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With the wide application of graph theory in circuit layout, signal flow chart and power

system, more andmore attention has been paid to the network topology analysis method

of graph theory. In this paper, we construct a graph transformation which can reflect the

monotonicity of coefficients and reduce the number of graphs. A sharp lower bound

for incidence energy in the tricyclic graphs is given and all the extremal structures are

characterized. The most interesting things that we find two different classes tricyclic

graphs have the same signless Laplacian characteristic polynomials and one of the

extremal graphs beyond all expectations.
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1. INTRODUCTION

Graph theory is a branch of discrete mathematics, Its research object is abstracted from the actual
problem. For example, the geometric structure of an electrical network can be represented as a
corresponding line graph. In the graph, the properties of circuit elements are ignored, the length
and bending of edges are not important, but the connection between nodes and branches is
highlighted. Each element in the network is replaced by a line segment, which is called a branch,
and the endpoint of each element or the point connected by several elements is represented by an
origin, which is called a node. The set of points and lines is called a network graph and is represented
by G. Let G = (V ,E) be a simple connected graph with n vertices, m edges [1]. Let Pn,Cn and Sn
be the path, the cycle and the star with n vertices, respectively [1]. Let NG(v) = {u|uv ∈ E(G)},
denote by dG(v) = |NG(v)| the degree of the vertex v of G. We know that L(G) = D(G) − A(G)
is the Laplacian matrix of G, and A(G) is (0, 1) adjacency matrix, D(G) is degree diagonal matrix.
Corresponding to the Laplacian matrix,Q(G) = D(G)+A(G) is called the signless Laplacian matrix
of a graph [2]. The Laplacian characteristic polynomials and signless Laplacian characteristic are
defined as the following

L(G; λ) = det(λI − L(G)) =
n∑

i=0

(−1)ici(G)λ
n−i,

Q(G; λ) = det(λI − Q(G)) =
n∑

i=0

(−1)iϕi(G)λ
n−i.

For G,H, if ci(G) ≤ ci(H),i = 1, 2, . . . , n, we call that G �′ H. If ϕi(G) ≤ ϕi(H), i = 1, 2, . . . , n, we
call that G � H [3, 4].
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Denote by Gn,m the set of simple connected graphs of order
n and size m. If m = n − 1 + c, G denotes a c-cyclic graph.
If c = 0, 1, 2, and 3, G represents a tree, unicyclic graph,
bicyclic graph and tricyclic graph, respectively [1]. Recently, with
further research on the power system network, the study of the
structure and properties of the partial ordering sets (Gn,m,�′)
and (Gn,m,�) have attracted much attention. For m = n − 1,
Mohar [5] proved that there is unique maximal element and
unique minimal element in (Gn,n−1,�′). Since L(G; λ) = Q(G; λ)
for bipartite graph, then (Gn,n−1,�) has the same structure and
properties as (Gn,n−1,�′). For m = n, Stevanović and Ilić [6]
showed that there is also unique maximal element and unique
minimal element in (Gn,n,�′). But for (Gn,n,�), Li et al. [7] given
the extremal elements in (Gn,n,�). He and Shan [8] obtained the
unique minimal element in (Gn,n+1,�′), and in Zhang and Zhang
[3], two minimal elements in (Gn,n+1,�) were determined by
Zhang and Zhang. For simplicity, denote the class of connected
tricyclic graphs order n, i.e., Gn,n+2 by Tn [9]. Pai et al. [10]
characterized the unique minimal element in (Tn,�′). Based on
these works, we focus on the structure and properties of the
partial ordering sets (Tn,�).

2. PRELIMINARIES

In this section, we introduce some graphic transformations and
lemmas, which will be used to prove our main results.

If a connected graph has only one cycle whose length is odd,
the graph is odd unicyclic. If the components of a spanning
subgraph of G are trees or odd unicyclic graphs, the subgraph
is called a TU-subgraph of G [3]. Let H be a TU-subgraph of
G, which contains c odd unicyclic graphs and s trees T1, . . . ,Ts

of orders n1, . . . , ns, respectively. So the weight of H ω(H) =
4c

∏s
i=1 ni. If there contains no tree in H, so ω(H) = 4c.

If H is empty graph,there is no H, so ω(H) = 0. We can
express the signless Laplacian coefficients ϕi(G) by the weight of
TU-subgraphs of G [11].

Lemma 2.1. [12] Let Q(G; λ) = det(λI − Q(G)) =∑n
i=0(−1)iϕi(G)λ

n−i be the characteristic polynomial of the
signless Laplacian matrix of a graph G of order n. Then ϕi(G) =∑

Hi
ω(Hi), i = 1, . . . , n, where the summation runs over all

TU-subgraph Hi of G with i edges.

