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Fluorescence of the negatively charged nitrogen-vacancy (NV−) center of diamond

is sensitive to external electromagnetic fields, lattice strain, and temperature due to

the unique triplet configuration of its spin states. Their use in particulate diamond

allows for the possibility of localized sensing and magnetic-contrast-based differential

imaging in complex environments with high fluorescent background. However, current

methods of NV− production in diamond particles are accompanied by the formation of

a large number of parasitic defects and lattice distortions resulting in deterioration of

the NV− performance. Therefore, there are significant efforts to improve the quantum

properties of diamond particles to advance the field. Recently it was shown that rapid

thermal annealing (RTA) at temperatures much exceeding the standard temperatures

used for NV− production can efficiently eliminate parasitic paramagnetic impurities and,

as a result, by an order of magnitude improve the degree of hyperpolarization of 13C via

polarization transfer from optically polarized NV− centers in micron-sized particles. Here,

we demonstrate that RTA also improves the maximum achievable magnetic modulation

of NV− fluorescence in micron-sized diamond by about 4x over conventionally produced

diamond particles endowed with NV−. This advancement can continue to bridge the

pathway toward developing nano-sized diamond with improved qualities for quantum

sensing and imaging.

Keywords: fluorescent nanodiamond (FND), nanodiamond (ND), fluorescence, photoluminescence (PL), magnetic

modulation, biosensing, photobleaching, hyperpolarization

INTRODUCTION

The unique quantum properties of optical centers in diamond can impact technological innovation
across a range of disciplines. In particular, the fluorescent, negatively charged nitrogen vacancy
(NV−) center has been studied extensively. The electronic state of the NV− center can be
manipulated with external electromagnetic fields, strain fields, and temperature [1–3]. This
remarkable ability to controllably manipulate and read out changes in the electronic state of
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the NV− center make it a powerful probe for applications
spanning from quantum information processing, to biology and
applied medical physics. While a number of demonstrations
using fluorescent diamond purely as a fluorescent label have been
shown [4–6], diamond stands out against competing materials
in sensing applications where the readout of fluorescence
modulation is used to obtain information about the environment
surrounding the optical center (e.g., biological sensing [7–
11]) and can also be utilized for background-free imaging
based on the magnetic modulation of the fluorescent signal
[12, 13]. While bulk (electronic grade single crystalline plates)
diamond containing an engineered array of subsurface NV−

centers has been demonstrated to advance quantum computing
[14–16] and nano-NMR [17–20] applications, the use of
diamond particles as nano- and microscale quantum probes
holds the most promise for the future of high-tech particulate
diamond applications. Fluorescent particulate diamond can
enable substantial technological breakthroughs in the biological
and medical disciplines, enabling analysis of local events in cells,
tissue, and organisms in heterogeneous environments.

The use of fluorescent diamond particles instead of bulk
single crystal materials comes with a set of challenges that
must be met. Optimization of NV− center quality to increase
spin coherence times (T2) as well as spin-lattice relaxation
times (T1) is needed, as supported by simulations [21, 22].
The inhomogeneity of color centers’ quality, content, and
orientation across many particles can lead to unpredictable
results across different experiments and different production
batches of fluorescent diamond particles. The two main areas
of focus toward improving the quality of fluorescent diamond
particles involve: (1) the source of the core diamond material
(synthesis) and (2) how the material is treated to optimize
parameters of the color centers and particle size (processing).
Control of synthesis is critical to material optimization as it can
potentially allow for control of nitrogen content and distribution,
metallic impurity content and distribution, and overall crystal
lattice quality. While some academic effort [23–26] has been
devoted toward improved synthesis, the limited access, required
expertise, and high cost of growth instrumentation (specifically
high-pressure high-temperature presses) has limited a greater
exploration of this topic; however, this tendency is beginning
to shift as the industrial synthetic diamond community has
begun to take notice of the emerging potential applications of
diamond particles containing color centers. Investigations into
the impact of processing conditions and their influence on
the quantum properties of fluorescent diamond particles have
been performed and continue to be one of the key research
topics [27–33]. We define processing to be any modifications
made following synthesis, including irradiation, annealing,
fragmentation, purification, and surface modification. Because
the processing side is rich with topics for exploration, most efforts
focus on this aspect.

