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Recently, graph embedding techniques have been widely used in the analysis of various

networks, but most of the existing embedding methods omit the network dynamics and

the multiplicity of edges, so it is difficult to accurately describe the detailed characteristics

of the transaction networks. Ethereum is a blockchain-based platform supporting

smart contracts. The open nature of blockchain makes the transaction data on

Ethereum completely public and also brings unprecedented opportunities for transaction

network analysis. By taking the realistic rules and features of transaction networks

into consideration, we first model the Ethereum transaction network as a Temporal

Weighted Multidigraph (TWMDG) where each node is a unique Ethereum account and

each edge represents a transaction weighted by amount and assigned a timestamp.

We then define the problem of Temporal Weighted Multidigraph Embedding (T-EDGE) by

incorporating both temporal and weighted information of the edges, the purpose being

to capture more comprehensive properties of dynamic transaction networks. To evaluate

the effectiveness of the proposed embedding method, we conduct experiments of

node classification on real-world transaction data collected from Ethereum. Experimental

results demonstrate that T-EDGE outperforms baseline embedding methods, indicating

that time-dependent walks and the multiplicity characteristic of edges are informative

and essential for time-sensitive transaction networks.

Keywords: network embedding, ethereum, machine learning, temporal network, transaction network

1. INTRODUCTION

The network is a kind of data form that is often used to describe the relationship between objects.
The past decade has witnessed an explosive growth in network data, which have been used to
present information in various areas, such as social networks, biological networks, computer
networks, and financial transaction networks [1]. Analysis of large-scale networks has attracted
increasing attention from both academia and industry. With the rapid development of machine
learning technology, the question of how to analyze the data effectively for large-scale complex
networks is becoming a hot topic in the field of artificial intelligence.

Financial transaction networks are widespread in the real world. However, there have been
relatively few analytical studies on financial transaction networks because the transaction data
are usually private for the sake of security and interest. Fortunately, the recent emergence of
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blockchain technology makes transaction data mining more
feasible and reliable. Blockchain is a new technology that is
described as an innovative application mode of distributed
data storage, peer-to-peer transmission, consensus mechanisms,
encryption algorithms, and other computer technologies in the
Internet era [2, 3]. Generally speaking, blockchain is a new
distributed ledger, and the transaction data is stored on the chain
in chronological order. Ethereum [4] is the largest blockchain
platform that supports smart contracts. The Ethereum system
introduces the concept of account and allocates storage space
for recording account balance, transaction time, codes, etc.
Compared with a traditional database, blockchain technology
naturally has the characteristics of traceability, anti-tampering,
and publicity. The openness of public blockchain provides
favorable conditions for transaction data mining [5].

In fact, cryptocurrency and blockchain are highly coupled,
since blockchain technology is born from Bitcoin. The study of
cryptocurrency transaction networks has very high application
value and there have already been some studies, including graph
analysis, price prediction, portfolio management, anti-market
manipulation, ponzi scheme detection, and so on [6–12]. In 2013,
Ron et al. [6] described Bitcoin schemes and investigated a large
number of statistical properties of the full Bitcoin transaction
network. By analyzing the subgraph of the largest transactions,
they revealed several characteristics in the Bitcoin transaction
graph: long chains, fork-merge patterns with self-loops, keeping
bitcoins in “savings accounts,” and binary tree-like distributions.
In 2017, Jiang and Liang [7] presented a deterministic deep
reinforcement learning method for cryptocurrency portfolio
management. The trading algorithm takes the historical prices
of a set of financial assets as input and outputs the portfolio
weights of the set. In 2018, Liang et al. [8] traced the properties
of three representative cryptocurrencies, Bitcoin, Ethereum,
and Namecoin, over time and characterized their dynamics by
constructing a monthly transaction network.