Definition 1. [8] Let G be a simple connected graph with n vertices
and uv be a non-pendent edge, which is not contained in any cycles
of G. Let Guv = G− {vx|x ∈ NG(v) \ {u}} + {ux|x ∈ NG(v) \ {u}}.
We say that Guv is an α-transformation of G.

Lemma 2.2. [3] Let G be a connected graph of order n ≥ 4, and
Guv be obtained from G by α-transformation. Then Guv � G,
i.e., ϕi(Guv) ≤ ϕi(G), i = 0, 1, . . . , n, with equality if and only
if either i ∈ {0, 1, n} when G is non-bipartite, or i ∈ {0, 1, n− 1, n}
for otherwise.

The proof of the following lemma can be found inmany places
in the literature (see, such as [13]).

Lemma 2.3. [14] L(G; λ) = Q(G; λ) if and only if the graph G
is bipartite.

Lemma 2.4. [15] Let f (λ) and g(λ) be two real polynomials
arranged according to decreasing exponents. If their coefficients
are alternate about positive and negative, then the coefficients of
f (λ)g(λ) also are alternate about positive and negative.

Let G be a connected graph with at least one cycle, the base of
G is represented by Ĝ, which is the minimal connected subgraph
containing all the cycles of G [16]. So Ĝ is the unique subgraph of
G, which contains no pendant vertex. G can be obtained from Ĝ
by planting trees to some vertices of Ĝ [17]. Hoffman and Smith
[18] define an internal path of G as a walk u0u1 . . . us(s ≥ 1),and
the vertices u0, u1, . . . , us−1 are distinct, d(u0) > 2, d(us) > 2,
and d(ui) = 2, whenever 0 < i < s. An internal path is closed, if
u0 = us.

Definition 2. [19] Let G = (V ,E) be a connected graph and the
base of G is Ĝ. Let u, v,w be three consecutive vertices in an internal
path of length at least 4 of Ĝ, which satisfy NG(u) ∩ NG(v) = ∅,
NG(w) ∩ NG(v) = ∅ and NG(u) ∩ NG(w) = {v}. We can delete
all edges vz for z ∈ NG(v)\{u,w},wz for z ∈ NG(w) and add all
edges uz for z ∈ (NG(v) ∪ NG(w))\{u, v} from G and get the graph
G′(u, v,w). G to G′(u, v,w) is called a β-transformation of G.

Lemma 2.5. Let G = (V ,E) be a connected graph and the base
of G is Ĝ. Let u, v,w be three consecutive vertices in an internal
path of length at least 4 of Ĝ, and G′(u, v,w) be a graph obtained
from G by β-transformation [19]. So G′(u, v,w) � G, that is,
ϕi(G

′(u, v,w)) ≤ ϕi(G) for i ∈ {0, 1, 2, . . . , n}, with equality if and
only if i ∈ {0, 1} when G is non-bipartite, and i ∈ {0, 1, n} when G
is bipartite.

Proof: ϕ0(G
′(u, v,w)) = ϕ0(G) = 1 and ϕ1(G

′(u, v,w)) =
ϕ1(G) = 2|E|. Moreover, ϕn(G

′(u, v,w)) = ϕn(G) = 0
for bipartite graph. Now assume that 2 ≤ i ≤ n. Let
H and H be the set of all TU-subgraphs of G′(u, v,w) and
G with i edges, respectively. For an arbitrary TU-subgraph
H′ ∈ H, denote by the R′ connected component of H′

containing u [3]. Let f :H → H with H′ → H = f (H′),
where V(H) = V(H′) and

E(H) = E(H′)−{ux|x ∈ NR′ (u) ∩ NG(v)} −{ux|x ∈ NR′ (u) ∩ NG(w) \ {v}}
+{vx|x ∈ NR′ (u) ∩ NG(v)} + {wx|x ∈ NR′ (u) ∩ NG(w) \ {v}}.

Then f is injective from H → H.
Case 1. u, v,w belongs the component S′. So f (S′) is a

component of H, which in the same order as S′. Then ω(H) =
ω(H′).

Case 2. u, v,w belong to at least two components of H′.
Case 2.1. u is not in an odd unicyclic component of H′. Then

u is contained in a tree component of H′. Assume that there
exist x1 + 1 vertices in the connected component which contains
u in H − uv [3], x2 + 1 vertices in the connected component
which contains w inH −wv and x3 + 1 vertices in the connected
component which contains v inH−uv−vw, where x1, x2, x3 ≥ 0.
LetN indicate the weight of the components ofH′, which contain
no u, v,w.
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(i) If uv ∈ E(H′)anduw /∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 2) · 1 · N,

ω(H) = (x1 + x3 + 2)(x2 + 1) · 1 · N,

ω(H)− ω(H′) = x2(x1 + x3 + 1)N ≥ 0.

(ii) If uv /∈ E(H′)anduw ∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 2) · 1 · N,

ω(H) = (x2 + x3 + 2)(x1 + 1) · N,

ω(H)− ω(H′) = x1(x2 + x3 + 1)N ≥ 0.

