingly positive and increasingly negative
real parts. This feature is shared by all frameworks discussed
above. The middle diagrams illustrate the location of spec(B)
for N = 100 in the complex plane. While the patterns are
quite distinct, they share the existence of nodes where complex
eigenvalues are created which then move out into the complex
plane along distinguished lines. The right diagrams trace the first
two negative eigenvalues as a function of the matrix size N. In
all cases, the structure of B implies that the first eigenvalue is
independent of N while the other parts of the spectrum exhibit
an N-dependence. As illustrated in Figures 1, 2, the eigenvalues
λn, n ≥ 2 follow intriguing periodicity patterns. The average over
the second and third eigenvalues found in the matrices of size up
to N = 100 (for λ̄2) and N = 20 (for λ̄3, excluding values where
a complex eigenvalue has appeared in the interval spanned by λ1
and λ3) are

5

d = 3 : λI2 = −2.35± 0.08 λI3 = −0.61± 0.40

d = 4 : λI2 = −2.86± 0.61 λI3 = −6.36± 2.04
(34)

Carefully analyzing the N-dependence of spec(B) reveals that
there is a close relation between the distribution of eigenvalues
in the complex plane (middle diagrams) and the oscillations of
λ2 visible in the left diagrams: the oscillations are linked to the
appearance of new complex pairs of eigenvalues. Focusing on the
four-dimensional case where this feature is most prominent, one
finds that singling out the values of λ2 just before the occurrence
of the new pair of complex eigenvalues in spec(B) essentially
selects the λ2(N) constituting the maxima in the oscillations. The
resulting subset of eigenvalues is displayed in the inset shown in
Figure 1 and is significantly more stable than the full set. The
statistical analysis shows that in this case

d = 4 : λ̄
I,subset
2 = −2.61± 0.39, (35)

so that the fluctuations are reduced by a factor two as compared
to the full set 34.

At this stage, it is interesting to compare the averages 34 to
the eigenvalue spectrum obtained from the smallest non-trivial
stability matrix B with size N = 3:

d = 3 : λI2 = −2.35, λI2 = −1.26, λI3 = −0.20,

d = 4 : λI2 = −1.70, λI2 = −2.74, λI3 = −5.95.

(36)

Thus we conclude that small values of N already give a good
estimate of the (averaged) spectrum of B.

We close this section with a general remark on the structure
of spec(B). The stability matrix is not tied to the Reuter fixed
point but well-defined on the entire g-λ–plane: the generating
functional (21) assigns an infinite tower of eigenvalues to each

5Our errors are purely statistical, giving the standard deviation based on the data

set of eigenvalues. An estimate of the systematic errors is highly non-trivial and

will not be attempted in this work.
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FIGURE 1 | Spec(B) in d = 4 dimensions obtained within framework I. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram traces the value of the first two relevant eigenvalues as a function of the matrix size N.

FIGURE 2 | Spec(B) in d = 3 dimensions obtained within framework I. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram traces the value of the first two relevant eigenvalues as a function of the matrix size N.
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FIGURE 3 | Spec(B) in d = 3 dimensions obtained within framework II. The top-left diagram displays the real parts Re(λn) of the eigenvalues found for the stability

matrices of sizes N = 25 (left line, green dots), N = 50 (middle line, orange dots), and N = 100 (right line, blue dots). The top-right diagram shows the location of the

eigenvalues λn (N = 100) in the complex plane. The bottom diagram establishes that the first two relevant eigenvalues are independent of the matrix size N.

point in this plane. At the Gaussian fixed point, (λ∗, g∗) = (0, 0),
γ = 0 and spec(B) follows from classical power counting. The
strength of the quantum corrections to spec(B) is then controlled
by the values of g and λ. In particular, there is a region in
the vicinity of the Gaussian fixed point where these corrections
are small. This motivates defining “perturbative domains” P by
the condition that spec(B) is dominated by its classical part.
Concretely, we define

d = 3 :

{
P2 = {(λ, g)| spec(B) has 2 UV-relevant eigenvalues}

P3 = {(λ, g)| spec(B) has 3 UV-relevant eigenvalues}

d = 4 : P3 = {(λ, g)|spec(B) has 3 UV-relevant eigenvalues}.
(37)

Loosely speaking, the definitions of these domains corresponds
to imposing that the quantum corrections are not strong enough
to turn more than one classically UV-marginal (d = 4) or
UV-irrelevant (d = 3) eigendirection into a relevant one.

