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This note derives the various forms of entropy of a systems subject to Olbert distributions

(generalized Lorentzian probability distributions known as κ-distributions), which are

frequently observed, particularly in high-temperature plasmas. The general expression

of the partition function in such systems is given as well in a form similar to the

Boltzmann-Gibbs probability distribution, including a possible exponential high-energy

truncation. We find the representation of the mean energy as a function of probability, and

we provide the implicit form of Olbert (Lorentzian) entropy as well as its high-temperature

limit. The relation to phase space density of states is obtained.We then find the entropy as

a function of probability, an expression that is fundamental to statistical mechanics and,

here, to its Olbertian version. Lorentzian systems through internal collective interactions

cause correlations that add to the entropy. Fermi systems do not obey Olbert statistics,

while Bose systems might do so at temperatures that are sufficiently far from zero.

Keywords: generalized entropy, Lorentzian systems, Lorentzian countings, Olbert distribution, κ distribution

1. INTRODUCTION

Many-particle systems not in equilibrium, such as high-temperature plasmas, are usually subject to
kinetic theory (cf., e.g., [1]). In equilibrium or stationary quasi-equilibrium, obeying a very large
number of degrees of freedom, they can beneficially be treated by the probabilistic methods of
statistical mechanics. Conventional textbook knowledge [2] tells us that, for the micro-canonical
system under consideration, it being in thermal exchange with a large thermal bath at temperature
T ≡ β−1 (here taken in energy units), the probability pα of finding it in some particular energy
state Eα is proportional to the Boltzmann factor pα ∝ exp(−βEα). The sum of all un-normalized
probabilities of the α states is the partition function Z =

∑

α pα =
∑

α exp(−βEα) and the
normalized Gibbs probability for the state α becomes

Pα = Z−1 exp(−βEα) (1)

The partition function Z ≡ Z(β , {V}) is a function of β and all constraining parameters {V},
which determine the state α-a property that enables calculating a number of thermodynamically
interesting average quantities of the system. Varying the constraints {V} implies that work is done
on the system.

Observations in space plasma physics (for examples, see cf., [3–5]) as well as in other high-
temperature systems indicate that the probability distribution of particles (charged or neutral)
in a set of energy states Eα deviates from the classical bell (respectively gaussian) shape,
frequently exhibiting quasi-stationary power law tails Pα ∝ E−κα for Eα > β−1, possibly
cut off exponentially at large energy. Probability distributions of this kind of family, known as
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κ-distributions (introduced1 by Olbert [7]), have been widely
discussed in the literature (for a review see, e.g., [8], and
references therein). In the following, we refer to them as Olbert’s
κ-distributions or simply Olbert distributions. General physical
arguments for their existence as stationary states far from thermal
equilibrium were given (first by [20, 24]). Direct weak turbulence
calculations of plasma-electron momentum distributions by
Hasegawa et al. ([11], in interaction with a photon bath) and
by Yoon et al. ([9, 10], accounting for spontaneous and induced
emission as well as absorption of Langmuir waves) partially
reproduced κ-distributions in the long term limit, suggesting that
under quasi-stationary conditions non-linear equilibria can be
produced with κ-distributions being their probabilistic signature.

2. LORENTZIAN GENERALIZATION

In generalizing the classical statistical mechanics, we start from a
Lorentzian modification of the Boltzmann factor, which leads to
the Olbert probability distribution known as κ-distribution.

2.1. Boltzmann-Olbert Distribution
In fact, the Boltzmann factor, being at the heart of Gibbs’
normalized probability, is the large κ limit of a more general
Lorentzian, the Olbert κ-probability function

Pκα(Eα ,β) = Z−1
κ ,r

[

1+
βEα

κ

]−(κ+r)
, lim

κ→∞
Pκα → Pα (2)

(with r = const 6= 0), as can easily be confirmed
applying l’Hospital’s rule. It corresponds to the abovementioned
experimentally and frequently confirmed κ-distribution. The
resulting Olbert-partition function Zκ is, in analogy to Gibbs’
partition function, defined as

Zκ ,r(β) =
∑

α

[

1+
βEα

κ

]−(κ+r)
(3)

It warrants that the Olbert probabilities of states α are normalized
and add up to

∑

α Pκα(Eα ,β) = 1. Performing this sum
requires knowledge of the different energy states Eα , which, in
general, cannot be done easily. In the following, we show that,
assuming this form, the rules of classical statistical mechanics
can be made applicable to the Olbert-Lorentzian with only
weak modifications.