Since it is extremely time-consuming to process the whole
blockchain transaction network, it is necessary to find an
effective and efficient way to analyze Ethereum transaction
data. As we know, the performance of machine learning tasks
depends to a large extent on the selection of data features,
so a key problem is how to reasonably represent the feature
information in large-scale transaction networks. In addition,
using a machine learning-based algorithm often requires feature
information for samples, but the account profiles of the
transaction networks are often difficult to obtain. The implicit
characteristics of the accounts can be mined by means of graph
embedding algorithms.

Graph embedding is an effective method for representing
node features in a low-dimensional space for network analysis
and downstream machine learning tasks [13]. Graph embedding
algorithms can effectively reduce the data dimension of the
transaction network and transform the large-scale and sparse
high-dimensional one-hot node vectors into dense low-
dimensional node vectors. Previous graph embedding research
has been conducted in domains, such as social networks,
language networks, citation networks, collaboration networks,
webpage networks, biological networks, communication

networks, and traffic networks [13]. This implies that existing
graph embedding techniques may not be suitable for a
transaction network. Using the traditional network embedding
algorithm for transaction network analysis will present the
following challenges. New transactions are generated over time,
but existing methods ignore the multiplicity and dynamics
of transactions. Random walks in transaction networks are
meaningful and sequential, but existing methods based on social
networks, like DeepWalk and node2vec, do not incorporate
temporal information.

The random walk mechanism has been widely proved to
be an effective technique for measuring the local similarity
of networks for a variety of domains [14]. Among various
graph embedding methods, a series of random-walk based
approaches have been proposed for learning a mapping function
from an original graph to a low-dimensional vector space
by maximizing the likelihood of co-occurrence of neighbor
nodes. For the traditional graph embedding method, DeepWalk
[15], it was verified through experiments that nodes in the
random walk sequence and words in the document all follow
the power-law, so word2vec [16] was applied to learn node
representations. Similar to DeepWalk, node2vec [17] introduced
biased random walks, which smoothly search between breadth-
first sampling and depth-first sampling strategies. Recently, to
better extract temporal information from dynamic networks,
Nguyen et al. [18] proposed a general framework called
Continuous-Time Dynamic Network Embeddings (CTDNE) to
incorporate temporal dependencies into existing random walk-
based network embedding models. However, these previous
methods omit the network dynamics and the multiplicity of
edges, so it is difficult to accurately describe the detailed
characteristics of the transaction networks.

To this end, to capture more comprehensive properties of
dynamic transaction networks, we propose a novel framework
namedTemporalWEightedMultiDiGraph Embedding (T-EDGE)
for the Ethereum transaction network. Themain contributions of
our paper are as follows:

• To the best of our knowledge, this is the first work
to understand Ethereum transaction records via graph
embedding, aiming to capture the non-negligible temporal
properties and important money-transfer tendencies of time-
sensitive transaction networks.

• We propose a novel graph embedding method called
Temporal Weighted Multidigraph Embedding (T-EDGE),
which incorporates transaction information from both
time and amount domains, and experiments on realistic
Ethereum data demonstrate its superiority over existing
methods.

• To evaluate our proposed algorithm, we consider an
important and practical machine learning task, namely node
classification with transaction records of phishing and non-
phishing accounts collected from Ethereum. The dataset can
be accessed on XBlock (xblock.pro).

The remainder of this paper is organized as follows. First,
section 2 demonstrates our workflow for Ethereum transaction
network analysis. Then, section 3 describes how we model
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the transaction records as a temporal weighted multidigraph.
Then, we introduce our proposed network embedding algorithm,
T-EDGE, in section 4 and evaluate our algorithm by conducting
node classification in section 5. Finally, section 6 concludes
the paper.

2. FRAMEWORK

In this section, we describe the workflow of Ethereum
transaction network analysis presented in this work. As
Figure 1 shows, the four main steps of the proposed
framework for Ethereum transaction network analysis are
data acquisition, network construction, graph embedding, and
downstream tasks.