(iii) If uv /∈ E(H′)anduw /∈ E(H′), then

ω(H′) = (x1 + x2 + x3 + 1) · 1 · 1 · N,

ω(H) = (x1 + 1)(x2 + 1)(x3 + 1) · N,

ω(H)− ω(H′) = (x1x2x3 + x1x2 + x1x3 + x2x3 − 1)N ≥ 0.

Case 2.2. u is in an odd unicyclic component S′ of H′. Let C′ be a
subgraph of S′, which corresponds to an odd cycle C in G.

(i) If uv /∈ E(H′), uw /∈ E(H′), and C = C′, let S be the
component containing C inH. So there are the same components
in H′ and H, except for S′, {v}, {w} in H′, which correspond to
the component S containing u, two components S1 containing
v and S2 containing w of order at least 1, respectively, in H. If
uv /∈ E(H′), uw /∈ E(H′), and C 6= C′. So there are the same
components in H′ and H, except for S′, {v}, {w} in H′, which
correspond to two tree components S1 containing u,w of order
at least 4 since u, v,w are three consecutive vertices in an internal
path of length at least 4 of Ĝ, and S2 containing v of order at least
1, in H. So

ω(H′) = 4 · 1 · 1 · N,

ω(H) ≥ 4 · 1 · 1 · N,

ω(H)− ω(H′) ≥ 0.

(ii) If uv /∈ E(H′), uw ∈ E(H′) or uv ∈ E(H′), uw /∈ E(H′), and
C = C′, So there are the same components in H′ and H, except
for S′, {v} or {w} in H′, which correspond to an odd unicyclic
component S containing C and a tree component S1 containing
v,w of order at least 2. So

ω(H′) = 4 · 1 · N,

ω(H) ≥ 4 · 2 · N,

ω(H)− ω(H′) ≥ 4N > 0.

If uv /∈ E(H′), uw ∈ E(H′) or uv ∈ E(H′), uw /∈ E(H′), and
C 6= C′, So there are the same components in H′ and H, except
for S′, {v} or {w} in H′, which correspond to a tree component S
containing u, v,w of order at least 5. So

ω(H′) = 4 · 1 · N,

ω(H) ≥ 4 · N,

ω(H)− ω(H′) ≥ 0.

Then by Lemma 2.1, we have ϕi(G
′(u, v,w)) =

∑
H′
i∈G ω(H′

i) ≤∑
Hi∈G ω(Hi) = ϕi(G)
Hence the results hold.

Similarly, we can prove the following result.

Lemma 2.6. [19] Let G = (V ,E) be a connected graph with base
Ĝ. Let u, v,w be three consecutive vertices in an internal path P =
u1u2 . . . uk with k = 4 of Ĝ and u1uk /∈ E(Ĝ). Let G′(u, v,w) be a
graph obtained from G by β-transformation, then G′(u, v,w) � G,
that is, ϕi(G

′(u, v,w)) ≤ ϕi(G) for i ∈ {0, 1, 2, . . . , n}, with equality
if and only if i ∈ {0, 1} when G is non-bipartite, and i ∈ {0, 1, n}
when G is bipartite.

By Li et al. [20], There are the following four types of
bases in tricyclic graphs(as shown in Figures 1–4): G3

j (j =
1, . . . , 7),G4

j (j = 1, . . . , 4),G6
j (j = 1, . . . , 3) and G7

1. Let

T
3
n = {G|Ĝ ∼= G3

j , j ∈ {1, . . . , 7}}; T
4
n = {G|Ĝ ∼= G4

j , j ∈ {1, . . . , 4}};
T

6
n = {G|Ĝ ∼= G6

j , j ∈ {1, . . . , 3}}; T
7
n = {G|Ĝ ∼= G7

1}.

Then Tn = T
3
n ∪ T

4
n ∪ T

6
n ∪ T

7
n.

Let T3
1 (n − 7, 0, 0, 0, 0, 0, 0),T4

1 (n − 6, 0, 0, 0, 0, 0),T6
1 (n −

5, 0, 0, 0, 0) and T7
1 (n − 4, 0, 0, 0) be the graphs as shown in

Figure 5.