Figure 4 illustrates the shape of the domains P obtained from
the spectrum of the stability matrices with N = 10 (framework
I) in d = 3 (left panel) and d = 4 (right panel). In d = 3 the
regions P2 and P3 are shaded in blue and orange, respectively
while in d = 4P3 is shaded blue. At the boundary of these regions
a new complex pair of eigenvalues with negative real part appears
in the spectrum which then violates the definitions (37). Within
the present computation the Reuter fixed points (27) are located

outside of P3 which is consistent with the eigenvalue spectra
shown in Figures 1, 2.

The boundary of the domains P3 is very well-described by the
parametric curves

b =
g

(1− 2λ)p
(38)

with the best-fit parameters

d = 3 : b = 0.24, p = 2.94,

d = 4 : b = 0.69, p = 2.77.
(39)

Following the ideas [72, 73], advocated in the context of
gravity-matter systems, it is suggestive to interpret the right-
hand side of (38) as the “effective strength of the gravitational
fluctuations”. The values b then correspond to the critical
value of the effective gravitational coupling geff which separates
perturbative from non-perturbative behavior. Comparing the
eigenvalue distributions for the Reuter fixed points shown in
Figures 1–3 to a typical spectrum obtained in the perturbative
region (cf. Figure 5), it is clear that this phase transition is easily
visible in the scaling properties of the operatorsOn.

5. CONCLUSIONS AND OUTLOOK

In this work, we applied to composite operator formalism to
construct a completely analytic expression for the matrix γ
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FIGURE 4 | Spectral analysis for the matrices B of size N = 10 as a function of g and λ in d = 3 (left) and d = 4 (right). In the shaded region spec(B) is dominated by

its classical part. In d = 3 the blue and orange regions support two and three negative eigenvalues, respectively, while in d = 4 the blue region supports three negative

eigenvalues. The boundary to the white region is set by the appearance of a new, complex pair of eigenvalues coming with a negative real part. The Reuter fixed

points (27) are marked by the black dots and are located outside the shaded regions.

FIGURE 5 | Spectral analysis for the matrix B of size N = 100 evaluated at a generic point in the perturbative region, (λ,g) = (0, 0.1), in d = 4. As its characteristic

features, the eigenvalue spectrum is bounded from below and is controlled by the classical scaling dimensions dn.

encoding the anomalous scaling dimensions of the geometrical
operators On ≡

∫
ddx

√
gRn, n ∈ N, on a background

sphere. Our work constitutes the first instance where the
composite operator formalism for gravity is extended beyond
the single-operator approximation. Within the geometric gauge
adopted in our work, the anomalous dimensions originate from
the transverse-traceless and trace mode of the gravitational
fluctuations. The gauge-modes, corresponding to the vector
sector of the transverse-traceless decomposition, decouple. Our
derivation made two assumptions: firstly, we assumed that
the propagators of the fluctuation fields can be approximated
by the (gauge-fixed) Einstein-Hilbert action. Secondly, we
assumed that terms appearing in the early-time expansion
of the heat-kernel beyond the R2-level can be neglected. On

this basis, we derived the generating functional (21) from
which the matrix of anomalous dimensions (20) can be
generated efficiently.

As illustrated in section 4 the stability matrix B resulting
from the composite operator formalism allows to study the
stability properties of the Reuter fixed point. This novel
type of analysis provided the following structural insights on
Asymptotic Safety:

(1) The composite operator approach suggests that in d =
4 quantum fluctuations turn the classically marginal R2-
operator into a UV-relevant one. Similarly, the analysis in
d = 3 dimensions predicts that the classically irrelevant
R2-coupling becomes UV-relevant.
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(2) The eigenvectors of B do not coincide with the
geometric operators On. In general they are given
by linear combinations containing an infinite number
of terms.

(3) The non-diagonal terms γnm, n 6= m play a crucial role in
determining the spectrum of B. Within the assumptions made
in our derivation one furthermore finds that increasing the
size of B creates complex pairs of eigenvalues which wander
through the complex plain and lead to new (most likely
spurious) UV-relevant directions.

