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Modern physics has characterized spacetime, the interactions between particles, but

not the nature of the particles themselves. Previous models of the electron have

not specified its substance nor justified its cohesion. Here we present a relativistic

electrodynamical model of the electron at rest, founded on natural interpretations

of observables. Essentially intertwined positively and negatively charged subparticles

revolve at light velocity in coplanar circular orbits, forming some coherent “envelope” and

“nucleus”, possibly responsible for its wavelike and corpuscular behaviors, respectively.

We show that the model can provide interpretations of fundamental constants, satisfy

the Virial theorem, and exhibit cohesion and stability without invoking Poincaré stresses.

Remarkably, the stability condition allows predicting electron mass, regarded as being

a manifestation of its total (kinetic and potential) electromagnetic cohesion energy,

and muon mass, directly from the substructure. Our study illustrates the possibility of

constructing causal and objectively realist models of particles beneath the Compton

scale. Finally, wave-corpuscle duality and the relation to quantum mechanics are

discussed in the light of our electron model.

Keywords: electron substructure, fundamental constants, electromagnetic mass, wave-corpuscle duality,

objective reality

INTRODUCTION

Depending on the experiment, the most emblematic subatomic particle, the electron, has been
found to interact as a point-like corpuscle in scattering experiments [1], or to behave as an
extensible wave [2]. Elaborating on Bohr’s interpretation of Quantum Mechanics [3], Heisenberg
concluded that particles could neither be represented nor even apprehended by the human
mind, and that only their abstract mathematical description existed [4]. For de Broglie however,
“abstract presentations have no physical reality. Only the movement of elements localized in
space, in the course of time, has physical reality” [5]. Hence, modern physics has identified
with unprecedented precision the interactions and their underlying principles, has successfully
described its environment, spacetime, but still lacks a characterization of the nature of its “objects,”
the particles themselves.

Consequently, several kinds of electron models have been proposed: extended models [6],
point-like models, andmixedmodels in which a point-like corpuscle follows an extended trajectory
[7]. Early attempts included the spherical models of Abraham [8] and Lorentz [9], which led
to theories of electromagnetic mass [10–13]. Spherical models soon evolved into the so-called
ring models of Parson [14], Webster [15], Allen [16], and Compton [17], constituted of rotating
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infinitesimal charges and verifying the properties of classical
magnetic moment and Compton scattering. Essential constraints
however, such as electron cohesion and stability, could not be
satisfied: new putative forces, denoted Poincaré stresses [18],
were suggested to maintain the cohesion of the negatively
charged electron. The abstract descriptions of quantum
mechanical theories [19, 20] then successfully accounted for
the wave-like behavior of the electron and probabilistically
predicted [21] the values of most observables by considering
a point-like particle, yet failed at interpreting fundamental
constants or explaining how a point-like corpuscle could
have spin or a finite energy density. Paradoxically, quantum
mechanics revived geometric models when Schrödinger noticed
within the Dirac equation itself a rapid oscillatory trembling
motion, which he called Zitterbewegung (zbw) [22], exhibiting
microcurrents arising at light velocity c. Surprisingly, the
electron seemed to follow a helical trajectory of radius ňc, the
reduced Compton wavelength, surrounding the average travel
direction (Figure 1A). Several such zbw models, identifying spin
with orbital angular momentum, were interpreted classically
[27–29]. Subsequent electrodynamical or hydrodynamical
models involved fluids with spin [30], current loops of a certain
thickness [31], Dirac-like Equations [32, 33], moving charged
membranes [34], plasmoid fibers [35], or toroidal geometry
[35, 36]. Wondering whether zbw could be a real phenomenon,
Hestenes emphasized the need to investigate the electron
substructure, suggested zbw could originate in the electron
self-interaction [37], and showed zbw was compatible with the
ring models [38].

With the development of realist models of the electron
emerged theories of electromagnetic mass. At first, the spherical
models of Abraham [8], and Lorentz [9] seemed to fail to
recover Einstein’s relation E = mc2 due to the appearance of a
factor 4/3, but later proved to be compatible, once relativistic
corrections were accounted for [12]. Stability of the sphere

FIGURE 1 | Triolets and the helical trajectory. (A) In Schrödinger’s Zitterbewegung (zbw) model, the wavefunction associated to the electron seems to revolve at light

velocity along a helical trajectory of radius ňc, the reduced Compton wavelength, surrounding the average travel direction, and to exhibit microcurrents. Quantum

mechanics does not specify which forces could cause the electron, which is assumed to be point-like, to follow such a peculiar helical trajectory. (B) Triolets are

colorless particles composed of three sparks, each bearing electric charge ±e/6 and a specific strong interaction color charge. Thus triolets bear electric charge ±e/6

or ±e/2 depending on their combination of sparks. They travel at light velocity c, possess angular momentum Ltrlt, and triolets will thereafter be represented as

upward or downward, filled or hollow triangles depending on their electric charge, as depicted here. (C) In our model, the electron is composed of triolets forming a

nucleus and an envelope. It is conceivable that, in the absence of perturbation, the nucleus of the moving electron attracts envelope triolets and maintains them

bound, thus explaining their helical trajectory. Conversely, envelope triolets would revolve at light velocity on an orbit of radius ňc around the nucleus, exhibiting the

zbw microcurrents, and guide the nucleus, as in pilot-wave theories [23–26], sensing the electromagnetic fields generated by the envelopes of other particles.

however still relied on Poincaré stresses or unknown surface
tension [34], and electron mass could not be predicted from
an objective criterion, but depended on the value taken by an
arbitrary parameter, whose value is unconstrained, i.e., the radius
of the sphere. Of note, the mass of subatomic particles is not
predicted by quantum theories, and their values need to be
inserted in calculations [12]. Most ring models [14–17] are prior
to the discoveries of the spin, anomalous magnetic moment, and
quantum mechanics. The ring model of Bergman and Wesley
[31] exhibited cohesion and stability, but the expression for
mass still involved an arbitrary parameter (i.e., width of current
loop), and the substance constituting the electron remained
indeterminate. More recently, Consa proposed a point-like
electron following a toroidal trajectory [36], recovered mass
independently of any arbitrary parameter, but did not specify
how the trajectory developed nor demonstrated its stability. To
our knowledge, the Virial theorem, which should be satisfied
since the electron is a bound system, has not been considered
in electron models. Potential energy is often equated to +mc2,
although cohesion potential energy should be negative for a
bound system [as it is for the atom for instance [19]]. Kinetic
energy is not usually accounted for, even though Lorentz [9],
Hestenes [38] and others [e.g., [32]] noted the existence of a
rotating motion and wondered whether kinetic energy did not
contribute to rest mass. For Barut and Bracken, rest mass energy
of the particle is the energy of the internal motion in the rest
frame [29].

Hence, several issues remain to be addressed regarding the
electron: for instance, which forces could cause the puzzling
helical trajectory? What could be the nature of the substance
constituting the electron? Could an electrodynamical description
account for electron cohesion and stability? And could Lorentz’
hypothesis advocating the electromagnetic origin of mass be
simultaneously implemented from an objective criterion, instead
of an arbitrary parameter?
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In this study, we present a relativistic electrodynamical model
of the electron at rest, in which charged subparticles follow
definite trajectories. The model is based on two main hypotheses:
(i) the existence of charged colorless subparticles called triolets,
(ii) the assumption that triolets revolve at light velocity on
coplanar circular orbits, constituting an envelope and nucleus,
depending on their electromagnetic charges. As the electron
is coherent, it is assumed that the model satisfies the Virial
theorem. Constraints capturing the measured values of several
observables (classical and anomalous magnetic moments, spin,
Compton wavelength, kinetic energy) are formulated. Using
Liénard-Wichert potentials, we then determine the specific
kinds and numbers of triolets satisfying envelope and nucleus
stability. Remarkably, we find that these kinds and numbers are
precisely those that allow predicting electron mass and muon
mass electromagnetically directly from the substructure, thus
implementing Lorentz’ hypothesis. Electron mass is effectively
derived from an expression of substructure stability, which
constitutes an objective criterion in our view. Our system also
illustrates the possibility of constructing causal, local, objective,
and realist models of particles beneath the Compton scale.
Finally, we discuss novel perspectives suggested by the model,
relative to the understanding of wave-corpuscle duality and to its
relation to quantum theory.

DESCRIPTION OF THE MODEL AND
HYPOTHESES

In a previous study, we proposed that just six kinds of
indestructible elementary subparticles denoted sparks, bearing
electric charge ±e/6 and a specific strong interaction color
charge, are necessary and sufficient to reconstruct all subatomic
particles, so that sparks are conserved and reorganized
across particle decays and annihilations [Avner, Boillot,
Richard, submitted]. Since sparks are subject to both the
strong and electromagnetic interactions, with the former
dominating at short distances [20], groups of three sparks
could presumably assemble beforehand to form composite
colorless particles, thereafter called triolets, bearing charge
+e/6, –e/6, +e/2, or –e/2 (Figure 1B). Henceforth, we
shall suppose that the electron is exclusively composed
of triolets, which travel at light velocity [7], exhibit some
intrinsic angular momentum Ltrlt , and being colorless,
are submitted to electromagnetic and centrifugal forces
only (hypothesis A).