(a) Data acquisition. The data collection is the basis of
transaction network analysis. Thanks to the openness of
blockchain, researchers are able to autonomously access
Ethereum transaction records. Through the API of Etherscan
(etherscan.io), a block explorer and analytics platform for
Ethereum, we can easily obtain the historical transaction data
of the target account. As the size of the total transaction
records is extremely large, we adopt the K-order subgraph
sampling method [19], to obtain the local structure of the
target accounts.

(b) Network construction. This step abstracts the original
transaction record into a network structure for further
analysis. In most existing studies on blockchain transaction
networks, the transaction networks are constructed as
simple graphs, that is, multiple transactions between a
pair of accounts are merged into one edge, thus ignoring
the multiplicity and dynamics of transactions between
accounts. Differently from prior work, in this work, we
model the multiple interactions between accounts as a
Temporal Weighted Multidigraph [19] to facilitate a more
comprehensive analysis of transaction behaviors.

(c) Graph embedding. In the framework of Ethereum
transaction network analysis, the role of network
embedding is to mine the implicit features of accounts
in the transaction network and reduce the transaction
data dimension. In order to learn the meaningful
node representation vectors in the dynamic transaction
network, we propose an improved embedding algorithm
called Temporal Weighted Multidigraph Embedding
(T-EDGE) based on temporal random walk. T-EDGE
aims to capture the time and amount information
that cannot be ignored in the Ethereum transaction
network.

(d) Downstream tasks. We evaluate our model by conducting
experiments on a typical machine learning task, namely node
classification. Good performance of the downstream tasks
reflects the effectiveness of embedding methods. Besides,
analytical applications can be regarded as the ultimate
goal of the Ethereum transaction network embedding.
In this paper, we incorporate two current hot topics—
cryptocurrency transaction analysis and machine learning,
and use machine learning technology to help us make

more accurate predictions about the future of the Ethereum
transaction network.

3. ETHEREUM TRANSACTION NETWORK

Being the largest public blockchain-based platform that
supports smart contracts, Ethereum introduces the concept of
account to facilitate the implementation of smart contracts.
An Ethereum account is formally an address but adds storage
space for recording account balances, transactions, codes,
etc. Ethereum addresses are composed of the prefix “0x,”
a common identifier for hexadecimal, concatenated with
the rightmost 20 bytes of the public key. One example
is: “0x00b2ed34791c97206943314ee9cbd9530762a320.” The
corresponding cryptocurrency on Ethereum, known as Ether,
can be transferred between accounts and used to compensate
participant mining nodes.

The Ethereum blockchain consists of infinite linked blocks,
which can be viewed as data-packages, including a series
of transactions and some other information. In detail, the
transaction data packages obtained from the Etherscan website
are as followed: the TxHash field is a unique 66-character
identifier of a transaction, the Value field is the value being
transacted in Ether, and the Timestamp field is the time
at which a transaction is mined. Besides, the From and
To fields are the sending party and receiving party of a
transaction, respectively.

In this section, we abstract the original transaction record
as a Temporal Weighted Multidigraph (TWMDG). Figure 2
is a microcosm of transaction activities on Ethereum. In
prior work on blockchain transaction network analysis,
the transaction network was constructed as a simple
network, that is, multiple transactions between nodes
were accumulated as one edge. The multiplicity and
dynamics of transactions between accounts were ignored.
Therefore, we adopt Temporal Weighted Multidigraph
(TWMDG) to represent Ether transfer between accounts
more comprehensively.

Based on collected four-tuples (From, To, Value, Timestamp),
we can model the Ethereum transaction records as a Temporal
Weighted Multidigraph G = (V ,E), where each node represents
a unique account and each edge represents a unique Ether
transfer transaction. In such a graph, V is the set of nodes and
E is the set of edges. Each edge is unique and is represented as
e = (u, v,w, t), where u is the source node, v is the target node, w
is the weight value and t is the timestamp.