The analysis of the spectrum of the stability matrix as a function
of the dimensionless Newton coupling g and cosmological
constant λ reveals the existence of a domain where the
eigenvalues are dominated by classical power counting. The
resulting spectrum is then similar to the one encountered
when solving the Wetterich equation in the polynomial
f (R)-approximation which determined the eigenvalues of the
stability matrix for N = 6 [38, 39], N = 8 [40], N = 35 [44, 47],
and lately alsoN = 71 [58]. In particular, Falls et al. [58] reported
that for large values of n the real parts of the eigenvalues λn follow
an almost Gaussian behavior

λ
f (R)
n ≈ a n− b, a = 2.042± 0.002, b = 2.91± 0.05. (40)

where a and b are the best-fit values. As indicated in Figure 4,
the present computation places the Reuter fixed point outside of
this scaling domain, i.e., for sufficiently largematrices one obtains
new eigenvalues coming with both positive and negative real
parts. This makes it conceivable that the higher-order curvature
terms appearing in the propagators of the f (R)-approximation
play a crucial role in extending the domain such that it includes
the fixed point, thereby guaranteeing its predictive power.

Putting our results into a broader context, we note that, by
now, several classes of consistency tests related to the viability of
an RG fixed point for the asymptotic safety program have been
put forward. These include, e.g., the stability of the eigenvalue
spectrum of B when increasing the set of operators included
in Ŵk [38–40, 58], the concept of “apparent convergence”
[74], “effective universality” in gravity-matter systems [75],
or the “almost perturbative” nature of the fixed point [76].
Our results then provide key insights on how convergence of
fixed point properties could organize itself outside the almost
perturbative domain.

Arguably, the most intriguing result of our work is the spectral
analysis of the stability matrix showing the distributions of its
eigenvalues in the complex plane, c.f. the top-right diagrams
of Figures 1–3, 5. The resulting patterns are reminiscent of the
Lee-Yang theory for phase transitions [77]. This suggests two
immediate applications. First, the status of Asymptotic Safety
makes it conceivable that there are actually an infinite number
of Reuter-type fixed points arising from gravity and gravity-
matter systems. Understanding the characteristic features of
their eigenvalue distributions in terms of nodal points creating
complex eigenvalues may then constitute a powerful tool for
classifying these fixed points and giving a precise definition
to the notion of “gravity-dominated” renormalization group

fixed points in gravity-matter systems. Secondly, tracing the
eigenvalues λn along their Lee-Yang type orbits in the complex
plane could provide a novel tool for testing the convergence of the
eigenvalue distribution of B beyond the realm of a weak effective
gravitational coupling (38) where the spectrum is governed by
classical power counting. Clearly, it would be interesting to follow
up on these points in the future.

As a by-product our analysis also computed the diagonal
entries of the anomalous dimension matrix in geometric gauge
[cf. Equation (30)]. It is instructive to compare this result to the
value of the diagonal entries obtained in harmonic gauge [19, 32]

d = 3 : γ ∗
nn = 1.591− 1.505n− 0.118n2,

d = 4 : γ ∗
nn = 3.987− 4.733n− 0.095n2.

(41)

This identifies two features which are robust under a change
of gauge-fixing: in both cases, the values of γnn up to n ≃
O(10) follows a linear scaling law: in all cases the coefficients
multiplying the quadratic terms are small or even vanishing
when adopting geometric gauge in four dimensions. Secondly,
the entries in the stability matrix Bnn are negative definite for
all values n. At the same time, this comparison gives a first idea
of the accuracy to which the composite operator formalism in
the single-operator approximation is capable to determine the
anomalous scaling dimension of the geometric operators: most
likely, the results have the status of order-of-magnitude estimates:
they should not be interpreted as “precision results” which one
should try and reproduce to the given accuracy. Conceptually, it
would be interesting to understand (and eliminate) the gauge-
dependence of the result. Most likely, this will require imposing
on-shell conditions to the master Equation (5) following, e.g., the
ideas outlined in Benedetti [78] and Falls [79]. Along a different
line, it would be interesting to extend the results for the single-
operator approximation obtained in the present work to the
case where the gravitational propagators include all terms up to
order R4 in the curvature expansion. This computation would be
“complete” in the sense that it includes all terms which contribute
to the γ ∗

nn and therefore constitutes the “best” result attainable
in the composite operator framework. We leave these points to
future work though.