Following de Broglie’s proposition, we aim at constructing
a plausible electrodynamical model of the electron at rest, in
which positive and negative triolets form an electromagnetically
bound system, exhibit the zbw microcurrents, and account
for all experimentally measured observables. The electron is
considered here as a particle of a certain extension, composed
of revolving charged subparticles, the triolets, thereby exhibiting
magnetic moment and intrinsic angular momentum (its spin)
sensed by other particles. We know that the measured
value of the electron magnetic moment is the sum of Bohr
magneton µB = –eℏ/2m, predicted by both classical physics

and quantum mechanics, where ℏ is reduced Planck constant,
m the electron mass, and e the elementary charge, and
an anomalous magnetic moment [39], which accounts for
a small fraction aanml ⋍ 0.001159 of the previous and is
only predicted by quantum electrodynamics [20]. Remarkably,
the value of the classical magnetic moment of the electron
can be derived by considering a charge (–e) revolving on
a circular orbit of radius ňc [19]. Hence, we reckoned the
classical and anomalous magnetic moments could, respectively,
be produced by two different components of the electron,
namely a negatively charged envelope and a neutrally charged
nucleus, also possibly responsible for the electron’s wavelike
and corpuscular behaviors, respectively. The peculiar helical
trajectory of the electron predicted by zbw could then be naturally
apprehended by considering that zbw describes the dynamics
of envelope triolets, which are attracted and bound to the
nucleus (Figure 1C). Electron spin could correspond to the
sum of angular momenta of envelope triolets. Moreover, we
shall regard electron mass as being a manifestation of the total
electromagnetic cohesion energy E of the particle, as Lorentz
hypothesized [9], through Einstein’s formula m = E/c2. The
latter interpretation of the mass is naturally suggested by the
observation that the muon possesses a mass ∼206.77 times
bigger than that of the electron, while its Compton wavelength
is ∼206.77 times smaller, as would be the case for a mass of
electromagnetic origin, presenting a potential proportional to
inverse distance.

The net electromagnetic forces acting on any particular
envelope triolet should mostly depend on its surrounding
triolets. The envelope could be organized into a complex
structure, with triolets irregularly distributed along the orbits,
or revolving at various radii, or experiencing fluctuations. To
facilitate calculations however, we chose to make approximations
and consider triolets at radial equilibrium rotating in the
same direction on four coplanar circular orbits of different
radii depending on their four different electromagnetic charges
(hypothesis B, Figure 2). In our model, positive and negative
nucleus triolets are intertwined to maintain their cohesion and
could rotate along two close yet separate orbits due to the charged
envelope. This could cause in turn a similar arrangement in
the envelope, which would exhibit predominantly intertwined
triolets, in spite of the excess of negative triolets. We are aware
our model is only an approximation, even if we reckon that a
collection of fluctuating ±e/6 and ±e/2 triolets traveling at light
velocity could possibly converge toward such a configuration.
Because of their stronger charges, ±e/2 triolets could be
more tightly bound and form a condensed nucleus, while
±e/6 triolets would be bound more loosely and constitute
the envelope.

In addition, as the electron is a bound system whose inner
potentials allegedly depend on position coordinates only and
not velocities (justification is given below), the Virial theorem
should be verified [40]: for inverse square law electromagnetic
interactions, one typically has E = U/2 and E = –T, where
T is the total internal kinetic energy and U the internal
potential energy. Therefore, T and U should, respectively,
amount to +mc2 and −2mc2, resulting in total internal energy
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FIGURE 2 | Model of the electron at rest. In our simplified model, triolets

rotate at light velocity in the same direction along four different coplanar

circular orbits depending on their electric charge, constituting an envelope,

and nucleus. Negative triolets are more numerous at the envelope, while the

nucleus is neutrally charged. Due to the charged envelope, nucleus triolets are

separated into two close orbits depending on their charge. Envelope triolets

similarly revolve on separated orbits whose radii are close to the reduced

Compton wavelength. Possible triolet configurations (triolet kinds and

numbers, angular distributions, orbital radii) must fulfill constraints expressing

radial stability and the measured values of charge, spin, magnetic moments,

and mass. Due to consecutive negative triolets in the envelope, intertwined

envelope triolets assemble into stretches separated by a distance denv.

E = T + U = –mc2 corresponding to electron mass, the
minus sign being indicative of a bound system. Finally, we
shall admit that, for the electron at rest, envelope triolets
approximately follow a circular trajectory of radius ňc = ℏ/mc,
as suggested by the classical derivation of Bohr’s magneton, and
by zbw-like models. Interpretations of fundamental constants
associated to the electron, such as reduced Planck constant
ℏ and fine-structure constant α = e2/4πε0ℏc (where ε0
designates vacuum permittivity), should also emerge from
the model.

FORMULATION OF THE MODEL

Our system captures the measured values of charge, magnetic
moments, spin and kinetic energy, and will be validated by
showing that cohesion and stability can be satisfied, and
potential energy (and thus electron mass) can be recovered.
Let us here mathematically formulate the constraints: (i) a
charge –e carried by Nenv = Nenv+ + Nenv− triolets of charge
±e/nenv at the envelope; (ii) a classical magnetic moment
µB generated by envelope triolets rotating at radii ρenv+ =

ηenv+ňc, ρenv− = ηenv−ňc, and producing currents Ienv+, Ienv−;
(iii) an anomalous magnetic moment aanml·µB generated by
Nnuc nucleus triolets (Nnuc+ = Nnuc−) of charge ±e/nnuc
rotating in the same direction as envelope triolets at radii
ρnuc+ = ηnuc+ňc, ρnuc− = ηnuc−ňc, with momentum pnuc+
≃ pnuc− = pnuc and producing currents Inuc+, Inuc−; (iv)
an internal kinetic energy T =

∑

ipic = +mc2; (v) a spin

Senv = +ℏ/2 generated by envelope triolets of momentum
penv+, penv−:

− e = e

[(

Nenv+

nenv

)

−

(

Nenv−

nenv

)

+

(

Nnuc+

nnuc

)

−

(

Nnuc−

nnuc

)]

, (1)

−eℏ

2m
= Ienv+πρ

2
env+ + Ienv−πρ

2
env−, (2)

−aanmleℏ

2m
= Inuc+πρ

2
nuc+ + Inuc−πρ

2
nuc−, (3)

∑

i

pic =
(

Nenv+penv+ + Nenv−penv−

+ Nnucpnuc
)

c, (4)

ℏ

2
= Nenv+ρenv+penv+ + Nenv−ρenv−penv−. (5)

The fact that the muon has same spin as the electron, despite
possessing a smaller Compton wavelength and the same number
of triolets according to our chemical theory [Avner, Boillot,
Richard, submitted], suggests that the angular momentum of
envelope triolets could be a constant ρenv+penv+ ≃ ρenv−penv−
≡ Ltrlt,env, yielding from (5):

ℏ = 2NenvLtrlt,env. (6)

Ltrlt,env is possibly determined by the triangular substructure of
envelope triolets made of three strongly interacting sparks, and
could be at the basis of Planck’s constant. Further constraints are
also deduced (see Values of Observables) from Equations (1–5):

nenv = Nenv− − Nenv+, (7)

nenv = (Nenv−ηenv− − Nenv+ηenv+) , (8)

aanmlnnuc = Nnuc+ (ηnuc− − ηnuc+) , (9)

Tenv + Tnuc

mc2
= 1 ≃

1

benv

(

Nenv+

ηenv+
+

Nenv−

ηenv−

)

+
Nnuc

bnucηnuc
, (10)

benv = 2Nenv, (11)

where benv and bnuc are dimensionless numbers. Assuming that
ηenv+ ≃ ηenv− ≡ ηenv ≃ 1, we deduce (in Values of Observables)
from Equations (10–11) that the kinetic energies of the envelope
and nucleus are approximately equal Tenv+ ≃ Tnuc ≃ +mc2/2,
leading to relation:

bnucηnuc = 2Nnuc. (12)

Furthermore, the electromagnetic force acting on a nucleus
triolet due to the envelope charge and current and the
electromagnetic force exerted on an envelope triolet due
to the net nucleus magnetic moment were derived but
found to be negligible when compared to intra-component
interactions. This suggests that each component is only loosely
bound to the other, almost constituting an independent
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system, and thus verifies the Virial theorem independently
(see Values of Observables), yielding for potential energies
Uenv ≃ Unuc ≃ –mc2 and total energies Eenv ≃ Enuc
≃ –mc2/2. The system of Equations (9–11) further allows
to determine ηnuc+ (Values of Observables) for each value
of Nnuc+:

ηnuc+ =
Nnuc+

bnuc






2−

aanmlbnucnnuc

2N2
nuc+

+

√

√

√

√4+

(

aanmlbnucnnuc

2N2
nuc+

)2





,

(13)

while ηnuc− is then given by Equation (9).
System cohesion and stability can be formulated by ensuring

triolets are at radial equilibrium. As triolets are electrically
charged and travel at light velocity, we use Liénard-Wichert
potentials from relativistic electrodynamics [41] to express the
radial components of electric field Eij⊥ and magnetic field Bij

emitted by triolet Tj of charge qj at retarded time t’, radius ρj and
retarded angle θ ’j, and sensed at distance Rij—electromagnetic
fields traveling at light velocity in vacuum—by triolet Ti arriving
at the vertical (angle 0), radius ρi, at time t (Figure 3A). From
known electrodynamical expressions [41] for these fields, using
cylindrical unit vectors and coordinates, and Figure 3B, we
deduce (Forces and Potentials):

Eij⊥=
qj sin γj

4πε0Rijρi
(

1+ sin γj
)2 ρ̂, (14)

Bij =
−qj

4πε0cRijρj
(

1+ sin γj
)2 ẑ, (15)

where Rij and γj are defined by:

R2ij = ρ2i + ρ
2
j − 2ρiρj cos θ

′

j , (16)

sin γj =
ρi

Rij
sin θ

′

j . (17)