4. NETWORK EMBEDDING

In the analysis of the Ethereum transaction network, our goal is
to learn an embedding vector for each node, the purpose being
to mine the implicit characteristics of nodes in the transaction
network and incorporate the time and amount information of
the transaction network into the node vector. For the network
model TWMDGbuilt in the previous section, this paper proposes
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FIGURE 1 | The architecture of the proposed framework for network analysis of Ethereum.

FIGURE 2 | Schematic of the Ethereum transaction network. Each node represents an Ethereum account. Each edge represents a transaction, with a timestamp t

and amount value w (in Ether) attached to it and indexed in increasing order of t.

an improved network embedding algorithm based on a random
walk. We now define the specific problem as follows.

Temporal WEighted MultiDiGraph Embedding (T-EDGE):
Given a temporal weighted multidigraph G = (V ,E), let V be the
set of nodes and E be the set of edges. Each edge is unique and is
represented as e = (u, v, t,w), where u is the source node, v is the
target node, t is the timestamp, and w is the weight (Specifically,
w is the amount value of a transaction in Ethereum transaction
network). We define the following mapping functions: for ∀e ∈
E, Src(e) = u, Dst(e) = v. Function W(e) = w maps an
edge to its weight, and function T(e) = t maps an edge to
its timestamp. Our principal goal is to learn an embedding
function 8 :V → R

d (d ≪ |V|) that preserves the original
network information.

The learned representations aim to include node
similarity as well as temporal and weighting properties
specifically for financial transaction networks, thus enhancing
predictive performance on downstream machine learning
tasks. The proposed method, T-EDGE, learns more
appropriate and meaningful dynamic node representations
using a general embedding framework consisting of two
main parts:

• The first part is the temporal walk generator with temporal
restriction and walking strategies.

• The second part is the update process based on skip-gram,
and the parameters are updated by a Stochastic Gradient
Descent algorithm.
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4.1. Random Walk
For scalable network representation learning, the random walk
mechanism has been widely proven to be an effective technique
for capturing structural relationships between nodes [15]. We
employ a temporal walk for transaction networks by considering
temporal dependencies and multiplicity of edges. This kind of
random walk sequence contains the practical meaning of money
flow in transaction networks.

In a temporal weighted multidigraph, the temporal walk is
defined as the sequential incremental path from the beginning
node to the end node. Such a temporal walk is represented as
a sequence of l nodes walkn = {v1, v2, ..., vl} together with a
sequence of (l−1) edgeswalke = {e1, e2, ..., el−1}, where Src(ei) =
vi, Dst(ei) = vi+1 (1 ≤ i ≤ (l − 1)), and T(ei) ≤ T(ei+1)
(1 ≤ i ≤ (l − 2)). This temporal restriction is a novel idea
designed for the temporal walk.

Consider a temporal walk that just traversed edge ei−1 and
is now stopping at node vi at time t = T(ei−1). The next node
vi+1 of the random walk is decided by selecting a temporally
valid edge ei. We define the temporal edge neighborhood for a
node u as Nt(u) = {e | Src(e) = u,T(e) ≥ t}. Let η− :R →
Z
+ to be a function that maps the timestamps of edges to

a descending ranking, and let η+ :R → Z
+ be a function

that maps the timestamps of edges to an ascending ranking.
Here are our walking strategies used in Ethereum transaction
network embedding.