We recently showed that high-temperature annealing can
facilitate the controlled formation of a range of color centers
in synthetic (HPHT) diamond particles [5, 30], allowing
for a greater flexibility for the use of synthetic precursors.
This is an important step since, unlike natural diamonds,

synthetic diamonds afford more control over critical factors
such as nitrogen content and distribution. The T1 relaxation
times of NV− centers, measured via electron paramagnetic
resonance (EPR), in 20µm particles were improved after
undergoing annealing at temperature exceeding ∼1700◦C
[29]. These observations are consistent with what has also
been observed in bulk diamond, where high-temperature
annealing improved coherence times of NV− centers [34, 35].
Notably, a significant dependence of the hyperpolarization
capability in high-temperature annealed particles with the
highest hyperpolarization enhancement for particles treated in
the 1700◦C−1750◦C range was recently observed as well [36].
Herein, we expand our initial studies on the impact of high-
temperature annealing [29, 30] and relate to the development
of significantly increased diamond particle hyperpolarizability
[37] to other quantum properties of NV− centers in fluorescent
particulate diamond, specifically magnetic modulation of the
particle’s fluorescence [12, 13, 38–42]. It is envisioned that
this method will facilitate identification of fluorescent diamond
particle sensors in biological environments with high fluorescent
background and light scattering capability. Systematically varied
20µm samples with color centers formed by high-temperature
annealing and described previously [30] were evaluated for
modulation of their fluorescence under magnetic field. These
samples were then characterized by EPR to learn if a
correlation between fluorescence modulation and electronic spin
characteristics could be observed. Notably, we observed that
controlled high-temperature annealing increases the contrast
achievable by magnetic modulation of fluorescence compared
to the material processed by standard annealing methods.
Moreover, we demonstrated that modulation occurs down to
excitation with 420 nm. Finally, an initial investigation into the
impact of high-temperature annealing with smaller particles
sizes (∼140 nm) on another quantum property, the NV− spin
relaxation time, is also reported.

EXPERIMENTAL

Materials
Type Ib, high-pressure high-temperature (HPHT) synthesized
diamond particles with sizes of ∼140 nm and 20µm (Diamond
Innovations, USA), containing ∼110 ppm of substitutional
nitrogen, were used in this study. The 20µm particles were
irradiated with high-energy electrons (3 MeV) to a fluence
of 1.5 × 1019 e/cm2 as previously reported [30]. These
particles were then rapidly annealed at the following conditions
using a previously reported [30] high-temperature annealing
furnace: 1500◦C/5min., 1700◦C/3min., 1900◦C/1min., and
1740◦C/8min. Following annealing, the particles were oxidized
in air at 850◦C for 10–15min. after treatment to remove graphite.
The 20µm particles were subsequently characterized by EPR
and by their performance in fluorescence modulation with a
magnetic field. Due to low amount of available material, the
sample treated at 1740◦C for 8min. was not characterized
with EPR, but was only studied for fluorescence modulation
capability. The 140 nm particles were irradiated to a fluence of
1 × 1019 e/cm2 using the aforementioned high energy electrons
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and subsequently rapidly annealed at the following conditions
(previously reported [5]): 1500◦C/5min and 1700◦C/3min.
Graphitic carbon was subsequently removed by oxidation at
500◦C for 8 h (in 2 h increments) in a Linberg Blue M
Furnace followed by subsequent refluxing in a 3:1 mixture
of concentrated sulfuric and nitric acids, leaving all particles
with a carboxylated (-COOH) surface functional chemistry.
The difference in irradiation fluence between the 20 um and
140 nm particles is related to the size-dependent survivability
of particles under harsh irradiation conditions; additionally,
more extensive irradiation dose were demonstrated to decrease
fluorescence brightness overall [43]. The 140 nm particle series
were characterized by optical relaxometry (see below). For both
the 20µm and 140 nm particle series, control samples for each
were annealed using traditional annealing treatments at 850◦C
for 2 h under vacuum to serve as references. Oxidation of
the 140 nm and 20µm control samples to remove graphitic
contributions was achieved via air oxidation at 500◦C for 2 h. For
the 140 nm control sample, additional treatment in concentrated
sulfuric and nitric acids (3:1) was performed. A lower duration of
air oxidation for the 140 nm control sample (2 h) as compared to
the 8 h treatment of the RTA samples was due to the greater extent
of graphitization that was observed in the RTA samples. Both
samples (140 nm control and RTA 140 nm particles) exhibited a
white appearance when suspended in deionized water. There was
also a difference in the oxidation temperatures and times of the
RTA treated 20µm particles as compared to the control (850◦C
10–15min. and 500◦C 2 h). The RTA treated 20 um particles were
oxidized in the RTA furnace immediately following annealing
treatment [30]. The effect produced by these differences in
oxidation treatments is expected to be minimal because the
color centers formed at higher temperatures during annealing are
thermally stable, and the diffusion of most remaining species will
be limited at these lower temperatures.