Note that these fields depend on position coordinates only, not
velocities, thereby justifying the use of the Virial theorem. We
then derive expressions (Forces and Potentials) for the net radial
Lorentz force Fij⊥ due to triolet Tj exerted on triolet Ti belonging
to the same component, and for the centrifugal force Fctfg,i
experienced by triolet Ti:

Fij⊥ =
qiqj

4πε0Rij
(

1+ sin γj
)2

[

sin γj
ρi

+
1

ρj

]

ρ̂, (18)

−→
F ctfg,i =

hc

biρ
2
i

ρ̂, (19)

where bi stands for benv (respectively, bnuc) when Ti belongs
to the envelope (resp. the nucleus). In the electron at rest,
assuming triolets remain at radial equilibrium, the net radial
component of the Lorentz force exerted by other triolets
should compensate the centrifugal force. Neglecting the small
contribution of the envelope onto the nucleus and vice-versa, and
expressing equilibrium for triolet Ti along the radial direction

FIGURE 3 | Geometric diagrams. (A) The influence of electromagnetic fields

due to triolet Tj onto Ti : let triolets Ti and Tj belong to the same component

(envelope or nucleus). Triolet Tj rotates at light velocity along circular orbit of

radius ρj and arrives at angle θj at time t, but was at position Tj ’ at retarded

angle θj ’ and time t’ when it emitted electromagnetic fields that reached triolet

Ti revolving along coplanar circular orbit of radius ρi and arriving at angle 0

(vertical y axis) at time t. The retarded electromagnetic fields can be expressed

using Liénard-Wichert potentials. This figure applies to all envelope and

nucleus triolets. (B) Diagram showing vectors and angles involved in the

demonstration of the expressions of electromagnetic fields and potentials.

(C) Diagram depicting the case ρj= ρi .

and rearranging (Triolets at Radial Equilibrium), we obtain for
the envelope and nucleus:

1

α
≃

−benv

n2env

Nenv−1
∑

j∈env

ρ2i sgn
(

i · j
)

Rij
(

1+ sin γj
)2

(

sin γj
ρi

+
1

ρj

)

≡ Gi∈env (ηi) , (20)

1

α
≃

−bnuc

n2nuc

Nnuc−1
∑

j∈nuc

ρ2i sgn
(

i · j
)

Rij
(

1+ sin γj
)2

(

sin γj
ρi

+
1

ρj

)

≡ Gi∈nuc (ηi) , (21)
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where sgn(i·j) is the sign of the product of the charges
of triolets Ti and Tj, and α is the fine-structure constant,
which is found to be related to the ratio between the
centrifugal force and the net radial electromagnetic force
experienced by any single triolet inside the electron. We
assume positive and negative triolets are intertwined and
uniformly distributed along the orbits except—as negative triolets
are more numerous at the envelope—consecutive negative
envelope triolets, which presumably repel to produce stretches
of alternatively charged triolets separated by empty space
(Figure 2). Let denv designate the distance (using the number of
missing triolets as units) between the stretches. The expressions
under the sums in Equations (20–21) can be calculated by first
considering the non-retarded angular positions θj of triolets
distributed along the circular orbit, then by determining the
corresponding retarded angles θ ’j, as illustrated in Retarted
Angles, using Newton’s recursion method for instance onto
transcendental equation:

(

θj − θ
′

j

)2
= 1− 2

ρi

ρj
cos θ

′

j +

(

ρi

ρj

)2

, (22)

and then deriving γj from Equation (17). Equations (20–21) will
help us derive adequate values forNenv,Nnuc, nenv, nnuc, benv, bnuc.

The potential energy due to interactions between the nucleus
and envelope being negligible, the total potential energy of
our system is approximately Utot ≃ Uenv + Unuc, where Uenv,
and Unuc are, respectively, the envelope and nucleus potential
energies, which are evaluated in Potential Energy:

Uenv ≃
2αmc2

n2env

Nenv
∑

i∈env

Nenv−1
∑

j 6=i

sgn
(

i · j
)

Hij
(

1+ sin γj
) , (23)

Unuc ≃
2αmc2

n2nuc

Nnuc
∑

i∈nuc

Nnuc−1
∑

j 6=i

sgn
(

i · j
)

Hij
(

1+ sin γj
) , (24)

whereHij = Rij/ňc. Assuming ηenv+ ≃ ηenv− ≃ 1, we demonstrate
(Potential Energy) from benv=2Nenv (11) and Equation (20),
which expresses the radial stability of every envelope triolet, that
Equation (23) yields Uenv≃ –mc2. Likewise, assuming ηnuc+ ≃

ηnuc−, we demonstrate (Potential Energy) from bnucηnuc = 2Nnuc

(12) and Equation (21), which expresses the radial stability of
every nucleus triolet, that Equation (24) yields Unuc ≃ –mc2.
Hence, we find: Utot ≃ Uenv + Unuc ≃ −2mc2, as expected from
the Virial theorem, and recover electron mass. As substructure
stability implies radial equilibrium for all envelope and nucleus
triolets (20–21), it allows predicting electron mass. We find it
remarkable that the same number of triolets allows to recover
both substructure stability and electron mass.

DETERMINATION OF SUITABLE
CONFIGURATIONS

The problem then reduces to determining triolet configurations,
i.e., sets of values for {nenv, nnuc, Nenv+, Nenv−, Nnuc, benv, bnuc,
ηenv+, ηenv−, ηnuc+, ηnuc−, denv}, that verify radial equilibrium

for every triolet and correctly predict the total energy. We shall
estimate the stability and total energy in three different models
of the envelope successively, each lying at a different level of
approximation. The three models are: the one-orbitmodel, where
all envelope triolets rotate on the same orbit ηenv+≃ηenv−≡ηenv;
the two-orbits model, where positively-charged envelope triolets
revolve on orbit of radius ηenv+ and negative triolets at radius
ηenv−; the n-orbits model where every envelope triolet i rotates
on a circular orbit of specific but fixed radius ηi.

We shall first estimate the number of triolets Nenv present
in the envelope by considering the one-orbit model. Assuming
ηenv+ ≃ ηenv− and ηnuc+ ≃ ηnuc−, we have Rij ≃ 2ρicosγj
(Figure 3C) both at the envelope and nucleus, and Equations
(20–21) can be approximated to:

1

α
≃

−benv

2n2env

Nenv−1
∑

j∈env

sgn
(

i · j
)

cos γj
(

1+ sin γj
) ≃ Gi∈env (ηi) , (25)

1

α
≃

−bnuc

2n2nuc

Nnuc−1
∑

j∈nuc

sgn
(

i · j
)

cos γj
(

1+ sin γj
) ≃ Gi∈nuc (ηi) . (26)

Recalling that benv is related to Nenv via benv = 2Nenv (11), and
setting values for input parameters {nenv, denv}, the iteration over
Nenv values in Equation (25) enabled us to determine values
for benv and Nenv approximately verifying Equations (25) and
(11) simultaneously. Due to the asymmetry in the arrangement
of envelope triolets, we found these Equations were satisfied
for different values of Nenv depending on the triolet Ti under
consideration. In the case nenv = 6, denv = 0 for instance, we
found positive triolets approximatively satisfied these conditions
for Nenv ≃ 108, while negative triolets did so for Nenv ≃ 144,
thus justifying the necessity of considering two distinct orbits
in the envelope. Although these figures should be regarded as
merely indicative, cases denv = 1 and denv = 2 also pointed at
average value Nenv = 126, corresponding to Nenv+ = 60 and
Nenv−= 66, and we shall be considering only this case in the
remainder of our analysis. For the nucleus, in the absence of a
constraint like Equation (11), values for bnuc and ηnuc satisfying
Equations (26) and (12) simultaneously were determined for
every iterated value of Nnuc. However, when accounting for the
correction due to envelope current (first two terms, Triolets at
Radial Equilibrium):

Genv>i∈nuc ≈
bnucsgn (i)

nnuc

[

η3nuc

2
+

3η4nuc
8

]

, (27)

the best estimate appeared to be Nnuc = 18 (Table 1). Note that
input values other than nenv = 6, nnuc = 2 did not yield any
possible solutions.

Now, considering nenv = 6, nnuc = 2, denv = 2, ηenv+ ≃ ηenv− ≃

1 (one-orbit model), and putting in the value obtained above for
Nenv, we evaluated potential energies Uenv, Unuc using Equations
(13, 23–24) and found Uenv = −0.997·mc2 (Table 2), Unuc

≃ −1.000·mc2 (Table 1). The total potential energy therefore
amounts to Utot ≃ −1.997·mc2, close to our expected result.
Hence, recalling that kinetic energies satisfy Tenv ≃ Tnuc ≃
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TABLE 1 | Stability and energy of various nucleus configurations.

Nnuc bnuc ηnuc+ ηnuc– Gnuc+ Gnuc– Genv>nuc Unuc Tnuc

6 553.42 0.0213 0.0221 127.69 146.51 ±0.001 −0.9996 +0.5001

8 425.49 0.0373 0.0379 132.47 141.62 ±0.006 −0.9998 +0.4999

12 290.89 0.0823 0.0827 135.02 138.21 ±0.043 −1.0000 +0.5000

16 221.03 0.1446 0.1449 136.29 137.78 ±0.186 −1.0002 +0.5001

18 197.35 0.1823 0.1825 136.49 137.58 ±0.340 −1.0005 +0.5000

20 178.27 0.2243 0.2245 136.63 137.45 ±0.588 −0.9999 +0.5000

22 162.55 0.2706 0.2708 136.71 137.35 ±0.970 −1.0003 +0.4999

24 149.39 0.3212 0.3214 136.79 137.29 ±1.538 −1.0000 +0.5000

At the nucleus, setting nnuc = 2, values for bnuc and nucleus radii ηnuc+, ηnuc− are

determined for several values of Nnuc, the number of nucleus triolets, according to

Equations (9, 12, 13, 26), so as to yield Unuc≃ –mc2, Tnuc ≃ +mc2/2 and satisfactory

stability values Gnuc+, Gnuc− (value 137.03 stands for stability). Accounting for first

correction terms Genv>nuc due to envelope current and specified by Equation (27), the

best estimate seems to be Nnuc= 18. Nucleus potential energy Unuc and kinetic energy

Tnuc are expressed in terms of mc
2.