4.1.1. T-EDGE

In the temporal weighted multidigraphs discussed here, a
random walk generator of T-EDGE samples uniformly from the
neighbors. All candidate edges in Nt have the same probability
of being selected as the next edge of the random walk. The
expression of the probability is

P(e) =
1

|Nt(vi)|
. (1)

4.1.2. T-EDGE (TBS)

TBS refers to Temporal Biased Sampling. For financial
transaction networks, the similarity between accounts is time-
dependent and dynamic. Naturally, there is a strong transaction
relationship between accounts with frequent transactions. The
probability of selecting each edge e ∈ Nt(vi) can be given as:

P(e) = PTBS(e) =
η−(T(e))∑

e′∈Nt(vi)
η−(T(e′))

. (2)

4.1.3. T-EDGE (WBS)

WBS refers to Weighted Biased Sampling. The weight value
of each transaction indicates the significance of interactions
between the two accounts involved. The transaction amount can
reflect the importance of transactions between accounts and then
reflect the degree of correlation between accounts. In most cases,
there is a strong similarity between accounts with a large amount
of transactions. The probability of each edge e ∈ Nt(vi) being
selected is

TABLE 1 | Four types of T-EDGE variation for the Ethereum transaction network.

Algorithms
Time domain Amount domain

Unbiased Biased Unbiased Biased

T-EDGE
√ √

T-EDGE (TBS)
√ √

T-EDGE (WBS)
√ √

T-EDGE (TBS+WBS)
√ √

P(e) = PWBS(e) =
η+(W(e))∑

e′∈Nt(vi)
η+(W(e′))

. (3)

4.1.4. T-EDGE (TBS+WBS)

We combine the aforementioned sampling probabilities
considering information from both temporal and weighted
domains by

PTBS+WBS(e) = PTBS(e)
αPWBS(e)

(1−α), (0 ≤ α ≤ 1), (4)

P(e) =
PTBS+WBS(e)∑

e′∈Nt(vi)
PTBS+WBS(e′)

, (5)

for ∀e ∈ Nt(vi). Here, α = 0.5 is the default value for balancing
between TBS (time domain) and WBS (amount domain).

When ending up with a leaf node, we return the walk
immediately. This setting is just the same as in the methods used
for comparison, DeepWalk and node2vec.

Note that T-EDGE can be regarded as a specific version
of DeepWalk for temporal and directed multigraphs like
the transaction networks. As Table 1 shows, all candidate
edges (temporal edge neighborhood) are equally likely to be
selected by T-EDGE. T-EDGE (TBS) and T-EDGE (WBS)
denote adding sampling preference on the time domain and
the amount domain, respectively. T-EDGE (TBS+WBS) means
adding sampling preference on both the time domain and the
amount domain.

4.2. Learning Process
In the previous subsection, we described how to get the sampling
sequence of temporal walk related to time and weight. In this
part, we will formally describe the process of learning node
vectors using the skip-gram model [16, 20].

The essence of the skip-gram model is a three-layer neural
network model, including an input layer, hidden layer, and
output layer. First, we train a neural network model based on the
sampling walk sequences, but the purpose of training is not to use
the model to predict the test set but to use the parameters learned
from the model, namely the hidden layer parameters, as our node
vectors. Then, by making an analogy between a natural language
sentence and a truncated random walk sequence (as shown in
Table 2), node representations are learned by maximizing the
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TABLE 2 | Comparison between language model word2vec and graph model

Deepwalk.

Research domain Example Input Output

Natural language

processing

word2vec Sequence of word

(sentences)

Word

vectors

Graph representation

learning

deepwalk Sequence of nodes

(random walks)

Node

vectors

probability of observing the neighborhood of a node conditioned
on its embedding. This cost function is as follows:

min
8

−Pr({vi−k, ..., vi+k}\vi|8(vi)), (6)

where k is the window size. According to the conditional
independent assumption in the skip-gram model, we have:

Pr({vi−k, ..., vi+k}\vi|8(vi)) =
i+k∏

j=i−k,j 6=i

Pr(vj|8(vi)). (7)

Similar to DeepWalk, we employ the “hierarchical softmax”
technique [15] to accelerate the computation of Pr(vj|8(vi)).
We first apportion |V| nodes to the leaf nodes of a Huffman
Tree and then transform the computation of Pr(vj|8(vi)) into
computing the probability of walking randomly from the root of
the Huffman Tree with inputting node vi and outputting node vj.
The probability is