Lemma 2.7. [10]

(i) If G ∈ T
3
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

3
1 (n −

7, 0, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(ii) If G ∈ T

4
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

4
1 (n −

6, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iii) If G ∈ T

6
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

6
1 (n −

5, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iv) If G ∈ T

7
n, then for every i = 0, 1, . . . , n, ci(G) ≥ ci(T

7
1 (n −

4, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
For i = 3, 4, 6, 7, let T

i,e
n (resp., T

i,o
n ) be the set of bipartite

tricyclic graphs (resp., non-bipartite tricyclic graphs) in T
i
n, then

T
i
n = T

i,e
n ∪ T

i,o
n . From lemmas 2.3 and 2.7, we get

Corollary 2.8. [10]

(i) If G ∈ T
3,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

3
1 (n −

7, 0, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(ii) If G ∈ T

4,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

4
1 (n −

6, 0, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iii) If G ∈ T

6,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

6
1 (n−

5, 0, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
(iv) If G ∈ T

7,e
n , then for every i = 0, 1, . . . , n, ϕi(G) ≥ ϕi(T

7
1 (n−

4, 0, 0, 0)), with equality if and only if i ∈ {0, 1, n}.
Theorem 2.9. [10] Let G be a connected tricyclic graph on n
vertices and i be an integer, 0 ≤ i ≤ n. Then ci(G) ≥ ci(T

7
1 (n −

4, 0, 0, 0)).

Repeated by lemmas 2.2, 2.5, and 2.6, we get the
following conclusion

Theorem 2.10. Let G be a graph in T
3,o
n ∪ T

4,o
n ∪ T

6,o
n ∪ T

7,o
n .

So there is a tricyclic graph G′ with order n, such that G′ � G,.
The base of G′ is one of graphs in {T3

i |j = 1, 2, . . . , 9} ∪ {T4
i |j =

1, 2, . . . , 20} ∪ {T6
i |j = 1, 2, . . . , 24} ∪ {T7

i |j = 1, 2, . . . , 7}(these
base graphs are as shown in Figures 7–9.

Frontiers in Physics | www.frontiersin.org 3 June 2020 | Volume 8 | Article 208

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lu and Zhu Incidence Energy of Tricycle Graphs

FIGURE 1 | The graphs G3
i (i = 1, 2, . . . , 7).

FIGURE 2 | The graphs G4
i (i = 1, 2, . . . , 4).

FIGURE 3 | The graphs G6
i (i = 1, 2, 3).

3. THE SIGNLESS LAPLACIAN
COEFFICIENTS OF GRAPHS IN TN

Now we consider the minimal element in the partial ordering
set (Tn,�).

For i = 1, 2, . . . , 9, let T3
i (s1, s2, . . . , s|T3

i |) be the graph

obtained from T3
i (as shown in Figure 6) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T3
i |), where n = s1+s2+· · ·+s|T3

i |+|T3
i |.

Lemma 3.1. For j = 1, 2, . . . , 9, T3
j (s1+s2+· · ·+s|T3

j |, 0, . . . , 0) �
T3
j (s1, s2, . . . , s|T3

j |), that is, φi(T
3
j (s1+ s2+· · ·+ s|T3

j |, 0, . . . , 0)) ≤
φi(T

3
j (s1, s2, . . . , s|T3

j |)), i = 0, 1, . . . , n. The equality holds if and

only if s2 = · · · = s|T3
j | = 0.

Proof: For convenience, let G = T3
j (s1, s2, . . . , s|T3

j |) and G′ =
T3
j (s1 + s2 + · · · + s|T3

j |, 0, . . . , 0) for j = 1, 2, . . . , 9. Note that

φ0(G) = 1 = φ0(G
′),φ1(G) = 2(n+ 2) = φ1(G

′). For 2 ≤ i ≤ n,

FIGURE 4 | The graph G7
1.

let H and H be the set of all TU-subgraphs of G′ and G with
exactly i edges, respectively [3]. Let

H
′(1) = {H′ ∈ H|H′ contains no odd cycle},

H
′(2) = {H′ ∈ H|H′ contains an odd cycle},

H
′(3) = {H′ ∈ H|H′ contains two odd cycles}.
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FIGURE 5 | The extremal graphs.

FIGURE 6 | The graphs T3
i (i = 1, 2, . . . , 9).

Similarly for H
(1),H(2), and H

(3). We only prove the case for
j = 1, the others can be proved similarly.

Let f :H → H with H′ → H = f (H′), where V(H) =
V(H′) and

E(H′) = E(H)− {u1x|x ∈ NR′ (u1) ∩ NG(u2) \ {u3}}
−{u1x|x ∈ NR′ (u1) ∩ NG(u3) \ {u2}}
−{u1x|x ∈ NR′ (u1) ∩ NG(u4) \ {u5}}
−{u1x|x ∈ NR′ (u1) ∩ NG(u5) \ {u4}}
−{u1x|x ∈ NR′ (u1) ∩ NG(u6) \ {u7}}
−{u1x|x ∈ NR′ (u1) ∩ NG(u7) \ {u6}}
+{u2x|x ∈ NR′ (u1) ∩ NG(u2) \ {u3}}
+{u3x|x ∈ NR′ (u1) ∩ NG(u3) \ {u2}}
+{u4x|x ∈ NR′ (u1) ∩ NG(u4) \ {u5}}
+{u5x|x ∈ NR′ (u1) ∩ NG(u5) \ {u4}}
+{u6x|x ∈ NR′ (u1) ∩ NG(u6) \ {u7}}
+{u7x|x ∈ NR′ (u1) ∩ NG(u7) \ {u6}}

for R′ being a component of H′ containing u1. Obviously, f is

injective and f (H
′(k)) ⊆ H

(k) for j = 1, 2, 3. From the procedure
of proof in Theorem 3.1 [10], we have

∑

H′∈H
′(1)

ω(H′) <
∑

H∈H(1)

ω(H).