TABLE 2 | Stability and energy of various envelope models.

Model ηenv+ ηenv– Nenv <Gi> K Uenv Tenv

One orbit 1.0 1.0 120 131.4 41.7 −0.949 +0.5000

126 136.7 48.0 −0.996 +0.5000

132 157.5 46.5 −1.139 +0.5000

Two fixed orbits 0.977 1.023 120 124.6 17.3 −0.962 +0.4997

126 130.0 16.1 −1.011 +0.4997

132 148.7 16.1 −1.155 +0.4997

Specific orbits various various 126 137.7 3.2 −0.975 +0.5020

The potential energy Uenv , kinetic energy Tenv , and average absolute stability deviation

K are shown for the three considered envelope models, involving triolets revolving on (i)

a single orbit at reduced Compton wavelength, (ii) two fixed envelope orbits ηenv+ and

ηenv−, (iii) Nenv orbits of specific but fixed radii, with parameters set to nenv = 6, denv

= 2. Energies are expressed in terms of mc2, where m is the mass of the electron and

c is light velocity. It can be seen that for the single orbit and two fixed orbits models,

the solution Nenv+ = 60, Nenv− = 66 yields accurate potential energy values. Although

in the one-orbit or two-orbits models, total energy of the envelope Eenv is close to

–mc2/2, K stability values strongly diverge from 0, indicating that triolets do not verify radial

equilibrium. A configuration of fixed specific orbits yielding overall satisfactory energy and

average stability values (value 137.03 stands for stability) has been determined using our

optimization algorithm.

+mc2/2, then Ttot ≃ Tenv + Tnuc ≃ +mc2, Etot ≃ Ttot+ Utot

≃ –mc2, and the mass of the electron is deduced directly from
our model substructure. Likewise, since the muon is seen as an
excited state of the electron [6] according to our chemical theory
[Avner, Boillot, Richard, submitted], presumably displaying a
similar arrangement of triolets albeit on a smaller scale, muon
mass can also be successfully calculated by replacing m by
muon mass mµ in expressions (23–24), or equivalently ňc by the
reduced muonic Compton Wavelength ňmuon.

We next evaluated the cohesion and stability of individual
triolets. For the symmetric nucleus, we computed the right-hand
side Gnuc of Equation (21) for every triolet; for nnuc = 2, Nnuc

= 18 for instance, accounting for the correction due to the
envelope current, we obtainedGnuc(ηnuc+)≃ 136.83,Gnuc(ηnuc−)
≃ 137.24 (Table 1). For the asymmetric envelope, which can be

TABLE 3 | Stability of individual envelope triolets.

Triolet One orbit Two fixed orbits Specific orbits

# +/– ηi Gi ηi Gi ηi Gi

1 – 1.0 75.4 1.023 108.4 1.761 137.0

2 + 1.0 189.4 0.977 145.4 0.861 114.0

3 – 1.0 105.2 1.023 134.5 0.880 137.0

4 + 1.0 178.8 0.977 134.3 0.931 139.5

5 – 1.0 110.4 1.023 139.7 0.915 137.0

6 + 1.0 176.0 0.977 131.3 0.947 145.3

7 – 1.0 111.9 1.023 141.1 0.925 137.3

8 + 1.0 175.4 0.977 130.7 0.958 137.0

9 – 1.0 111.8 1.023 141.0 0.987 143.6

10 + 1.0 176.0 0.977 131.4 0.974 137.0

11 – 1.0 110.6 1.023 139.7 1.012 142.0

12 + 1.0 177.8 0.977 133.2 0.977 141.7

13 – 1.0 108.2 1.023 137.1 0.968 143.1

14 + 1.0 181.0 0.977 136.5 0.975 137.0

15 – 1.0 103.9 1.023 132.5 1.019 137.5

16 + 1.0 186.7 0.977 142.3 0.998 137.0

17 – 1.0 96.1 1.023 124.0 1.045 137.0

18 + 1.0 198.2 0.977 154.0 1.004 144.0

19 – 1.0 78.0 1.023 104.4 1.017 133.8

20 + 1.0 231.7 0.977 188.2 1.043 137.0

21 – 1.0 −12.0 1.023 1.0 1.130 137.0

K 48.0 16.1 3.2

The stability of individual envelope triolets belonging to the first stretch—the five other

stretches of 21 triolets being identical in the Nenv = 126 case—is evaluated by determining

Gi and comparing it to 1/α ≃ 137.036, in the three envelope models (single orbit, two fixed

orbits, n fixed orbits of specific radii), with input parameters set to nenv = 6, Nenv+ = 60,

Nenv− = 66, denv = 2. The one-orbit model was evaluated at ηenv=1 corresponding to

radius ňc, the reduced Compton wavelength. The two-orbits model was evaluated for

radii ηenv+ = 0.977, ηenv− = 1.023, that yielded acceptable energy value (Table 2). In the

model with specific radii, our optimization algorithm converged toward the 21 different radii

shown here, together with their corresponding individual stability value Gi (value 137.03

stands for stability). The average absolute deviation K to 1/α is supplied for the three

envelope models.

divided into six identical stretches of 21 triolets in the case Nenv

= 126, we computed the right-hand sides Genv of Equation (20)
for every triolet belonging to the first stretch and compared the
results with the left-hand side 1/α ≃ 137.036, which they should
yield if triolets were truly at radial equilibrium. For the one-
orbit model, setting nenv = 6, values of Genv disagreed with the
expected value for all values of denv (the case denv = 2 is given
in Table 3). Clearly, in these conditions at least, the centrifugal
and net electromagnetic forces fail to compensate and to ensure
radial equilibrium, one dominating over the other, and triolets
would be moving radially as well as azimuthally. Therefore,
we considered the two-orbits model with ηenv+≃ 0.977, ηenv−
≃ 1.023, for which we obtained an acceptable energy value
(Table 2). Once again, we found that radial equilibrium was not
verified for many envelope triolets, especially for consecutive
negative triolets or those adjacent to them (Table 3). Hence,
we decided to complicate our model again and considered
envelope triolets orbiting at various but fixed radii ρi (n-orbits
model) instead of the probably too general ρenv+ and ρenv−. We
heuristically determined fixed radii exhibiting reasonable stability
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for all envelope triolets, then used an optimization algorithm,
described in Optimization Algorithm, to make every triolet tend
toward radial equilibrium, minimizing criterion K, the average
absolute deviation from 1/α per triolet:

K =
1

Nenv

Nenv
∑

i

∣

∣

∣

∣

Gi∈env (ηi)−
1

α

∣

∣

∣

∣

, (28)

which effectively constitutes a measure of global stability of
envelope triolets. Our algorithm converged toward a solution
yielding acceptable energy and global stability (Table 2). The
stability values Genv(ηi) of individual envelope triolets belonging
to the first stretch in the n-orbits model are shown in Table 3:
most values appeared to be close to 1/α. We found that our
optimization algorithm nicely converged toward stable solutions.
However, the latter were highly dependent on initial conditions,
and a thorough optimization study is needed to ensure local
minima are avoided.

DISCUSSION

In this study, we presented a relativistic electrodynamical
model of the electron based on natural interpretations of its
associated observables. Our electron model is composed of
triolets that revolve along coplanar circular orbits constituting
an envelope and nucleus, which could be responsible for its
wavelike and corpuscular behaviors, respectively. These two
components would thus constitute a natural solution to wave-
corpuscle duality. Capturing the values of charge, spin, magnetic
moments, Compton wavelength and kinetic energy, we created
a triolet-based configuration that verified cohesion and stability
without invoking Poincaré stresses, and predicted electron and
muon mass, defined as electromagnetic cohesion energy, directly
from substructure stability. Importantly, our model accounts
for kinetic energy and presents a negative cohesion potential
energy, in agreement with the Virial theorem. In our model, the
numbers of triolets in the envelope and nucleus are the adjusting
parameters, and the same numbers are found to account both
for substructure stability and electron mass. Notably, electron
mass can be derived directly from an expression of substructure
stability. Our study therefore implements Lorentz’ hypothesis,
which advocates the electromagnetic origin of mass, from an
objective criterion, even if satisfaction of the criterion itself relies
on two parameters, i.e., the numbers of triolets in the envelope
and nucleus. Noteworthy, these parameters are not arbitrary,
but instead are strongly constrained by several relations (11, 12,
20, 21, 27) that fix their values in our model. Altogether, we
believe our study establishes that deterministic electrodynamical
models of subatomic particles can be constructed beneath
the Compton scale, in agreement with an objectively realist
conception of physics.