As one of its most intricate features, the composite operator
formalism employed in this work could act as a connector
between Asymptotic Safety [22, 23] and more geometric
approaches to quantum gravity based on causal dynamical
triangulations [80, 81] or random geometry. In d = 2
dimensions, a natural benchmark would involve a quantitative
comparison of scaling properties associated with the geodesic
length recently considered in Pagani and Reuter [19], Becker
and Pagani[29, 30], Becker et al. [31], and Houthoff et al.
[32] and exact computations for random discrete surfaces
in the absence of matter fields [21, 82] as well as rigorous
and numerical bounds arising from Liouville Gravity in the
presence of matter [83, 84]. On the renormalization group side
this will involve taking limits akin to Nink and Reuter [85].
Conversely, it is interesting to generalize the two-dimensional
constructions to higher dimensions. The connection between the
stability matrix B and the anomalous scaling dimension γ of
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geometric operators may then be an interesting link allowing to
probe Asymptotic Safety based on geometric constructions of a
quantum spacetime.
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APPENDICES

A. HEAT-KERNEL, MELLIN TRANSFORMS,
AND THRESHOLD FUNCTIONS

The calculation of γ requires the evaluation of the operator
traces appearing on the right-hand side of the composite
operator equation (5). This computation can be done effectively
by applying the early-time heat-kernel expansion for minimal
second-order differential operators 1 ≡ −ḡµνD̄µD̄ν . Following
the ideas advocated in Lauscher and Reuter [69] and Benedetti
et al. [61], we carry out a transverse-traceless decomposition
of the fluctuation fields. Paired with a maximally symmetric
background geometry, this decomposition ensures that all
differential operators in the trace arguments organize themselves
into Laplacians 1.

These traces can then be evaluated using the Seeley-deWitt
expansion of the heat-kernel on the d-sphere Sd:

Tri
[
e−s1

]∣∣
Sd

(42)

≃
1

(4πs)d/2

∫
ddx

√
ḡ
[
ai0 + ai1 s R̄+ ai2 s

2 R̄2 + . . .
]
.

Here i = {S,TV ,T} labels the type of field on which the Laplacian
acts and the dots represent higher-order curvature terms. The
relevant coefficients ain have been computed in Lauscher and
Reuter [69] and are listed in Table 1. Their derivation manifestly
uses the identities (8) in order to simplify the heat-kernel
expansion on a general manifold [87].

The expansion (42) is readily generalized to functions of the
Laplacian. Introducing the Q-functionals

Qn[W] ≡
1

Ŵ(n)

∫ ∞

0
dzzn−1W(z) , n > 0, Q0[W] = W(0),

(43)
one has [40]

Tri
[
W(1)

]
=

1

(4π)d/2

∫
ddx

√
ḡ
[
ai0 Qd/2[W]

+ ai1 Qd/2−1[W] R̄+ ai2 Qd/2−2[W] R̄2 + . . .
]
.

(44)

In order to write γ and the beta functions of the Einstein-
Hilbert truncation in a compact form, it is convenient to
express theQ-functionals in terms of the dimensionless threshold
functions [37]

8
p
n(w) ≡

1

Ŵ(n)

∫ ∞

0
dz zn−1 r(z)− zr′(z)

[z + r(z)+ w]p
,

8̃
p
n(w) ≡

1

Ŵ(n)

∫ ∞

0
dz zn−1 r(z)

[z + r(z)+ w]p
.

(45)

Here r(z) is the dimensionless profile function associated with the
scalar regulator Rk(z) = k2 r(z) introduced in Equation (50) and

the prime denotes a derivative with respect to the argument. For
later convenience we also define the combination

q
p
n(w) ≡ 8

p
n(w)−

1

2
ηN 8̃

p
n(w) . (46)

The arguments of the traces appearing in γ , Equation (16),
and the Einstein-Hilbert truncation studied in Appendix B have
a canoncial form. Defining Pk ≡ z + Rk(z), the identity

Qn

[
zq (Pk + wk2)−p Gk∂t

(
G−1
k

Rk
)]

= 2
Ŵ(n+ q)

Ŵ(n)
(k2)n+q+1−p q

p
n+q(w) (47)

allows to convert the corresponding Q-functionals into the
dimensionless threshold functions. For q = 0 this reduces to

Qn

[
(Pk + wk2)−p ∂tRk

]
= 2 (k2)n+1−p 8

p
n(w) ,

Qn

[
(Pk + wk2)−p Gk∂t

(
G−1
k

Rk
)]

= 2 (k2)n+1−p q
p
n(w) .

(48)

Notably, the second set of identities suffices to derive the beta
functions of the Einstein-Hilbert truncation while the evaluation
of γ requires the generalization (47).

For maximally symmetric backgrounds the background
curvature R̄ is covariantly constant. As a consequence, it has the
status of a parameter and can be included in the argument of
the threshold functions. Expansions in powers of R̄ can then be
constructed from the recursion relations

d

dw
8

p
n(w) = −p8

p+1
n (w) ,

d

dw
q
p
n(w) = −p q

p+1
n (w) .