Pr(vj|8(vi)) =
⌈log |V|⌉∏

t=1

Pr(bt|8(vi)), (8)

where bt is from {b0 = root, b1, ..., b⌈log |V|⌉ = vj}. We thenmodel
Pr(bt|8(vi) with a sigmoid function:

Pr(bt|8(vi) =
1

1+ exp(−8(vi) · 8(bt−1))
, (9)

where 8(bt−1) is the representation of bt ’s parent node in
the Huffman tree. The skip-gram model then uses a back-
propagation algorithm and Stochastic Gradient Descent to
update the weight.

Random walk-based graph embedding methods have been
proved to be scalable and effective for large graphs. The time
complexity of the temporal walk part and the skip-gram learning
procedure isO(r|V|L) andO(|V| log |V|), respectively, where |V|
is the number of nodes, r denotes walks per node, and L refers to
the length of random walk.

5. EXPERIMENTS AND RESULTS

Downstream tasks, such as node classification are commonly
considered for the verification of graph embedding methods. To
evaluate the performance of the proposed T-EDGE algorithms,

FIGURE 3 | Schematic illustration of a directed K-order subgraph for phishing

node-classification.

we conduct node classification experiments to classify the
labeled phishing accounts and unlabeled accounts (treated as
non-phishing accounts) on Ethereum. The better performance
of classification demonstrates that our T-EDGE algorithms
outperform baseline embedding methods, and at the same time,
node classification for detecting phishing accounts on Ethereum
is also of great value. A phishing scam is a new type of cybercrime
that arises along with the emergence of online business [21]. It is
reported to account for more than 50% of all cyber-crimes on
Ethereum since 2017 [22].

5.1. Data Acquisition
To train our node classification model using supervised learning,
we obtain 445 phishing nodes labeled by Etherscan and the
same number of randomly selected unlabeled nodes as our
objective nodes.

K-order sampling is an effective method for obtaining the
local information of objective accounts [19]. Centered by each
objective account, we obtain a directed K-order subgraph, where
K-in and K-out are two parameters for controlling the depth of
sampling inward and outward from the center, respectively. As
shown in Figure 3, we make an assumption that for a typical
Ether transfer flow centered on a phishing node, the previous
node of the phishing node may be a victim, and the next one
to three nodes may be bridge nodes with money-laundering
behaviors. Therefore, we collect subgraphs with K-in = 1, K-out
= 3 for each of the 890 objective nodes and then splice them into
a large-scale network with 86,623 nodes.

5.2. Setting
In the experiments, we compare the proposed T-EDGE
algorithms with two baseline random walk-based graph
embedding methods:

• DeepWalk is the pioneering work in employing randomwalks
to learn a latent space representation of social interactions.
Borrowing the idea of word2vec, the learned representation
encodes community structure so that it can be easily exploited
by standard classification methods [15].
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FIGURE 4 | Node classification performance with different training ratios.

• Node2vec further exploits a flexible neighborhood sampling
strategy, i.e., Breadth-First Sampling (BFS) and Depth-First
Sampling (DFS), with parameters p and q to capture both local
and global structure [17].

To ensure a fair comparison, we implement the directed versions
of DeepWalk and node2vec using OpenNE (an open-source
package for network embedding, github.com/thunlp/openne).
For these randomwalk-based embedding methods, we set several
hyperparameters: the node embedding dimension d = 128, the
size of window k = 4, the length of walk l = 10, and walks
per node r = 4. For node2vec, we grid search over p, q ∈
{0.50, 1.0, 1.5, 2.0} according to [17]. For DeepWalk, we set p =
q = 1.0, as it is a special case of node2vec. We implement the
skip-gram model by using a Python library named Gensim [23],
a framework for fast Vector Space Modeling.