Envelope triolets could also fluctuate radially or otherwise
in time, possibly constituting a periodic wave that revolves at
light velocity. This system has not been investigated here, but
is of interest because this periodic wave could correspond to
the wave associated to the electron, first imagined by de Broglie

and later represented by wavefunction |ψ> in Schrödinger’s
wave mechanics or Dirac’s quantum mechanics. It is conceivable
that a wave made of envelope triolets, if it exists, attracts and
drives the nucleus in the manner of the de Broglie-Bohm guiding
wave [23, 24], sensing the electromagnetic fields generated by
the envelopes belonging to other particles. Hence, envelope
triolets could undulate and incarnate wavefunction |ψ>, whose
concrete existence has recently been reconsidered [42]. Note
further that nucleus triolets could also form a wave, reminiscent
of the second wave described in de Broglie’s double solution
theory [23]. Specifically, triolets could propagate in a highly
dynamical manner and experience irregular fluctuations, as in the
hydrodynamical model of Bohm and Vigier [25]. Importantly,
it has been suggested that solutions of this type could account
both for quantum phenomena [26] and for quantum principles
[37]. Bell also wrote that such solutions were compatible with the
predictions of quantummechanics [43]. Further, it is conceivable
that such a complex envelope can exhibit several stable states,
much like modes for a vibrating rope. These could correspond
to the eigenstates of quantum mechanics. In the general case,
the envelope would be in an unstable state, but could converge
toward one of its eigenstates upon measurement, which could be
conceived as the sum of interactions between system subparticles
and apparatus subparticles. Such propositions constitute an
interpretation of von Neumann’s reduction of the wave packet
[44], and would provide a possible solution to the measurement
problem of quantum mechanics [45].

These considerations suggest that quantum theories,
which encompass all subatomic phenomena and whose
standard interpretation states that everything is intrinsically
probabilistic, could eventually emerge [46, 47] from a relativistic
electrodynamical description in agreement with the deterministic
paradigm, which supports the causality principle, objective
reality, and governs macroscopic physics. In this perspective,
Schrödinger and Dirac Equations would constitute high-level
descriptions of the dynamics of envelope triolets. Our study
therefore provides new insight regarding the unification of
the two apparently irreconcilable paradigms in physics: the
deterministic and quantum paradigms.

Now, how exactly does the electron appear to be point-
like in corpuscular interactions? How does our model relate
to the observation that the electron seems spherical [48],
or that its spin, charge and orbital components seem to be
separable [49–51]? How would the moving electron, which
exhibits a wave satisfying de Broglie relation p=h/λ, be described?
Could our description be regarded as an attempt to create a
corpuscular counterpart to wave mechanics? Could analogous
electrodynamical models be similarly constructed for other
subatomic particles [52]? Could our extended model of the
electron bring insight to the nature of molecular bonding, or
to the arrangement of electrons inside atoms? And finally,
what would be the implications for the interpretation of
quantum mechanics [45]? How would quantum properties,
such as the existence of eigenstates, the measurement problem
or entanglement, and quantum phenomena, such as the
two-slits experiment or the one-dimensional potential well,
be understood in the light of our model? We believe the
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aforementioned questions should stimulate discussion and foster
novel investigations.

METHODS

Values of Observables
Charge
The charge of the electron is given by the Nenv+ triolets of
charge (+e/nenv), theNenv− triolets of charge (–e/nenv), theNnuc+

triolets of charge (+e/nnuc) and the Nnuc− triolets of charge
(–e/nnuc):

−e = e

[(

−Nenv−

nenv

)

+

(

Nenv+

nenv

)

+

(

−Nnuc−

nnuc

)

+

(

Nnuc+

nnuc

)]

.

Assuming the nucleus is neutrally charged (hypothesis B),
implying Nnuc+= Nnuc−, we deduce:

nenv = Nenv− − Nenv+. (A1)

Nucleus and Envelope Orbits
Let us suppose triolets of charges (+e/nenv), (–e/nenv), (+e/nnuc),
(–e/nnuc) revolve along four coplanar circular orbits of radii:















ρenv+ = ηenv+ňC

ρenv− = ηenv−ňC

ρnuc+ = ηnuc+ňC

ρnuc− = ηnuc−ňC

(A2)

where ňc = ℏ/mc is the reduced Compton wavelength, and η’s are
dimensionless real numbers.

Classical and Anomalous Magnetic Moments
Let us express the classical magnetic moment µB= –eℏ/2m =
∑

iIiAi=
∑

iQiAi/ti, where Ii is the current generated by triolet
Ti, Qi its charge, ti = c/2πρi the time taken to go through a full
orbit at light velocity c, and Ai the area formed by this orbit.
The magnetic moment is due to a net charge (–e) made of Nenv

= Nenv++ Nenv− triolets revolving in the same direction along
envelope orbits of radii ρenv+ and ρenv−:

µB =
−eℏ

2m
=

Qenv+Aenv+

tenv+
+

Qenv−Aenv−

tenv−
,

−eℏ

2m
=

Nenv+e

nenv

cπ ρ2env+
2πρenv+

+
Nenv− (−e)

nenv

cπρ2env−
2πρenv−

,

−eℏ

2m
=

ec

2nenv
(Nenv+ηenv+ − Nenv−ηenv−)

ℏ

mc
,

(Nenv−ηenv− − Nenv+ηenv+) = nenv. (A3)

As the anomalous magnetic momentµnuc = –aanml(eℏ/2m), with
aanml ≃ 0.001159, is relatively small, let us assume it is produced
by an equal number Nnuc+ = Nnuc− of positive and negative
triolets of charge (±e/nnuc) revolving in the same direction as
envelope triolets along nucleus orbits of slightly different radii
due to the net envelope charge:

µnuc = −aanml
eℏ

2m
=

Qnuc+Anuc+

tnuc+
+

Qnuc−Anuc−

tnuc−
,

Nnuc+ (ηnuc− − ηnuc+) = aanmlnnuc. (A4)

Virial Theorem
The virial theorem states that if a system remains bound, and
if its inner potentials do not depend on velocities but only on
positions, then the kinetic and potential energies take on definite
shares in the total energy, depending on the degree n of the
forces that apply. As the electron is a bound system, and as
in our system the magnetic force will be found to depend on
position coordinates ρ and γ only, the theorem applies and, for
electromagnetic interactions in r−2, it stipulates that:







T = mc2

U = −2mc2

E = T + U = −mc2
(A5)

where T, U, and E, respectively, designate the internal kinetic
energy, internal potential energy, and total internal energy of the
system. Note that the potential and total energies are negative, as
they should be for a bound system.

Kinetic Energy
The kinetic energy is given by:

T = mc2 =
∑

i

pic = Nenv+penv+c+ Nenv−penv−c

+ Nnuc+pnuc+c+ Nnuc−pnuc−c, (A6)

suggesting:















penv+ = mc/Kenv+

penv− = mc/Kenv−

pnuc+ = mc/Knuc+

pnuc− = mc/Knuc−

, (A7)

where the K’s remain to be determined, thus yielding from
Equation (A6):

1 =
Nenv+

Kenv+
+

Nenv−

Kenv−
+

Nnuc+

Knuc−
+

Nnuc+

Knuc−
. (A8)

Note that we may assume that nucleus triolets possess
comparable momentum pnuc+ ≃ pnuc− = pnuc, and that their
orbit radius is approximately ρnuc+ ≃ ρnuc− = ρnuc, since (ρnuc+–
ρnuc−) is very small according to Equation (A4).

Spin
Since particles as different as quarks and leptons (which possess
different numbers of sparks according to our chemical model
[Avner, Boillot, Richard, submitted]) share same spin, the latter
can be interpreted as being the total angular momentum the
particle conveys to the objects it encounters, i.e., the sum of
the angular momenta of its envelope triolets. For the electron,
assuming all triolets revolve in the same positive direction, it is
written using Equations (A2, A6):

S = +
ℏ

2
=
∑

i

ρipi = Nenv+ρenv+penv+ + Nenv−ρenv−penv−, (A9)
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1

2
=

Nenv+ηenv+

Kenv+
+

Nenv−ηenv−

Kenv−
, (A10)

Further, as the muon is composed of the same number of triolets
as the electron according to our chemical model and exhibits a
Compton length much smaller than that of the electron [Avner,
Boillot, Richard, submitted], spin ℏ/2 is thus independent of the
radii of triolets’ orbits. A necessary and sufficient condition is
then that variables K’s be proportional to η’s:















Kenv+ = benv+ηenv+
Kenv− = benv−ηenv−
Knuc+ = bnucηnuc+
Knuc− = bnucηnuc−

(A11)

where benv+, benv−, bnuc+, bnuc− are values independent of radii,
in order that the η’s cancel out in Equation (A10), yielding:

1

2
=

Nenv+

benv+
+

Nenv−

benv−
. (A12)

The angular momentum of triolet i is given by:

Li = piρi =
mc

biηi
· ηi

ℏ

mc
=

ℏ

bi
, (A13)

implying for spin and kinetic energy:

benv

2
= Nenv+ + Nenv−, (A14)

1 =
Nenv+

benvηenv+
+

Nenv−

benvηenv−
+

Nnuc+

bnucηnuc+
+

Nnuc−

bnucηnuc−
.

(A15)

Definition of Planck’s Constant
Supposing angular momentum Ltrlt,env is a constant common to
every envelope triolet, the expression for the spin, from Equation
(A9), due to the envelope is:

ℏ

2
= Nenv+Ltrlt,env + Nenv−Ltrlt,env = NenvLtrlt,env,

and thus:

ℏ = 2NenvLtrlt,env, (A16)

meaning that the constant angular momentum Ltrl,env common
to every envelope triolet could be at the basis of Planck’s constant.