Fluorescence Spectroscopy, Imaging, and
Magnetic Modulation of Diamond Particle
Fluorescence
For characterization, diamond powder was sandwiched
between thin glass coverslips (Brain Research Laboratories,
#4860-1). General characteristic spectra of particles were
captured with an HR2000 spectrometer (Ocean Optics) with
FF01-470/28 bandpass excitation and BLP01-488R longpass
emission filter (Semrock) in an Olympus IX71 inverted
epifluorescence microscope.

The magnetic modulation of fluorescence emission for the
20µm series of annealed particles was then characterized under
several different excitation wavelengths (420, 514, and 532 nm)
under two different optical set-ups. Generally, fluorescence was
collected from different spots on the sample with and without an
applied magnetic field. Multiple measurements were performed
for the same sample to ensure reproducibility of the results.
Fluorescence spectra were recorded at the NCSU Imaging and
Kinetic Spectroscopy facility (IMAKS Lab) using a custom-
built Raman/fluorescence spectrometer. A Coherent Innova 70C
Spectrum ArKr laser was used to generate 514 nm excitation.

The excitation beam passed through a laser clean-up filter
(MaxLine R© series from Semrock) and a glass plate beamsplitter
at 45◦ incidence angle. Reflected light was focused by a 5X
microscope objective with ca. 7mm working distance onto the
sample positioned on a 3-D translation stage. Fluorescence was
re-collimated back by the same objective, passed through the
beamsplitter and a long-pass filter (RazorEdge R© series from
Semrock), and was focused into a 600µm optical fiber by
a 10X microscope objective. The exit end of the fiber was
connected to the entrance slit of a Princeton Instruments
IsoPlane SCT 320/PIXIS 100 eXelon spectrograph/CCD combo.
A stack of neodymium permanent magnets (NdFeB, Grade N42
K&J Magnetics, Inc. ca. 300 mT) was set on a flip stage and
was moved in an out at the sample backside without touching
any elements of the setup or contributing any reflectance (setup
shown in Figure S1). For each sample, three different locations
on the coverslip were investigated, and at each position, three
repetitive (n = 3) measurements were taken with the “magnet
on” and “magnet off” states, with particles experiencing a field of
∼150 mT, which is above the saturation regime for modulation
processes [44, 45]. In a second optical setup, fluorescence was
measured using a custom-built inverted microscope, previously
described [46]. Fluorescence excitation was provided at 532 nm
(Opto Engine LLC-500mW) through a stabilizer (Thorlabs Noise
Eater NEL02) or at 420 nm (PicoQuant LDH-D-C-420) and
directed to the sample using a dichroic mirror (Semrock, FF-
552-di02) and a 40x objective (Nikon PlanFluor, 40x 0.7 NA).
Emission passed through the dichroic mirror as well as line
reject filter (Semrock) or color filter to reject remaining excitation
wavelengths, and was directed to a tube lens (Thorlabs) forming
a real image. A set of transfer lenses either directs fluorescence to
an avalanche photodiode (Excelitas SPCM-AQRH-14) through a
long pass filter (Thorlabs, FELH0650), or projects the image onto
the slits of a monochromator (Andor Shamrock 193i) attached
to an intensified charge-coupled device (Andor iStar)Using this
setup, spectra were recorded using a grating with 150 lines/mm
and blazed at 300 nm. The magnetic field was produced by
an electromagnet (Uxcell, 12V 50N) mounted 3mm above the
sample and powered using a source meter (Keithley, 2425 100W).
In all cases, collected fluorescence spectra were subsequently
analyzed to calculate the extent of fluorescence modulation
with wavelength dependence modulation percentage defined
as 100∗(Ioff-Ion)/Ioff.