Note that H
′(3) = ∅ for j = 1. For H′ ∈ H

′(2), without loss
of generality, we assume that R′ contains C3 = u1u2u3u1 as a

subgraph. Let R be the component of H corresponding to R′,
obviously, R also contains C3 = u1u2u3u1. It is obvious that
H′,H have the same number of components and the product of
the order of components which contain no ui(i = 1, 2, . . . , 7) of
H′ is the same as H. The order of the tree components of H′,
which include at least one of ui(i = 4, . . . , 7) are no more than
the corresponding ones of H, then ω(f (H′)) ≥ ω(H′). Hence

φi(G) =
∑

H∈H(1)

ω(H)+
∑

H∈H(2)

ω(H)+
∑

H∈H(3)

ω(H)

≥
∑

H′∈H
′(1)

ω(H′)+
∑

H′∈H
′(2)

ω(H′)+
∑

H′∈H
′(3)

ω(H′) = φi(G
′).

The equality holds if and only if s2 = · · · = s7 = 0.

For i = 1, 2, . . . , 20, let T4
i (s1, s2, . . . , s|T4

i |) be the graph obtained

from T4
i (as shown in Figure 7) by attaching sj pendent edges at

uj(j = 1, 2, . . . , |T4
i |), where n = s1 + s2 + · · · + s|T4

i | + |T4
i |.

Similar to the proof of Lemma 3.1, we have

Lemma 3.2. For j = 1, 2, . . . , 20, T4
j (s1 + s2 + · · · +

s|T4
j |, 0, . . . , 0) � T4

j (s1, s2, . . . , s|T4
j |), that is, φi(T

4
j (s1+ s2+· · ·+

s|T4
j |, 0, . . . , 0)) ≤ φi(T

4
j (s1, s2, . . . , s|T4

j |)), i = 0, 1, . . . , n. The

equality holds if and only if s2 = · · · = s|T4
j | = 0.

For i = 1, 2, . . . , 7, let T7
i (s1, s2, . . . , s|T7

i |) be the graph

obtained from T7
i (as shown in Figure 8) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T7
i |), where n = s1+s2+· · ·+s|T7

i |+|T7
i |.

Similar to the proof of Lemma 3.1, we have
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Lemma 3.3. For j = 1, 2, . . . , 7, T7
j (s1+s2+· · ·+s|T7

j |, 0, . . . , 0) �
T7
j (s1, s2, . . . , s|T7

j |), that is, φi(T
7
j (s1+ s2+· · ·+ s|T7

j |, 0, . . . , 0)) ≤
φi(T

7
j (s1, s2, . . . , s|T7

j |)), i = 0, 1, . . . , n. The equality holds if and

only if s2 = · · · = s|T7
j | = 0.

For i = 1, 2, . . . , 24, let T6
i (s1, s2, . . . , s|T6

i |) be the graph

obtained from T6
i (as shown in Figure 9) by attaching sj pendent

edges at uj(j = 1, 2, . . . , |T6
i |), where n = s1+s2+· · ·+s|T6

i |+|T6
i |.

Similar to the proof of Lemma 3.1, we have

Lemma 3.4. For j = 1, 2, . . . , 24, T6
j (s1 + s2 + · · · +

s|T6
j |, 0, . . . , 0) � T6

j (s1, s2, . . . , s|T6
j |), that is, φi(T

6
j (s1+ s2+· · ·+

s|T6
j |, 0, . . . , 0)) ≤ φi(T

6
j (s1, s2, . . . , s|T6

j |)), i = 0, 1, . . . , n. The

equality holds if and only if s2 = · · · = s|T6
j | = 0.

Lemma 3.5. For n ≥ |T3
j |(j = 1, 2, . . . , 9),

(i) T3
2 (n− 7, 0, 0, 0, 0, 0, 0) � T3

1 (n− 7, 0, 0, 0, 0, 0, 0).

(ii) T3
j (n − 8, 0, 0, 0, 0, 0, 0, 0) � T3

5 (n − 8, 0, 0, 0, 0, 0, 0, 0, 0) for
j = 3, 4.

(iii)T3
j (n− 9, 0, 0, 0, 0, 0, 0, 0, 0) � T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0) for
j = 7, 8, 9.