Kinetic Energy of the Nucleus and Envelope
From Equations (A6, A7, A11), the kinetic energy of the nucleus
is given by:

Tnuc = Nnuc+pnuc+c+ Nnuc−pnuc−c

=
mc2Nnuc+

bnuc

(

1

ηnuc+
+

1

ηnuc−

)

. (A17)

Likewise, the kinetic energy of the envelope is:

Tenv = Nenv+penv+c+ Nenv−penv−c,

Tenv =
mc2

benv

(

Nenv+

ηenv+
+

Nenv−

ηenv−

)

. (A18)

Now, assuming ηenv+≃ ηenv− ≃ 1 according to Schrödinger’s
Zitterbewegung, Tenv becomes, using Equation (A14):

Tenv ≃
mc2

benv
(Nenv− + Nenv+) ≃

1

2
mc2, (A19)

and thus:

Tnuc = T − Tenv ≃
1

2
mc2. (A20)

The forthcoming study of the interactions between the nucleus
and envelope will show that they are negligible compared
to intra-component forces (nucleus onto itself, envelope onto
itself). The two components therefore almost behave as two
bound independent systems, and thus presumably obey the Virial
theorem separately. Hence, since we haveTnuc ≃Tenv≃mc2/2, we
should also obtain Unuc ≃ Uenv≃ –mc2 so that the total energies
amount to: Enuc ≃ Eenv ≃ –mc2/2 and Etot≃ –mc2.

Determination of ηnuc+ and ηnuc-
In order to determine ηnuc+ and ηnuc− , considering Equations
(A17) and (A20), we have:

(

1

ηnuc+
+

1

ηnuc−

)

≃
bnuc

2Nnuc+
. (A21)

The latter expression, together with Equation (A4), can allow us
to determine ηnuc+ and ηnuc− in terms of Nnuc+, aanml, nnuc,
and bnuc:

bnuc

2Nnuc+
≃

1

ηnuc+
+

1
(

ηnuc+ +
aanmlnnuc
Nnuc+

) ,

1

ηnuc+

(

bnucηnuc+

2Nnuc+
− 1

)

=
1

ηnuc+

(

1

1+ aanmlnnuc
Nnuc+ηnuc+

)

,

1 =

(

1+
aanmlnnuc

Nnuc+ηnuc+

)(

bnucηnuc+

2Nnuc+
− 1

)

,

η2nuc+

(

bnuc

2Nnuc+

)

+ ηnuc+

(

aanmlbnucnnuc

2N2
nuc+

− 2

)

−

(

aanmlnnuc

Nnuc+

)

= 0,

1 = 4+

(

aanmlbnucnnuc

2N2
nuc+

)2

,

and taking the positive solution, we find:

ηnuc+ =
Nnuc+

bnuc






2−

aanmlbnucnnuc

2N2
nuc+

+

√

√

√

√4+

(

aanmlbnucnnuc

2N2
nuc+

)2





,

(A22)

and ηnuc− can then be derived from Equation (A4).

Frontiers in Physics | www.frontiersin.org 10 July 2020 | Volume 8 | Article 213

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Avner and Boillot Electron Mass From Substructure Stability

Forces and Potentials
Centrifugal Force of a Triolet
Assuming triolets travel at light velocity, the centrifugal force
[16] of triolet Ti, revolving along orbit of radius ρi = ηiňc, is in
cylindrical coordinates:

Fctf ,i =
pivi

ρi
=

mc · c

biηiρi
=

ℏc

biρ
2
i

, (B1)

where bi stands for benv (respectively, bnuc) when Ti belongs to
the envelope (resp. the nucleus). This expression applies both to
nucleus and envelope triolets.

Electromagnetic Force Exerted on Nucleus Triolet i

Due to Current at Envelope
The electromagnetic force exerted onto nucleus triolet i is given
by the Lorentz force written using scalar potential V and vector
potential A:

−→
F env±>i =

sgn(i) · e

nnuc

[

−
−→
∇ Venv±>i −

∂

∂t

−→
A env±>i + cθ̂

×
(−→
∇ ×

−→
A env±>i

)]

, (B2)

if all triolets revolve in the same positive direction. The
expressions for the scalar and vector potentials and their
derivatives must be determined.

As a net charge (–e) circulates around the envelope, the scalar
potential and vector potential, for rnuc < renv and cos θ = 0 (since
the orbit is in the plane z = 0), are given [41] by:

Venv±>i∈nuc =
Qenv±

4πε0renv±

∞
∑

l=0,2,4...

[Pl (0)]
2
(

ρi

ρenv±

)l

, (B3)

Aenv±>i∈nuc =
µ0Ienv±

2

∞
∑

l=1,3,5...

[

P1l (0)
]2

l
(

l+ 1
)

(

ρi

ρenv±

)l

, (B4)

where the Pl(x) and Pl
1(x), respectively, designate the Legendre

polynomials and associated Legendre polynomials, yielding:

Venv±>i∈nuc ≃
Qenv±

4πε0

[

1

ρenv±
+

1

4

ρ2i

ρ3env±
+

9

64

ρ4i

ρ5env±

]

, (B5)

∂Venv±>i∈nuc

∂ρnuc±
≃

Qenv±

4πε0

[

1

2

ρi

ρ3env±
+

9

16

ρ3i

ρ5env±

]

. (B6)

Recalling µ0= 1/(ε0c2), v= c and Qenv± =±Nenv±e/nenv:

µ0Ienv±

2
=
µ0Qenv±

2tenv±

≃
1

2ε0c2

(

±Nenv±e

nenv

)(

c

2πρenv±

)

, (B7)

Aenv±>i∈nuc ≃
±Nenv±e

4πε0cnenv

[

1

2

ρi

ρ2env±
+

3

16

ρ3i

ρ4env±

]

, (B8)

∂

(

Aenv±>i∈nucθ̂
)

∂tnuc
= −Aenv±>i∈nuc

c

ρnuc
ρ̂

≃
− (±Nenv±e)

4πε0nenv

[

1

2ρ2env±
+

3

16

ρ2i

ρ4env±

]

ρ̂, (B9)

−→
∇ ×

−→
A =

∣

∣

∣

∣

∣

∣

ρ̂ θ̂ k̂
∂
∂ρ

∂
ρ∂θ

∂
∂z

0 Aenv±>i∈nuc 0

∣

∣

∣

∣

∣

∣

=
∂ (Aenv±>i∈nuc)

∂ρnuc
k̂

≃
(±Nenv±e)

4πε0cnenv

[

1

2ρ2env±
+

9

16

ρ2i

ρ4env±

]

k̂. (B10)

The electromagnetic force (B2) exerted on a nucleus triolet Ti by
the envelope is then given by:

−→
F env±>i∈nuc ≃

−sgn (i)

nnuc

(

±Nenv±e
2
)

4πε0nenvρ2env±

[

1

2

ρi

ρenv±
+

3

8

ρ2i

ρ2env±

+
9

16

ρ3i

ρ3env±

]

ρ̂. (B11)

Electromagnetic Force Exerted on Envelope Triolet i

Due to Current Flowing at Nucleus
According to Equation (A3), the magnetic moment due to the
nucleus is:

µnuc =
−aanmleℏ

2m
=

Nnuc+ec

2nnuc
(ρnuc+ − ρnuc−) . (B12)

The vector potential and its derivatives are given [41] by:

−→
A nuc>i∈env ≃

µ0

4π

µnuc

ρ2i
θ̂ , (B13)

−→
A nuc>i∈env ≃

1

8πε0c

Nnuc+e

nnuc

(ρnuc+ − ρnuc−)

ρ2i
θ̂ , (B14)

∂

(

Anuc>i∈envθ̂
)

∂ti
= −Anuc>i∈env

c

ρi
ρ̂

=
−1

8πε0

Nnuc+e

nnuc

(ρnuc+ − ρnuc−)

ρ3i
ρ̂ (B15)

−→
∇ ×

−→
A =

∣

∣

∣

∣

∣

∣

ρ̂ θ̂ k̂
∂
∂ρ

∂
ρ∂θ

∂
∂z

0 Anuc>i∈env 0

∣

∣

∣

∣

∣

∣

=
∂ (Anuc>i∈env)

∂ρi
k̂

=
(−1)

4πε0c

Nnuc+e

nnuc

(ρnuc+ − ρnuc−)

ρ3i
k̂. (B16)

As the net nucleus charge is zero, and using Equation (A4), the
force is defined by:

−→
F nuc>i∈env =

sgn(i) · e

nenv

[

−
∂

∂t

−→
A nuc>i + cθ̂j

(−→
∇ ×

−→
A nuc>i

)

]

,

−→
F nuc>i∈env =

3

8πε0

sgn (i) e2Nnuc+

nnucnenv

(ηnuc+ − ηnuc−) ňC

ρ3i
ρ̂,

−→
F nuc>i∈env =

−3

8πε0

sgn (i) e2

nenv

aanmlňC

ρ3i
ρ̂. (B17)
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Electromagnetic Force Exerted on Triolet i at Radius

ρi Due to Triolet j at Radius ρj

Every triolet experiences the fields emitted by all other triolets
belonging to the same or adjacent orbit in the same component.
Here we estimate the electromagnetic field and force exerted by a
single triolet revolving on the same or adjacent orbit.