5.3. Metrics
To make a comprehensive evaluation, we randomly select {50%,
60%, 70%, 80%} of the objective nodes as a training set and
the remaining objective nodes as the test set, respectively. We
train a classic binary classifier, namely, a Support VectorMachine
(SVM), with the training set to classify the samples of the test set.
Note that we use 5-fold cross-validation to train the classifier and
evaluate it on the test set.

For a binary classification task based on a supervised learning
framework, it can be divided into the following four cases
according to the actual labels of the samples and the prediction
results of the classifier.

• True Positive (TP): Samples whose labels are positive and are
also predicted to be positive.

• True Negative (TN): Samples whose labels are positive but are
predicted to be negative.

• False Positive (FP): Samples whose labels are negative but are
predicted to be positive.

• False Negative (FN): Samples whose labels are negative and are
also predicted to be positive.

In classification tasks, micro-F1 (Mi-F1) and macro-F1 (Ma-
F1) are generally used to evaluate classification accuracy. First,
we have

• precision: TP
TP+FP ,

• recall: TP
TP+FN .

F1-score is an indicator used to measure the accuracy of the
binary classification model. The calculation formula is

2×
precision× recall

precision+ recall
. (10)

Macro-F1 refers to calculating the total precision and recall of all
categories for F1-score, while Micro-F1 refers to the calculation
of F1-score after calculating the average of precision and recall for
each category.

5.4. Results
The results of micro-F1 (Mi-F1) and macro-F1 (Ma-F1) are
shown in Figure 4. According to Figure 4, we have the
following observations:

1. Our proposed methods T-EDGE, T-EDGE (TBS), T-
EDGE (WBS), and T-EDGE (TBS+WBS) overwhelmingly
outperform DeepWalk and node2vec;

2. Both T-EDGE (TBS) and T-EDGE (WBS) attain better
performance than T-EDGE, in which the random walk
generator has uniform probability;

3. Both T-EDGE (TBS) and T-EDGE (WBS) perform better
than T-EDGE (TBS+WBS), which considers both temporal
and amount information with parameter α = 0.5.

All in all, our proposed methods learn effective node
representations incorporating rich information, which does
help us get better performance in the classification task. The
result also indicates that time-dependent walks and edge
information are essential in transaction networks.

5.5. Parameter Analysis of α

Furthermore, the third observation mentioned above inspires
us to analyze the coupling parameter α. Larger α means more
time-domain information is considered in the random walk,
while smaller α means more amount domain information is
considered. Figure 5 compares the classification performance
on the parameter α with different training ratios in terms of
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FIGURE 5 | Classification performance on the parameter α with different training ratios.

precision, recall, and F1-score. We find that α = 0.8 is a poor
choice, but there is no single α that is a clear winner. Nevertheless,
we can observe that α ∈ [0.2, 0.3] and α = 1 are relatively better
choices. This result indicates that it is better to consider or favor
a single strategy than to consider both strategies equally at the
same time.

6. CONCLUSION

In this work, we proposed a novel framework for Ethereum
analysis via network embedding. Particularly, we constructed a
temporal weighted multidigraph to retain information as much
as possible and present a graph embedding method called T-
EDGE that incorporates temporal and weighted information
of financial transaction networks into node embeddings.
We implemented the proposed and two baseline embedding
methods on a realistic Ethereum network for a predictive
task with practical relevance, namely phishing/non-phishing
node classification. Experimental results demonstrated the
effectiveness of the proposed T-EDGE embedding method while
indicating that a temporal weighted multidigraph can more
comprehensively represent the temporal and financial properties
of dynamic transaction networks. Moreover, this work opens
up research on graph embedding in a new domain, financial
transaction networks. Traditional random walk-based methods
can be extended to a temporal version with temporal walks and
edge sampling strategies. For future work, we could use the
proposed embedding method to investigate more applications

of Ethereum or extend the current framework to analyze other
large-scale temporal or domain-dependent networks.
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