EPR
Continuous wave X-band (9.4 GHz) EPR measurements were
carried out at room temperature (RT, T ∼295K) and T =

50K using a Bruker EMX−220 spectrometer equipped with an
Agilent 53150A frequency counter and an Oxford Instruments
ESR900 variable temperature accessory. Accurate determination
of g-factors and densities Ns of paramagnetic S = 1/2 species
was assisted by a reference sample of a well-purified detonation
nanodiamond (ND) powder with g = 2.0028(2) and Ns = 6.3
× 1019 spins/g [47]. The quantification of the NV− centers
content was done by comparison of the double-integrated
intensities of the g = 4.26(1) EPR lines in all the samples
studied compared with that of a fluorescent microdiamond
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sample FMD having NV− content 5.4 × 1017 spin/g [48].
Electronic spin-lattice (TSL) relaxation times were evaluated by
analyzing peak-to-peak amplitudes of the corresponding EPR
line as a function of the incident microwave power, PMW, using
the methods described elsewhere [49, 50]. EPR data processing
and simulation were carried out using Bruker WIN-EPR and
OriginLab software packages.

Optical T1 Relaxometry
T1 relaxation times for the NV− centers in the 140 nm series of
particles were measured using a previously reported [51] home-
built setup. The particles (850◦C−2 h. control, 1500◦C−5min.,
1700◦C−3min.) were prepared at∼1 mg/mL in deionized water,
and then diluted 10x with an 80:20 (v/v) mixtures of milliQ
water and methanol. The methanol was added to facilitate faster
solvent evaporation. After dilution, a small amount of each
sample was transferred to a glass Petri dish with 4 compartments.
The samples were placed in a fume hood for ∼1 h to evaporate
the solvent.

For each of the three samples, a total of 10 diamond
particles were characterized for T1 times, and a total of five
repetitions (n = 5) were performed for each particle, thus,
a total of 50 measurements were taken for each sample in
the 140 nm series. In order to minimize the influence of
particle aggregation, the samples were analyzed in areas of
the dried particles where aggregation was qualitatively low. A
small number of measurements was discarded in some cases
where excessive amounts of noise, highly atypical behavior
inconsistent with NV− centers, or instrumentation issues (see
Supplementary Information for additional discussion) were
present. An average T1 was calculated for each sample based on
measurements of individual particles.

RESULTS AND DISCUSSION

Fluorescence Spectra of Rapid Thermal
Annealing Samples
The standard annealing process (850◦C/2h) of irradiated
diamond particles produces particles with typical NV dominant
spectra, with a broad phonon band peaking near 680 nm and low
intensity below the NV0 zero phonon line at 575 nm (Figure 1).
The key feature of rapid thermal annealing (RTA) is a fast
temperature rise (at a minute-scale), which quickly achieves
the temperature necessary for nitrogen diffusion (∼1500◦C)
while still preserving the large number of vacancies introduced
by irradiation for the formation of complexes consisting of
one or few nitrogen atoms and a vacancy. Samples treated
at temperatures near 1500◦C and above are marked with the
appearance of a peak near 520 nm characteristic of H3 centers,
formed by complexes of two nitrogen atoms and a vacancy
(also called the NVN center). This peak, hardly seen for the
sample 1500◦C/5min, is more pronounced for the sample
1700◦C/3min and becomes comparable in intensity with the
NV peak for the sample 1900◦C/1min (Figure 1A). The sample
treated at 1740◦C/8min has a dominant H3 peak, while the
NV peak is greatly diminished. Fluorescence micrographs of the
samples study are further illustrated in Figure 1B. Notably, the

FIGURE 1 | Fluorescence (A) spectra and (B) images of irradiated and

typically annealed (850◦C) as well as RTA treated 20 um HPHT diamond

particles irradiated to 1.5 × 1019 e/cm2 fluence. The zero phonon lines for NV◦

and NV− are indicated with a dotted line. Spectra and images were taken from

bulk collection of particles under broadband illumination at 10x magnification

(470/28 nm excitation and 488 nm long pass emission); images reflect true

color of observed particles.

1740◦C/8min treated particles macroscopically acquired whitish
color (observed in white light) as opposed to the pinkish color
of particles characteristic of the other micron samples studied in
this work, due to the reduced amount of NV centers.