(49)
Throughout the work, we specify the (scalar) regulator

Rk(1) = k2 r(1/k2) , (50)

to the Litim regulator [89, 90]. In this case the dimensionless
profile function r(z) is given by

r(z) = (1− z)2(1− z) , (51)

with2(x) the unit-step function. For this choice the integrals (45)
can be carried out analytically, yielding

8
p,Litim
n (w) =

1

Ŵ(n+ 1)

1

(1+ w)p
,

8̃
p,Litim
n (w) =

1

Ŵ(n+ 2)

1

(1+ w)p
. (52)

B. THE EINSTEIN-HILBERT TRUNCATION
IN GENERAL GAUGE

Structurally, the composite operator equation provides a map

from the couplings contained in the Hessian Ŵ
(2)
k

to the matrix
of anomalous dimensions γ . This map is independent of the RG
flow entailed by the Wetterich equation. In order to characterize
the geometry associated with the Reuter fixed point, the map
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has to be evaluated at the location of the fixed point. This
appendix then studies the flow of Ŵk in the Einstein-Hilbert
truncation supplemented by a general gauge-fixing term. The key
result is the position of the Reuter fixed point, Equation (27),
which underlies the spectral analysis of section 4. Our analysis
essentially follows [61, 62, 86], to which we refer for further
details.

The Einstein-Hilbert truncation approximates the effective
average action Ŵk[h; ḡ] by the Einstein-Hilbert action
ŴEH
k

[g] = 1
16πGk

∫
ddx

√
g (23k − R) supplemented by a

gauge-fixing functional Ŵ
gf

k
[h; ḡ] and the corresponding ghost

action Sghost[h, C̄,C; ḡ]

Ŵk[h; ḡ] ≃ ŴEH
k [g]+ Ŵ

gf

k
[h; ḡ]+ Sghost[h, C̄,C; ḡ] . (53)

This ansatz contains two scale-dependent couplings, Newton’s
coupling Gk and the cosmological constant 3k. In the present
analysis, we work with a generic gauge-fixing term

Ŵ
gf

k
[h; ḡ] =

1

32πGk α

∫
ddx

√
ḡḡµνFµFν ,

Fµ ≡ D̄νhµν −
1+ ρ

d
D̄µh , (54)

where α and ρ are free, dimensionless parameters. The harmonic
gauge used in Pagani [70] and Houthoff et al. [32] corresponds to
α = 1, ρ = d/2 − 1 while the present computation significantly
simplifies when adopting geometric gauge, setting ρ = 0 before
evoking the Landau limit α → 0. The ghost action associated
with (54) is

Sghost[h, C̄,C; ḡ] =

−
∫

ddx
√
ḡ C̄µ

[
D̄ρδµ

ν Dρ + D̄ρgρνD
µ

−
2(1+ ρ)

d
D̄µḡ

σρgρνDσ

]
Cν (55)

Following the strategy employed in the gravitational sector, c.f.
Equation (9), the fields C̄µ, C

µ are decomposed into their
transverse and longitudinal parts

Cµ = CTµ + D̄µ η , D̄µC
Tµ = 0 , (56)

followed by a rescaling

11/2 η 7→ η . (57)

The part of the ghost action quadratic in the fluctuation fields
then becomes

Sghost,quad =
∫

ddx
√
ḡ

{
C̄T

µ

[
1 −

1

d
R̄

]
CTµ

+ 2η̄

[
d − 1− β

d
1 −

1

d
R̄

]
η

}
. (58)

We now proceed by constructing the non-zero entries of

the Hessian Ŵ
(2)
k
. These are obtained by expanding Ŵk to

second order in the fluctuation fields, substituting the transverse
traceless decomposition (9) and (56), and implementing the field
redefinitions (11) and (57). Subsequently taking two functional
variations with respect to the fluctuation fields then leads to the
matrix elements listed in the middle block of Table 2.

The final ingredient entering the right-hand side of the
Wetterich equation is the regulator Rk. We generate this matrix
from the substitution rule

1 7→ Pk ≡ 1 + Rk(1) , (59)

dressing each Laplacian by a scalar regulator Rk(1). The latter
then provides a mass for fluctuation modes with momentum
p2 . k2. In the nomenclature introduced in Codello et al. [40]
this corresponds to choosing a type I regulator. The non-zero
entries ofRk generated in this way are listed in the bottom block
of Table 2.