Let trioletTj’ (ρjsin θ ’j, ρjcos θ ’j) of charge qj, revolving at light
velocity on circular orbit of radius ρj, be positioned at angle θ ’j at
retarded time t’, and emitting an electromagnetic field received at
time t by triolet Ti(0, ρi) of charge qi revolving at light velocity on
circular orbit of radius ρi, and arriving at angle θi = 0 on vertical
axis y (Figure 3A). We have:

−−→
TjTi

(

−ρj sin θ
′

j

ρi − ρj cos θ
′

j

)

,

TjTi
2 = ρ2i + ρ

2
j − 2ρiρj cos θ

′

j ≡ R2ij, (B18)

n̂ji =

−−→
TjTi

TjTi





−
ρj
Rij

sin θ
′

j

ρi−ρj cos θ
′

j

Rij



 , (B19)

Rij =
√

ρ2i + ρ
2
j − 2ρiρj cos θ

′

j . (B20)

The trajectory, velocity and acceleration of triolet Tj are,
respectively, given by:

−→w j

(

t
′
)

= ρj

(

sinωt
′
x̂+ cosωt

′
ŷ
)

, (B21)

−→v j

(

t
′
)

= ρjω

(

cosωt
′
x̂− sinωt

′
ŷ
)

, (B22)

−→a j

(

t
′
)

= −ρjω
2
(

sinωt
′
x̂+ cosωt

′
ŷ
)

, (B23)

with ω being the angular velocity, satisfying relations c= ρω and
θ ’ = ωt’. Since v= c, β = v/c= 1, we also have:

ρ̂j







sin θ
′

j

cos θ
′

j

0






, β j







cos θ
′

j

− sin θ
′

j

0






, β̇ j







−c sin θ
′

j /ρj

−c cos θ
′

j /ρj

0







=
−c

ρj
ρ̂j, (B24)

g = 1− βj·n̂ji = 1− cos
(π

2
+ γj

)

= 1+ sin γj. (B25)

The electric and magnetic fields emitted by Tj and received by Ti
are given [41] by:

Ej =
qj

4πε0





(

n̂ji − β j

)

(

1− β2
)

g3R2ij
+

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

cg3Rij



 ,(B26)

Bj =
µ0qj

4π





(

vj × n̂ji
) (

1− β2
)

g3R2ij
+

(

β j × n̂ji

) (

β̇ j·n̂ji

)

+ gβ̇ j×n̂ji

g3Rij



 .

(B27)

From Figure 3B, it can be seen that:

β̇ j·n̂ji =
c

ρj
cos γj, (B28)

cos
γ̄ j

2
=

1

2

∣

∣

∣
n̂ji − β j

∣

∣

∣
, (B29)

cos
γ̄ j

2
=

√

1

2

(

1+ cos γ̄ j

)

=

√

1

2

(

1+ sin γj
)

. (B30)

And thus:

n̂ji ·
(

n̂ji − β j

)

=
∣

∣

∣
n̂ji − β j

∣

∣

∣
· cos

γ j

2
= 2 cos2

γ j

2
= 1+ sin γj. (B31)

From Equations (B25, B28) and identity: a×(b×c) = (a·c)b–
(a·b)c, we deduce:

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

=
(

β̇ j · n̂ji

) (

n̂ji − β j

)

−
[

n̂ji ·
(

n̂ji − β j

)]

β̇ j,

n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

=
c

ρj
cos γj

(

n̂ji − β j

)

−
(

1+ sin γj
)

β̇ j,

(B32)

implying, since 1–β2 = 0 and using Equations (B24, B25, B32):

Ej =
qj

4πε0





n̂ji ×
[(

n̂ji − β j

)

× β̇ j

]

cg3Rij



 ,

Ej =
qj

4πε0Rijρj

[

(

n̂ji − β j

) cos γj
(

1+ sin γj
)3 + ρ̂j

1
(

1+ sin γj
)2

]

.

(B33)

From Figure 3B, we also have:

β j × n̂ji = − sin
(π

2
+ γj

)

ẑ = − cos γjẑ, (B34)

β̇ j×n̂ji = −
cρ̂j

ρj
×n̂ji = −

c

ρj
sin
(

π − γj
)

ẑ = −
c

ρj
sin γjẑ, (B35)

yielding, using Equations (B27, B28) and µ0 = 1/(ε0c2):

Bj =
µ0qj

4π

[

− c
ρj
cos γj cos γj −

c
ρj
(1+ sin γj) sin γj

(1+ sin γj)3Rij

]

ẑ,

Bj =
−qj

4πε0cRijρj
(

1+ sin γj
)2 ẑ. (B36)

The magnetic force is directed along ρi since Bj is along z. But
to express the equilibrium we need to find the component of Ej
along ρi, and thus we need:

n̂ji·ρ̂i =
1

Rij

(

ρi − ρj cos θ
′

j

)

, (B37)

ρ̂i·
(

−β j

)

= cos
(

θ
′

j −
π

2

)

= sin θ
′

j , (B38)

ρ̂i·ρ̂j = cos θ
′

j , (B39)

yielding from Equation (B33):

Eji⊥=
qj

4πε0Rijρj

[

1

Rij

(

ρi − ρj cos θ
′

j

) cos γj
(

1+ sin γj
)3
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+
sin θ

′

j cos γj
(

1+ sin γj
)3 +

cos θ
′

j
(

1+ sin γj
)2

]

ρ̂. (B40)

This can be rearranged by expressing θ ’j as a function of γj and
vice versa. From Equations (B19, B24):

cos γj = −ρ̂j·n̂ji = − sin θ
′

j

(

−
ρj

Rij
sin θ

′

j

)

− cos θ
′

j

(

ρi − ρj cos θ
′

j

Rij

)

,

cos γj =
1

Rij

(

ρj − ρi cos θ
′

j

)

. (B41)

Similarly, from Equation (B28):

sin γj ẑ = ρ̂j×n̂ji =

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

sin θ
′

j cos θ
′

j 0

−
ρj
Rij

sin θ
′

j

ρi−ρj cos θ
′

j

Rij
0

∣

∣

∣

∣

∣

∣

∣

∣

,

sin γj =
ρi

Rij
sin θ

′

j . (B42)

Relations (B41) and (B42) may be reversed:

sin θ
′

j =
Rij

ρi
sin γj, (B43)

cos θ
′

j =
1

ρi

(

ρj − Rij cos γj
)

. (B44)

Then, using these to rearrange Equation (B40) and developing:

1

R2ij

(

ρi − ρj cos θ
′

j

) (

ρj − ρi cos θ
′

j

)

=
1

R2ij

[

ρiρj sin
2 θ

′

j − R2ij cos θ
′

j

]

,

sin θ
′

j

Rij

(

ρj − ρi cos θ
′

j

)

+ cos θ
′

j

(

1+
ρi

Rij
sin θ

′

j

)

= cos θ
′

j +
ρj

Rij
sin θ

′

j ,

we obtain using Equation (B42):

Eji⊥ =
qj sin θ

′

j

4πε0R2ij
(

1+ sin γj
)3

[

ρi

Rij
sin θ

′

j + 1

]

ρ̂,

Eji⊥ =
qj sin γj

4πε0Rijρi
(

1+ sin γj
)2 ρ̂. (B45)

The Lorentz force is then:

Fij⊥ = qi
(

Eij⊥ + cθ̂i × Bij

)

,

Fij⊥ =
qiqj

4πε0Rijρi

[

sin γj
(

1+ sin γj
)2

]

ρ̂

+
qiqj

4πε0Rijρj

[

1
(

1+ sin γj
)2

]

ρ̂,

Fij⊥ =
qiqj

4πε0Rij
(

1+ sin γj
)2

[

sin γj
ρi

+
1

ρj

]

ρ̂. (B46)

The scalar and vector Liénard-Wichert retarded electromagnetic
potentials [41] are:

Vij =
qj

4πε0
(

Rij − β j·Rij

)

rtrd

=
qj

4πε0Rij
(

1+ sin γj
) ,(B47)

Aij =
µ0

4π

(

qjvjθ̂j

Rij − β j·Rij

)

rtrd

=
qjθ̂j

4πε0cRij
(

1+ sin γj
) .(B48)

Approximation ρi=ρj. When making this approximation (one-
orbit model), from Figure 3C, Rij becomes:

Rij = 2ρi cos γj. (B49)

Note that if ρi= ρj, Equation (B46) then becomes:

Fij⊥=
qiqj

8πε0ρi2 cos γj
(

1+ sin γj
) ρ̂. (B50)

Triolets at Radial Equilibrium
Equilibrium of Envelope Triolets
Envelope triolets are submitted to the centrifugal force (B1), the
magnetic force due to the net nucleus magnetic moment (B17),
and the net electromagnetic force due to the other envelope
triolets (B46). Equilibrium for env– triolets can be written:

0 =
ℏc

benvρ
2
env−

+
(−e)

nenv

Nenv−1
∑

j

e

nenv

1

4πε0

sgn
(

j
)

Rij(1+ sin γj)
2

×

[

sin γ

ρenv−
+

1

ρj

]

+
3

8πε0

e2

nenv

aanmlňC

ρ3env−
.