Magnetic Modulation of the NV
Fluorescence
The magnetic sensitivity of the NV− center is due to its triplet
spin states (spin S = 1), where the brightness of fluorescence
is related to the axis of quantization of the center [38]. In the
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FIGURE 2 | Modulation of fluorescence emission with application of static magnetic field (∼150 mT) for systematically treated samples: (A) standard treatment (850
◦C/2 h), (B) 1500◦C/5min, (C) 1700◦C/3min, (D) 1900◦C/1min, and (E) high performing 1740◦C/8min for 514 nm excitation. (Spectra are normalized averages of 3

independent measurements).

absence of an external field, there are three possible orientations
with respect to the symmetry axis of the NV center with two
energies (ms = 0 and ms = ±1, separated by ∼2.87 GHz [2,
52]). Under continuous illumination, a small amount of non-
radiative relaxing occurs through an intersystem crossing (ISC)
from the excited triplet state to a singlet state, with greater
probability of ISC for the ms = ±1 state than for the ms = 0
state. This difference results in less fluorescence from the ms =

± 1 as compared with ms = 0. ISC from the ground singlet
state to the triplet favors the ms = 0 state, so through repeated
optical excitation and relaxation, spins accumulate in the ms =

0 state resulting in spin polarization. Fluorescence modulation
of NV− centers arises through manipulation of theses spin
populations by one of two mechanisms, either application of a
microwave frequency resonant with energy gap between the spin
states, depopulating the 0 spin state (so called optically detected
magnetic resonance [2, 52]) or via application of a magnetic
field which reorient the axis of quantization and mixes the spin
states ultimately decreasing fluorescence [38, 44, 53]. Microwave-
induced modulation of NV− centers in bulk diamond is capable
of producing fluorescence contrast up to 30% [3], however in
diamond particles the degree of modulation is typically much
lower. Magnetic-induced modulation provides much higher
contrast and is extremely easy to implement into an imaging

workflow, magnetic-modulation was assessed. Prior studies have
shown that a number of factors influence the observable contrast,
including particle size, magnetic field strength, and laser intensity
[46]. Here these measurement factors were kept constant while
the processing conditions were varied.

Figure 2 shows the progressive changes in spectra due to
processing conditions with and without magnetic field due at
514 nm excitation. Annealing at 850◦C for 2 h represent standard
conditions to anneal particles for production of NV center,
and here virtually no modulation is evident peaking only at
∼2% (Figures 2A, 3B). Figures 2B–D show that as samples
are RTA treated, the extent of modulation is increased with
increased RTA temperature. Of the samples evaluated, treatment
at 1740◦C/8min (Figure 2E) produced the greatest degree of
magnetic modulation. Thus, in addition to temperature the
duration of treatment plays a role (Figures 2C,E), increasing the
maximum contrast to∼16% with 514 nm excitation. This sample
was identified in prior studies as having the greatest degree of 13C
nuclear hyperpolarization arising from optical NV polarization
among particles irradiated at the dosage investigated here (1.5
× 1019 electrons) [36]. Figures 3A–C shows modulation contrast
as a function of wavelength for three excitation wavelengths. At
increasing excitation wavelengths, overall modulation increases
while maintaining the trends of RTA treatment. Because NV−
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is better excited at longer wavelengths, this trend is expected.
The maximum increase from standard annealing is realized by
treatment at 1740◦C/8min with excitation at 532 nm, increasing
maximum contrast from 5 to 20%. In all excitations, modulation
decreases below 650 nm due to contributions from the neutral
NV0 center, which is not modulated by magnetic fields.
Figure 3D summarizes changes in imaging contrast due to RTA
for wavelengths longer than 650 nm. For use in imaging, selection
of this emission window is important to bothmaximize contrasts,
spectrometer response, and brightness [46].

As shown in Figure 1, the contribution of H3 centers
increases with RTA treatment. Notably, the intensity of these
H3 centers are not modulated, as is most clearly visible for
1740◦C/8min annealing (Figure 2E), where the shoulder portion
below∼550 nm is attributed to H3 centers, and no modulation is
observed. Importantly, this shoulder is not observed in samples
without appreciable amounts of H3 centers. Under 420 nm, there
is very little modulation present in the set of RTA samples 1500–
1900◦C, however the sample with dominant H3 centers (1740◦C)
still maintains 6% modulation. This result is unprecedented,
allowing for appreciable modulation in the presence of an
unchanging normalization peak (H3 vs. NV−).