Proof: (i) We have

Q(T3
2 (n− 7, 0, . . . , 0))− Q(T3

1 (n− 7, 0, 0, 0, 0, 0, 0))

= (x− 1)n−8[2(n− 5)x6 − (18n− 90)x5 + (62n− 302)x4

−(102n− 462)x3

+(80n− 296)x2 − (24n− 24)x+ 32].

Further by Lemma 2.3, T3
2 (n− 7, 0, 0, 0, 0, 0, 0) � T3

1 (n− 7, 0, 0, 0, 0, 0, 0).

Q(T3
3 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

5 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−9[(2n− 12)x7 − (22n− 132)x6 + (96n− 568)x5

−(212n− 1208)x4

+(250n− 1308)x3 − (150n− 628)x2 + (36n− 32)x− 48],

Q(T3
4 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

5 (n− 8, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−9[(2n− 11)x7 − (23n− 125)x6 + (104n− 546)x5

−(233n− 1128)x4

+(266n− 1047)x3 − (140n− 219)x2 + (24n+ 200)x− 68],

Q(T3
7 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (138n− 958)x6

−(382n− 2594)x5

+(580n− 3748)x4 − (456n− 5608)x3 + (144n− 464)x2 − 192x],

Q(T3
8 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (138n− 948)x6

−(364n− 2512)x5

+(520n− 3520)x4 − (368n− 2400)x3 + (96n− 576)x2],

Q(T3
9 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))− Q(T3

6 (n− 9, 0, 0, 0, 0, 0, 0, 0, 0))

= (x− 1)n−10[(2n− 14)x8 − (26n− 182)x7 + (136n− 944)x6

−(364n− 2468)x5

+(522n− 3350)x4 − (378n− 2102)x3 + (108n− 300)x2 − 144x].

So (ii) and (iii) hold.

Lemma 3.6. For n ≥ |T4
j |(j = 1, . . . , 20),

(i) T4
j (n − |T4

j |, 0, . . . , 0) � T4
1 (n − 6, 0, . . . , 0) for j =

2, 5, 6, 10, 15, 16, 17
(ii) T4

j (n − |T4
j |, 0, . . . , 0) � T4

4 (n − 7, 0, . . . , 0) for j =
3, 7, 8, 9, 18, 19, 20.

(iii) T4
j (n−|T4

j |, 0, . . . , 0) � T4
14(n−7, 0, . . . , 0) for j = 11, 12, 13.

Proof:

Q(T4
2 (n− 6, 0, . . . , 0))− Q(T4

1 (n− 6, 0, . . . , 0))

= (x− 1)n−7[(n− 4)x5 − (8n− 32)x4 + (23n− 88)x3

−(28n− 92)x2 + (12n− 16)x− 16],

Q(T4
3 (n− 7, 0, . . . , 0))− Q(T4

4 (n− 7, 0, . . . , 0))

= (x− 1)n−8[(n− 5)x6 − (10n− 50)x5 + (38n− 188)x4

−(68n− 382)x3 +
(56n− 256)x2 − (16n− 64)x],

Q(T4
11(n− 8, 0, . . . , 0))− Q(T4

14(n− 7, 0, . . . , 0))

= (x− 1)n−9[(2n− 10)x7 − (24n− 120)x6 + (110n− 539)x5

−(241n− 1107)x4 +
(255n− 971)x3 − (111n− 161)x2 + (9n+ 144)x− 12],

By the results of Appendix, the results hold.

Lemma 3.7. For n ≥ |T7
j |(j = 1, . . . , 7), T7

j (n− |T7
j |, 0, . . . , 0) �

T7
1 (n− 4, 0, 0, 0).

Proof: We have

Q(T7
2 (n− 5, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−6[(n− 3)x4 − (8n− 28)x3 + (18n− 68)x2

−(12n− 48)x],

Q(T7
3 (n− 6, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−7[(2n− 7)x5 − (19n− 73)x4 + (55n− 213)x3

−(57n− 199)x2 + (19n− 40)x− 12],

Q(T7
4 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(3n− 12)x6 − (33n− 140)x5 + (126n− 536)x4

−(210n− 828)x3 + (151n− 432)x2 − (37n+ 48)x+ 60],

Q(T7
5 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(3n− 12)x6 − (33n− 140)x5 + (126n− 540)x4

−(210n− 858)x3 + (152n− 514)x2 − (39n+ 36)x+ 39],

Q(T7
6 (n− 8, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−9[(4n− 18)x7 − (50n− 238)x6 + (233n− 1139)x5

−(521n− 2541)x4 + (584n− 2713)x3

−(301n− 1171)x2 + (50n− 40)− 32],

Q(T7
7 (n− 9, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−10[(5n− 25)x8−(70n− 368)x7 +(385n− 2086)x6

−(1085n− 5938)x5+ (2684n−9039)x4− (1415n− 7004)x3

+(572n− 21122)x2 − (76n+ 128)x+ 80].