And rearranging to isolate the fine-structure constant:

4πε0ℏc

e2
=

1

α
=

benvρ
2
env−

nenv





Nenv−1
∑

j

1

nenv

sgn
(

j
)

Rij(1+ sin γj)
2

×

(

sin γ

ρenv−
+

1

ρj

)

−
3aanmlňC

2ρ3env−

]

. (C1)

Likewise, equilibrium for env+ triolets can be written:

1

α
=

benvρ
2
env+

nenv



−

Nenv−1
∑

j

1

nenv

sgn
(

j
)

Rij(1+ sin γj)
2

(

sin γ

ρenv+
+

1

ρj

)

+
3aanmlňC

2ρ3env+

]

. (C2)

Frontiers in Physics | www.frontiersin.org 13 July 2020 | Volume 8 | Article 213

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Avner and Boillot Electron Mass From Substructure Stability

Neglecting the term due to the nucleus magnetic moment, the
equations become:

1

α
=

−benv

n2env





Nenv−1
∑

j

ρ2i sgn
(

i · j
)

Rij(1+ sin γj)
2

(

sin γ

ρi
+

1

ρj

)



 ≡ Genv. (C3)

The fine structure constant therefore appears to be naturally
related to the ratio between the centrifugal force and the net
electromagnetic force experienced by a single triolet. Making the
ρi=ρj approximation (B49), we obtain:

1

α
=

−benv

2n2env





Nenv−1
∑

j

sgn
(

i · j
)

cos γj(1+ sin γj)



 . (C4)

Equilibrium of Nucleus Triolets
Nucleus triolets are submitted to the centrifugal force (B1), the
electromagnetic force due to the envelope (B11), and the net
electromagnetic force due to the other nucleus triolets (B46).
Equilibrium for nuc– triolets is thus written:

1

α
≃

bρ2nuc−
nnuc

[

ρnuc−

2nenv

(

Nenv+

ρ3env+
−

Nenv−

ρ3env−

)

+

Nnuc−1
∑

j

1

nnuc

sgn
(

j
)

Rij
(

1+ sin γj
)2

(

sin γ

ρnuc−
+

1

ρj

)



 . (C5)

Similarly we have for the nuc+ triolets:

1

α
≃

bρ2nuc+
nnuc

[

ρnuc+

2nenv

(

Nenv+

ρ3env+
−

Nenv−

ρ3env−

)

−

Nnuc−1
∑

j

1

nnuc

sgn
(

j
)

Rij
(

1+ sin γj
)2

(

sin γ

ρnuc+
+

1

ρj

)



 . (C6)

Neglecting the term due to the envelope current, the
equations become:

1

α
=

−bnuc

n2nuc





Nnuc−1
∑

j

ρ2i sgn
(

i · j
)

Rij(1+ sin γj)
2

(

sin γ

ρi
+

1

ρj

)



 ≡ Gnuc.

(C7)

Making the ρi=ρj approximation (B49), we obtain:

1

α
=

−bnuc

2n2nuc





Nnuc−1
∑

j

sgn
(

i · j
)

cos γj(1+ sin γj)



 . (C8)

Also, the correction due to envelope current (first two terms) is:

Genv>i∈nuc ≈
−bnucsgn (i) (−nenv)

nnucnenv

[

ρ3nuc

2ρ3env
+

3ρ4nuc
8ρ4env

]

≈
bnucsgn (i)

nnuc

[

η3nuc

2
+

3η4nuc
8

]

. (C9)

Retarted Angles
Evaluating the Values of Retarded Angle θj’ From

Non-retarded Angle θj
If we suppose triolets are uniformly distributed along the circular
orbits (this is certainly true of the nucleus since we have Nnuc+

= Nnuc−, but is an approximation in the case of the envelope,
as there are more negative than positive triolets), then angle θj
(expressed in radians) determining the position of the jth triolet
(starting at 1) at non-retarded time t on the orbit is defined by:

θj∈nuc = 2π
j

Nnuc
. (D1)

Note that, for the envelope, we also need to account for the empty
space of length denv (using the number ofmissing triolets as units)
separating the nenv stretches of triolets, yielding for triolets Tj

belonging to the first stretch:

θj∈1stStretch = 2π
j

(

Nenv + nenvdenv
) . (D2)

To evaluate θj’ determining the angular position Tj’ at retarded
time t’ when the electromagnetic field was emitted toward triolet
Ti, which arrives at angle 0 (vertical y axis) at time t to receive the
field, we use the following relation, derived from Figure 3A:

Rij = ρjδθj = ρj

(

θj − θ
′

j

)

. (D3)

Then squaring Equations (B20) and (D3) and equating,
we obtain:

(

θj − θ
′

j

)2
= 1− 2

(

ρi

ρj

)

cos θ
′

j +

(

ρi

ρj

)2

. (D4)

Given ρi, ρj, and θj, the retarded angles θ ’j may be
numerically determined by recurrence, using a computer
program that implements Newton method for instance, to
resolve transcendental Equation (D4) for all triolets of angular
position θj expressed in radians. The corresponding values of γj
are then estimated using Equation (B42).

Potential Energy
Electric Potential Energy
By definition, the electric potential energies at the envelope and
nucleus are defined by:

Uelec,env =

Nenv
∑

i

Nenv−1
∑

j 6=i

qiVij =
∑

i∈env

∑

j 6=i

qiqj

4πε0Rij
(

1+ sin γj
) ,(E1)

Uelec,env =
αmc2

n2env

∑

i∈env

∑

j 6=i

sgn(i · j)

Hij
(

1+ sin γj
) , (E2)

where Hij = Rij/ňc. Likewise, we have:

Uelec,nuc =
αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)

Hij
(

1+ sin γj
) . (E3)
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Making the ρi = ρj approximation (B49), we obtain:

Uelec,env =
αmc2

2n2env

∑

i∈env

∑

j 6=i

sgn(i · j)

ηj cos γj
(

1+ sin γj
) , (E4)

Uelec,nuc =
αmc2

2n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)

ηj cos γj
(

1+ sin γj
) . (E5)

Magnetic Potential Energy
The magnetic potential energyUmag and electric potential energy
Uelec are, respectively, the opposite of the magnetic work and
electric work [41] given by:

Wmag =
1

2µ0

∫

all space
B2dτ = −Umag , (E6)

Welec =
ε0

2

∫

all space
E2dτ = −Uelec. (E7)

Now, the vector expression relating the magnetic field to the
electric field:

−→
B =

1

c
n̂×

−→
E (E8)

holds in relativistic electrodynamics with particles going at light
velocity, yielding:

Wmag =
1

2µ0c2

∫

all space
E2dτ , (E9)

and since we know that c2 = 1/ε0µ0, we have:

Wmag =
ε0

2

∫

all space
E2dτ = Welec. (E10)

Therefore:

Umag = Uelec. (E11)

Total Potential Energy
Neglecting the potential energy of the envelope acting on
the nucleus Uenv>nuc, and the potential energy of the nucleus
acting on the envelope Unuc>env, the electron potential energy
is approximately:

Utot ≃ Uenv + Unuc, (E12)

where Uenv is the envelope potential energy and Unuc

the nucleus potential energy. Using Equations (E2, E11),
we obtain:

Uenv = Uenv,mag + Uenv,elec = 2Uenv,elec, (E13)

Uenv =
2αmc2

n2env

∑

i∈env

∑

j 6=i

sgn(i · j)

Hij
(

1+ sin γj
) , (E14)

where Hij= Rij/ňc. Likewise, using Equation (E.3) we have:

Unuc =
2αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)

Hij
(

1+ sin γj
) . (E15)

Compatibility Between Potential Energies and Radial

Equilibrium Equations
It can be shown that Equations (E14, E15) are compatible with
Equations (C4, C8) if we assume ηnuc+≃ ηnuc− and ηenv+ ≃ ηenv−
≃ 1. Indeed, Equation (C4) becomes:





Nenv−1
∑

j

sgn
(

i · j
)

2 cos γj(1+ sin γj)



 ≃
−n2env
αbenv

.

Then, by replacing the relation above into Equation (98), since
ηenv+≃ηenv−≃1, we obtain:

Uenv =
2αmc2

n2env

∑

i∈env

∑

j 6=i

sgn
(

i · j
)

2ηi cos γj
(

1+ sin γj
)

≃
−2αmc2

n2env
Nenv

n2env
αbenv

,

Uenv ≃
−2Nenvmc2

benv
.

Since benv = 2Nenv, this yields:Uenv ≃ –mc2 as expected. Likewise,
Equation (C8) becomes:





Nnuc−1
∑

j

sgn
(

i · j
)

2 cos γj(1+ sin γj)



 ≃
−n2nuc
αbnuc

.

Then, by replacing the relation above into Equation (E15),
we obtain:

Unuc =
2αmc2

n2nuc

∑

i∈nuc

∑

j 6=i

sgn(i · j)

2ηi cos γj
(

1+ sin γj
) ≃

−2αmc2

n2nuc

Nnuc

ηnuc

n2nuc
αbnuc

,

Unuc ≃
−2Nnucmc2

bnucηnuc
.

Since 2Nnuc = bnucηnuc (A21), we obtain: Unuc ≃ –mc2

as expected.

Optimization Algorithm
An optimization algorithm has been devised and implemented
to determine a set of optimum orbital radii for envelope triolets
by minimizing average absolute deviation K, in the n-orbits
model where each triolet possesses a specific radii ηi at the
envelope. An approximate solution is determined heuristically
before applying this algorithm. The algorithm next considers
in turn every envelope triolet belonging to the first stretch,
tries five different radii surrounding the current radius, and
computes for each the stability of all envelope triolets. The
radius yielding best overall stability is then attributed to the
corresponding triolets in all six stretches. Once the procedure
has been applied to all triolets of the first stretch, it is run
again, considering five closer radii this time (thus slowly reducing
the noise), until convergence toward an optimum solution
is reached. The corresponding pseudocode is shown below.
The algorithm was applied with the following values: delta =

0.00201, step = 0.00005, nenv= 6, Nenv+ = 60, Nenv− = 66,
denv = 2.
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Function optimize_env_radii( radius[126], delta, step ):
for d in range( delta to 0.00001 by –step ):

for i in range( 0 to 20 by+1 ):
previous_radius= radius[ i ]
R= previous_radius
best_r= R
best_K= 10000
list_new_radii= { R−2d, R–d, R, R+d, R+2d }
for r in list_new_radii:

set_radius( i to r in all six stretches )
clear( list_inv_alphas )
for j in range( 1 to 20 by+1 ):

G= compute_inv_alpha( i, j )
add( G to list_inv_alphas )

K= compute_error_K( list_inv_alphas )
if K< best_K:

best_K= K
best_r= r

set_radius( i to best_r in all six stretches )
return radius[126]
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