One hypothesis to explain the high modulation observed with
the 1740◦C annealed sample could be that the high temperature
selectively anneals out lower quality NV− centers. These “low
quality” NV− centers may be those which are located close to
damaged portions of the diamond lattice (resulting from the
irradiation process), those near the surface, or those near to
metallic impurities or other lattice defects. Thus, the ability of an
NV− center to survive high-temperature annealing is possibly an
indication of its resulting quality and surrounding environment.
This hypothesis can be investigated in future studies with time
dependent treatment at specific temperatures.

EPR Spectra
Primary (S = 1/2, 3/2) Defects
Analysis of the EPR spectra of primary defects, recorded at T =

50K, indicate that the sample annealed at standard conditions
(850◦C, 2 h) (Figure 4, black trace) contains at least 4 types of
primary defects. The low- and high-field satellites in the spectra
belong to the mi = ±1 hyperfine lines of the characteristic
polycrystalline pattern due to substitutional nitrogen (P1) defects
in the HPHT diamond structure [54]. The central line is
superposition of the sharp mi = 0 P1-related hyperfine line with
g = 2.0024 ± 0.0001 and two singlet signals with about the same
g-factor g = 2.0028 ± 0.0001: broader and narrower, attributed
to dangling bonds and vacancies (V−), correspondingly. The
narrow line with g = 2.0320 ± 0.0001, observed in EPR spectra
of all samples at T < 150K, is attributed to negatively charged
substitutional Ni center with the effective spin S = 3/2 (Ni−s ).
[55] Ni−s content in the standard annealed sample is about 2 ppm.
The starting material used contains 100 ppm of P1 centers. It was
recently found that e-beam irradiation significantly reduces P1
content and increases number of V− defects. Standard annealing
at 850◦C for 2 h drastically reduces number of V− but does
not affect remaining P1 centers [30]. RTA at both 1500 and
1700◦C proceeds with the same tendency. Table 1 shows that
the content of negatively charged vacancies decreases whereas P1

content remains the same. RTA at 1900◦C practically quenches
V− defects and decreases the Ni−s content, by which they
become non-paramagnetic.

Figures 5A, 2B show spin-lattice relaxation times TSL

estimated from the double component analysis of saturation
curves recorded for primary defects for all samples of the RTA
series excluding dangling bonds, which, being less abandoned,
negligibly contribute to the saturation curves. RTA causes
elongation of TSL for both P1 and V− defects—see Figure 5A,
whereas TSL for both slow and fast relaxing components of
Ni−s signal increase on RTA-1500◦C and RTA-1700◦C, then
drop down on RTA-1900◦C (Figure 5B). The longest TSL values
for P1 defects were found in the RTA-1900◦C sample which
may indicate, together with disappearance of V− defects, some
enhancement of the diamond lattice order.

Triplet (S = 1) Defects
Half-field EPR spectra reporting on triplet (S = 1) defects in the
diamond samples under study have been reported inDei Cas et al.
[30]. There, lines at g = 4.27 ± 0.01 were reliably attributed to
NV− (W15) centers and additional lines with g < 4.27–to W16-
W18 center [50]. The RTA-1500◦C causes almost 30% increase of
the NV− content with respect to the standard annealed sample—
see Table 1. The RTA-1700◦C provides the NV− content similar
to the standard annealed sample as well as evidently decreases
the content of the additional triplet centers. RTA-1900◦C causes
the most dramatic effect to all e-beam induced triplet defects:
all triplet centers practically disappear in EPR. The intensity of
the NV− originated characteristic g = 4.270 signal drops toward
the detectability level. The W16-18 signals are not detectable
at all. RTA caused changes in the TSL values estimated from
saturation curves recorded for the low field “allowed” and half-
field “forbidden” transitions in the spectra of NV−(W15) triplet
center, demonstrating similar behavior as it was found for P1 and
V− centers. Thus, on increasing annealing temperature, TSL for
slow and fast relaxing components become significantly longer—
see Figures 5C,D. The TSL elongation effect reaches its maximum
for RTA-1700◦C but cannot be estimated for RTA-1900◦C due to
the NV− signals intensity drops below the detection threshold.
The same effect for triplet centers supports the hypothesis that
RTA treatment “heals” the disorder induced in the diamond
crystal lattice by intensive e-beam.