We now have all the ingredients to compute the beta
functions resulting from the Wetterich equation projected onto
the Einstein-Hilbert action. Adopting the geometric gauge ρ =
0,α → 0 used in the main section, all traces appearing in the
equation simplify to the Q-functionals evaluated in Equation
(48). Defining

∂tgk = βg(g,λk; d) ≡ (d − 2+ ηN)gk , ∂tλk ≡ βλ(g,λk; d)
(60)

where the anomalous dimension of Newton’s coupling is
parameterized by Reuter [37]

ηN(g, λ) =
gB1(λ)

1− gB2(λ)
, (61)

the explicit computation yields

βλ = (ηN − 2)λ +
g

(4π)d/2−1

[
(d − 2)(d + 1)q1d/2(wT)

+2q1d/2(wS)+ 2dq1d/2(0)− 4d81
d/2(0)

]
,

(62)

and

B1 =
1

(4π)d/2−1

[ (d + 1)(d + 2)(d − 5)

3(d − 1)
81

d/2−1(wT)

−
2(d − 2)(d + 1)(d2 − 3d + 4)

d(d − 1)
82

d/2(wT)

+
2

3
81

d/2−1(wS)−
2(d − 4)

d − 1
82

d/2(wS)

−
4(d2 − d + 1)

d(d − 1)
82

d/2(0)−
2(d2 − 6)

3d
81

d/2−1(0)
]
,

B2 = −
1

2(4π)d/2−1

[ (d + 1)(d + 2)(d − 5)

3(d − 1)
8̃1

d/2−1(wT)

−
2(d − 2)(d + 1)(d2 − 3d + 4)

d(d − 1)
8̃2

d/2(wT)

+
2

3
8̃1

d/2−1(wS)−
2(d − 4)

d − 1
8̃2

d/2(wS)

+
4(d2 − d + 1)

d(d − 1)
8̃2

d/2(0)+
2(d2 − 6)

3d
8̃1

d/2−1(0)
]
.

(63)
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Here the threshold functions 8
p
n, 8̃

p
n and q

p
n(w) are defined in

Equations (45) and (46) and their arguments wT and wS have
been introduced in (23).

It is now straightforward to localize the Reuter
fixed point by determining the roots of the beta
functions (60) numerically. For the Litim regulator (51)
this yields

Reuter fixed point: d = 3 : g∗ = 0.198 , λ∗ = 0.042 ,

Reuter fixed point: d = 4 : g∗ = 0.911 , λ∗ = 0.160 .

(64)

Analyzing the stability properties of the RG flow in its vicinity, it
is found that the fixed point constitutes a UV attractor, with the
eigenvalues of the stability matrix given by

Reuter fixed point: d = 3 : λEH1,2 = −1.658± 0.546i ,

Reuter fixed point: d = 4 : λEH1,2 = −2.132± 2.697i .

(65)

These results agree with the ones found in Benedetti et
al. [61] at the 10% level. The difference can be traced back
to the two distinct regularization procedures employed in the
computations, so that the findings are in qualitative agreement.
This completes our analysis of the Einstein-Hilbert truncation
underlying the scaling analysis in the main part of this work.

C. MATRIX-ELEMENTS OF GEOMETRIC
OPERATORS

The expansions of On and Ŵk in the fluctuation fields are
readily computed using the xPert extension [88] of xAct. For
completeness, the relevant expressions are listed in Table 2. The
d-dependent coefficients Ci multiplying the curvature terms in

Ŵ
(2)
k

are

CT =
d2 − 3d + 4

d(d − 1)
, CV =

d − 2

d
, CS =

d − 4

2(d − 1)
,

Cσ = −(d − 2) . (66)

Frontiers in Physics | www.frontiersin.org 16 June 2020 | Volume 8 | Article 187

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	On Characterizing the Quantum Geometry Underlying Asymptotic Safety
	1. Introduction
	2. Computational Framework and Setup
	3. Computing the Matrix of Anomalous Dimensions
	4. Scaling Analysis for the Reuter Fixed Point
	4.1. Relating the Scaling of Geometric Operators and the RG Flow
	4.2. Spectral Properties of the Stability Matrix

	5. Conclusions and Outlook
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendices
	A. Heat-kernel, Mellin Transforms, and Threshold functions
	B. The Einstein-Hilbert truncation in general gauge
	C. Matrix-elements of geometric operators