So the results hold.
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Theorem 3.8. For G ∈ T
3
n ∪T

4
n ∪T

7
n, G � T7

1 (n− 4, 0, 0, 0). The
equality holds if and only if G ∼= T7

1 (n− 4, 0, 0, 0).

Proof: If G ∈ T
3,e
n ∪T

4,e
n ∪T

7,e
n , by Theorem 2.9, the results hold.

If G ∈ T
3,o
n ∪ T

4,o
n ∪ T

7,o
n , by direct calculation, we have

Q(T3
1 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[3x6 − (3n+ 16)x5 + (16n+ 54)x4

−(30n+ 156)x3 + (24n+ 259)x2 − (7n+ 204)x+ 60]

Q(T3
5 (n− 8, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−9[nx7 − (14n− 16)x6 + (66n− 84)x5

−(144n− 108)x4 + (157n+ 100)x3 − (82n+ 316)x2

+(16n+ 224)x− 48],

Q(T3
6 (n− 9, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−10[(2n− 4)x8 − (28n− 70)x7 + (148n− 391)x6

−(393n− 994)x5 + (570n− 1221)x4

−(451n− 616)x3 + (180n+ 16)x2 − (28n+ 96)x+ 16],

Q(T4
1 (n− 6, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−7[2x5 − (2n+ 8)x4 + (8n+ 26)x3

−(10n+ 68)x2 + (4n+ 80)x− 32]

Q(T4
4 (n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(n− 1)x6 − (12n− 22)x5 + (46n− 85)x4

−(75n− 96)x3 + (52n+ 16)x2 − (12n+ 64)x+ 16]

Q(T4
14(n− 7, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0))

= (x− 1)n−8[(n− 1)x6 − (12n− 24)x5 + (47n− 107)x4

−(80n− 176)x3 + (60n− 108)x2 − (16n− 16)x].

Further by Theorem 2.10 and lemmas 3.2–3.4, 3.6–3.8, we have
G � T7

1 (n− 4, 0, 0, 0).

Lemma 3.9. For n ≥ |T6
j |(j = 1, . . . , 9, 11, . . . , 24), T6

j (n −
|T6

j |, 0, . . . , 0) � T6
1 (n− 4, 0, 0, 0).

Proof: We have

Q(T6
2 (n− 6, 0, . . . , 0))− Q(T6

1 (n− 5, 0, . . . , 0))

= (x− 1)n−7[(n− 3)x5 − (9n− 29)x4 + (25n− 76)x3

− (26n− 56)x2 + (8n+ 16)x− 16]

By the results of Appendix, the results hold.

Theorem 3.10. For G ∈ T
6
n, G � T6

10(n − 5, 0, 0, 0) or G �
T6
1 (n − 5, 0, 0, 0). The equality holds if and only if G ∼= T6

1 (n −
5, 0, 0, 0, 0) or G ∼= T6

10(n− 5, 0, 0, 0).

Proof: If G ∈ T
6,e
n , by Theorem 2.9 and

Q(T6
1 (n− 5, 0, . . . , 0))− Q(T7

1 (n− 4, 0, . . . , 0)) = 0 (1)

we have G � T6
1 (n− 5, 0, 0, 0).

If G ∈ T
6,o
n , by Theorem 2.10, lemmas 3.5 and 3.9, we have

G � T6
10(n− 7, 0, . . . , 0) or G � T6

1 (n− 5, 0, 0, 0).

Remark: By (3.1), T6
1 (n − 5, 0, . . . , 0) and T7

1 (n − 4, 0, . . . , 0)
have the same signless Laplacian characteristic polynomials.

Theorem 3.11. T6
10(n − 7, 0, . . . , 0),T6

1 (n − 5, 0, 0, 0),T7
1 (n −

4, 0, 0, 0) are the only three minimal elements in the partial set
(Tn,�).

Proof: By (3.1), theorems 3.8 and 3.10, it is obvious that T6
1 (n −

5, 0, 0, 0),T7
1 (n−4, 0, 0, 0) are the minimal elements in the partial

set (Tn,�).
Note that if there is a graph G0 in T

3
n ∪ T

4
n ∪ T

6,e
n ∪ T

7
n such

that T6
10(n− 7, 0, . . . , 0) � G0, then by Theorem 3.8 and (3.1), we

have T6
10(n− 7, 0, . . . , 0) � T6

1 (n− 5, 0, 0, 0). But

Q(T6
10(n− 7, 0, . . . , 0))− Q(T6

1 (n− 5, 0, . . . , 0))

= (x− 1)n−8[(2n− 6)x6 − (22n− 76)x5 + (83n− 308)x4

−(137n− 542)x3

+(98n− 448)x2 − (24n− 192)x− 48],

it is a contradiction.
Hence the results hold.

4. THE INCIDENCE ENERGY OF
TRICYCLIC GRAPHS

The incidence energy IE(G) of a graph G is defined to be the sum
of the square root of all eigenvalues of Q(G)[3].