In summary, based on EPR data it may be concluded that RTA
significantly reduces V− content while leaving the P1 content
unaffected. RTA-1500◦C causes 20–30% higher NV− content as
compared to the sample annealed at standard conditions, while
the amount of NV− centers after RTA-1700◦C becomes lower.
Only trace amount of NV− centers has been detected in the RTA-
1900◦C sample. RTA-1900◦C annihilates triplet paramagnetic
defects (W16-18) and V−, while reducing the amount of detected
Ni−s . At the same time RTA not only decreases the number of
negatively charged vacancies, but definitely reduces the diamond
lattice disorder. The latter is manifested in elongation of spin-
lattice relaxation times for P1, V−, and NV− centers. While the
best performing sample for magnetic modulation of fluorescence
was not investigated in the EPR, based on its loss of pinkish
color, it can be assumed that NV− content in this sample is at
a low ppm level (see also PL spectra in Figure 1). Though a
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FIGURE 3 | Wavelength-dependent magnetically induced fluorescence contrast due to application of a static magnetic field to systematically treated diamond

samples: standard treatment (850◦C/2 h), 1500◦C/5min, 1700◦C/3min, and 1900 C/1min, and high performing 1740oC/8min for excitation wavelengths (A) 420 nm,

(B) 514 nm, and (C) 532 nm. Error bars represent average of 3 measurements each for 3 spots. (D) Modulation contrast collected for imaging under 532 excitation

with 650 nm longpass.

decrease in parasitic defects and improved lattice quality seem
to be the most important factors in the improvement of NV−

quantum properties, based on the lower NV− density for this
sample it is possible that the reduction in NV-NV interactions
also contributed to the improvement of the fluorescence contrast
under magnetic modulation.

Optical Relaxometry for Nanodiamond
Particles
Figure 6A shows spectral profiles for nanoscale fluorescent
diamond (140 nm) after RTA treatments of 1700◦C/3min or
1500◦C/5min compared to standard 850◦C/2 h. Similar to bulk
samples, at a greater proportion of fluorescence from H3
centers is seen at the higher treatment temperature. T1 optical
relaxometry measurements are shown in Figure 6B along with
spectral characteristics for RTA treated nanodiamond. T1 values
for each sample in the 140 nm series of particles were determined
from measurements from 10 different particles (each measured
5 times) for each sample. See Tables S1–S3 and Figures S2, S3

for all data related to these series of measurements. There
appears to be a drop in the T1 values of the particles treated at
1500◦C as compared to the standard annealed sample (850◦C)
and the 1700◦C treated sample. However, a one-way ANOVA
analysis performed on this data indicated that there was no
statistically significant difference between samples (P = 0.1948).
Thus, annealing has less influence on the 140 nm particles as
compared to the 20µm particles. This is possibly due to the high
concentrations of spins and spin interactions betweenNV centers
and surface species that occur at smaller particle size scales. Spin-
spin interactions between multiple nearby NV centers as well
as impurity spins (e.g., parasitic metallic impurities, dangling
bonds in defected interface layers) may reduce T1 times as
well. These results are perhaps not unexpected since annealing
primarily impacts the bulk (lattice) of the diamond particles, and
therefore has a more pronounced influence on larger particles,
where “healing” of the crystalline lattice (following high energy
irradiation) is more clearly observed without the influence of
high concentrations of surface, impurity, or other spins in the
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FIGURE 4 | High resolution X-band RT EPR spectra of 20µm diamond powders recorded at T = 50K, g = 2.00 region. Spectra were recorded at the same

instrumental conditions: incident microwave power PMW = 2 µW, 100 kHz magnetic field modulation amplitude Amod = 0.01 mT, receiver gain RG = 2 × 105, number

of scans nacq = 100, microwave frequency ν = 9.471 GHz. Intensity of each EPR signal is normalized per unit mass; spectra are vertically shifted for better

presentation. Hyperfine P1 lines are partially saturated. Horizontal and vertical lines in the bottom indicate hyperfine split polycrystalline EPR pattern due to P1 centers

characterized by giso = 2.0024 ± 0.0001, Ax = Ay = 2.96 ± 0.02 mT, Az = 4.06 ± 0.02 mT; central hyperfine line overlaps with two singlet lines having by giso =

2.0028 ± 0.0001; arrow indicates position of a singlet line with g = 2.0320 ± 0.0001 attributed to Ni−s defects.

TABLE 1 | Contents of primary (S = 1/2, 3/2) and triplet (S = 1) paramagnetic

centers for the samples irradiated to the fluence 1.5 × 1019 e/cm2 and annealed

at different conditions.

Sample P1, ppma V−,ppma Ni−s , ppm
b NV−, ppma

Standard 850◦C, 2 h 22 42 2.1 7.7

RTA 1500◦C, 5m 26 25 3.2 9.8

RTA 1700◦C, 3m 21 16 2.1 8.0

RTA 1900◦C, 1m 25 0 0.9 < 0.1

aError does not exceed ±15%, data obtained at RT [6].
bError does not exceed ±15%, data obtained at T = 50 K.

local environment surrounding the particles. Most probably,
though, higher temperature and/or increased dwell times are
required, as temperatures above 1700◦C were not explored
in this dataset where most efficient elimination of parasitic
paramagnetic defects in diamond lattice occur [36].

CONCLUSIONS AND OUTLOOK

We determined high-temperature annealing produced a
correlative effect on the achievable modulation of fluorescence by
a magnetic field. The improvement of the maximum modulation
contrast achievable after RTA treatment as compared to standard
annealing methods rose from ∼5 to 20% under the conditions

studied. The increase in modulation susceptibility of RTA treated
samples increases the applicability to imaging in conditions of
high fluorescent background, where fluorescence modulation of
diamond can be used to perform image background subtraction
[13, 41, 46]. Modulation intensity decreases with decreasing
illumination wavelength below 532 nm, but is still achievable at
420 nm. Thus, the presence of dual-color emission of the non-
changing H3 center provides the capability of self-calibration
for imaging in conditions of quickly changing fluorescent
background. EPR characterization data indicate that there is
still room for further optimization of the diamond samples for
quantum applications by defining the annealing conditions to
preserve a larger amount of NV− then what was observed for
RTA-1900◦C, while presumably eliminating unwanted e-beam
induced paramagnetic defects, both triplets and V−. Currently,
relaxometry data indicate that healing of the diamond lattice in
140 nm particles by annealing at maximum temperature 1700◦C
for 3min explored in this study is not sufficient to provide
noticeable increase in T1 relaxation time of NV- and requires
further optimization.

Understanding complex intracellular mechanisms of disease
progression at a cellular level is fundamental to advancing our
ability to diagnose and treat illness. These results demonstrate
a pathway to improve the quality of particulate fluorescent
diamond particles, which have unique applications as compared
to bulk diamond such as intracellular sensing [7] and as
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FIGURE 5 | Electron spin-lattice relaxation times TSL estimated for EPR lines attributed to: (A) primary defects P1 and V− centers (measured at RT); (B) Ni−s centers

(measured at T = 50K); (C) low field “allowed” (C) and “forbidden” (D) transitions between Zeeman sublevels of the triplet NV− centers (measured at RT).

FIGURE 6 | (A) Spectra of 140 nm fluorescent nanodiamond studied under blue broadband excitation (470/28 nm excitation and 488 nm long pass emission). (B)

Combined average T1 values for 140 nm fluorescent nanodiamond particles. Statistical analysis shows that there is no significant difference between the different

samples. The combined average is obtained from taking a combined curve for each particle measured and averaging the T1 values obtained from these combined

curves. See Supplementary Material for additional information.

hyperpolarization agents for improving the sensitivity of
nuclear magnetic resonance spectroscopy (NMR) and magnetic
resonance imaging (MRI) at a cellular level [18, 56]. Owing to
the high biocompatibility [1] and sensing capability, fluorescent
diamond particles are ideal intracellular probes and have been
demonstrated as sensors for intracellular temperature, [9, 57]
radical species, [10] and pH [58]. Introducing a RTA step
into the current production procedure has a high potential

to further increase NV− sensitivity and undoubtedly facilitate
nanodiamond detection with high fidelity through selective
modulation of NV− fluorescence with much higher contrast
over standard samples and therefore a high signal-to noise-ratio.
Simultaneously, RTA treatment introduce multicolor capability
to diamond particles providing an additional possibility of
cross-examination for reliable detection of nanodiamonds in an
environment with rapidly changing fluorescent background.
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