Theorem 4.1. [11] Let G and G′ be two graphs of order n, if
ϕk(G) � ϕk(G

′) for 1 ≤ k ≤ n, then IE(G) ≤ IE(G′). In particular,
if at least one of inequalities is strict, then IE(G) < IE(G′).

Theorem 4.2. If G ∈ Tn, then IE(G) ≥ IE(T6
1 (n− 5, 0, 0, 0, 0)) =

IE(T7
1 (n−4, 0, 0, 0)). The equality holds if and only if G ∼= T6

1 (n−
5, 0, 0, 0, 0), or G ∼= T7

1 (n− 4, 0, 0, 0).

Proof: By Theorem 3.11, we have
IE(G) ≥ min{IE(T6

10(n − 7, 0, · · · , 0)), IE(T6
1 (n −

5, 0, 0, 0, 0)), IE(T7
1 (n− 4, 0, 0, 0))}.

Note that

Q(T7
1 (n− 4, 0, . . . , 0)) = (x− 1)n−5[(x5 − (n+ 9)x4

+(9n+ 24)x3 − (24n+ 32)x2

+(20n+ 48)x− 48]

= (x− 1)n−5(x− 2)2[x3 − (n+ 5)x2

+5nx− 12],

Q(T6
10(n− 7, 0, . . . , 0)) = x(x− 1)n−8[(x7 − (n+ 12)x6

+(14n+ 48)x5 − (76n+ 56)x4 +
(203n− 83)x3 − (278n− 230)x2

+(182n− 128)x− 44n]

= x(x− 1)n−7(x− 2)[x5 − (n+ 9)x4

+(11n+ 19)x3 − (41n− 19)x2

+(58n− 64)x− 22n].
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FIGURE 7 | The graphs T4
i (i = 1, 2, . . . , 20).

FIGURE 8 | The graphs T7
i (i = 1, 2, . . . , 7).

Let α1 ≥ α2 ≥ α3 be the roots of x
3 − (n+ 5)x2 + 5nx− 12 = 0,

and β1 ≥ β2 ≥ β3 ≥ β4 ≥ β5 be the roots of x
5 − (n + 9)x4 +

(11n+ 19)x3 − (41n− 19)x2 + (58n− 64)x− 22n = 0, then

IE(T7
1 ) = (n− 5)+ 2

√
2+√

α1 +
√

α2 +
√

α3

IE(T6
10) = (n− 7)+

√
2+

√
β1 +

√
β2 +

√
β3 +

√
β4 +

√
β5.

If n ≤ 40, by Matlab7.0 it is easy to see IE(T6
10) > IE(T7

1 ) holds.
If n ≥ 40, it is easy to see that n − 0.07 ≤ α1 ≤ n + 0.07,

4.93 ≤ α2 ≤ 5, 0 ≤ α3 ≤ 0.07 and n − 1.98 ≤ β1 ≤ n − 1.9,
4.58 ≤ β2 ≤ 4.62, 3.41 ≤ β3 ≤ 3.42, 2.37 ≤ β4 ≤ 2.39, 0.54 ≤

β5 ≤ 0.55.

6.261+
√
n− 1.98 ≤

5∑

i=1

√
βi ≤ 6.286+

√
n− 1.9,

2.22+
√
n− 0.07 ≤

3∑

i=1

√
αi ≤ 2.5+

√
n+ 0.07,

3.597 ≤
5∑

i=1

√
βi −

3∑

i=1

√
αi ≤ 3.92.

It is easy to see that

IE(T6
10)− IE(T7

1 ) =
5∑

i=1

√
βi −

3∑

i=1

√
αi − 2−

√
2

≥ 3.597− 2−
√
2 > 0.

So the assertions hold.
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FIGURE 9 | The graphs T6
i (i = 1, 2, . . . , 24).

5. CONCLUSION AND EXTENSION

This paper propose an appropriate graph transformation to
reflect the monotonicity of the coefficients, and give a sharp
lower bound for incidence energy in the class of tricyclic
graphs and characterize the extremal structures. The study on
boundary of the incidence energy and its extremum structure
of tricyclic graphs enriches and develops the study of the graph
structure, but also connects the mathematical branch with other
disciplines such as biology, physics and chemistry. It promotes
the development of some theories of graph theory. It promotes
the development of graph structure, the development of graph
theory, and the study of graph theory and its application. For
example, mathematical biology, application of graph theory
in power system, molecular structure based on graph theory.
Furthermore, similar to the graph energy, the incidence energy
also reflects some physical and chemical properties of conjugated
molecules, such as melting point and boiling point, this provides
a theoretical reference for the researchers of the synthesis of
new materials and new materials, and saves the cost for the
development of new materials and new materials to a certain
extent. Based on the extensive application of graph theory in
many fields, the findings of this study have many important
implications for future practice.
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