2.2. Remark on Convergence
Before proceeding, we briefly refer to the convergence of Olbert’s
κ-probability distribution Equation (2).

1Stanislaw (Stan) Olbert (1923–2017, of Polish origin, after WW II a graduate
of Arnold Sommerfeld in Munich, and, since 1957, Professor of Physics at MIT,
working on the American Space Program with Bruno Rossi, the main discoverer
of the X-ray sky and, together with Riccardo Giacconi, who later was awarded
the Nobel Prize for this, founder of X-ray astronomy) invented the κ-probability
distribution to fit observed IMP spacecraft particle spectra. He suggested its
application to electron fluxes measured by the OGO spacecraft to Vasyliunas [6]
whose publication became one of the most referenced papers in space physics for
no other reason than the first refereed formal appearance of Olbert’s κ distribution
in the literature.

The Olbert probability converges for arbitrary power κ > 0.
It does, however, for constant κ , not allow the calculation of
arbitrarily high average moments, for instance if one is interested
in fluid descriptions. In principle, at this stage, κ(β ,Eα), being
a function of temperature and/or even energy states Eα , is not
excluded; in the latter case one would, however, require that its
dependence is weak in order to maintain the above summation
procedure as simple as possible. Such a dependence is implicit
to the non-linear calculations of Hasegawa et al. [11] and Yoon
et al. [9]. The additional freedom introduced by the constant
r just adjusts for the mean energy in an ideal gas (see, e.g.,
[26], and references therein). In general, however, the number of
moments that can be calculated is limited. In a fluid approach, it
requires artificially truncating the chain of moments, for instance
by applying a water-bag model for κ(β ,Eα) of the kind κ =

const,Eα ≤ Ec, and κ → ∞,Eα > Ec (implicitly assumed
in [12]). Truncation may be justified via additional assumptions
on the underlying physics, like suppression of higher moments
than heat flows and similar conditions. Physically, this may
not be unreasonable. From a formal point of view, brute force
truncation is not satisfactory. However, this restriction can
easily be circumvented (see e.g., [12–14]) when introducing an
exponential cut-off energy βEc ≫ 1 through

Pκα =
e−Eα/Ec

Zκ ,r

[

1+
βEα

κ

]−(κ+r)
, βEc ≫ 1 (4)

which warrants convergence of all moments for arbitrary κ > 0
[13, 14]. The chain of physically interesting moments is discussed
in these papers. In the Olbert partition function, the energy
cut-off simply appears as a truncator

Zκ ,r =
∑

α

e−Eα/Ec
[

1+
βEα

κ

]−(κ+r)
(5)

not having any further effect on the determination of averages
and/or any other thermodynamic quantities other than
warranting the convergence of the chain of moments. The
independence of the exponential cut-off on temperature and
β guaranties that, in all derivatives or integrals with respect
to β , it appears as an energy dependent factor. An example
has been given [15] by application to the Cosmic Ray energy
spectrum, where the cut-off is, for quantum physical reasons,
found in the GZ-energy spectral limit. Its inclusion, if necessary,
does not cause any principal problems. In the following, we
therefore suppress it in order to not unnecessarily complicate
the expressions.

3. OLBERT-LORENTZIAN STATISTICS

It is reasonable to assume that, given the above definition of
the probability, ensemble averages can be calculated as linear
mean values, with the probability Pκα determining the weight
each energy level contributes. This is the basic probability
assumption. One may argue that this may not necessarily be
true if the probability of the states are not independent. Such
arguments have been put forward in some entropy definitions
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(see, e.g., [16]), and some of them, like Renyi and Tsallis q-
entropies (cf. [17–19], for their invention) are used in chaotic
theory 2. However, as long as there is no need to worry about,
the κ-generalization of the probabilities already accounts for a
particular kind of internal correlations among the occupations
of the different states. The states are physically ordered as
in Boltzmann-Gibbs theory, while the probabilities of their
occupations have become not completely independent. In this
spirit the mean energy is defined as,

U(β) ≡
〈

E
〉

= Z−1
κ ,r

∑

α

Eα

[

1+
βEα

κ

]−κ−r
(6)

3.1. Mean Energy
In full generality, the sum can formally be done in two ways when
observing the properties of the partition function. The first way
completes the energy, and one easily finds that

U(β) =
κ

β

[Zκ ,r−1(β)

Zκ ,r(β)
− 1

]

(7)

also showing the importance of having made use of the freedom
of introducing the arbitrary constant r 6= 0.

A second form, resembling that of conventional statistical
mechanics, takes advantage of the differential property

∂Zκ ,r−1

∂β
= −

κ + r − 1

κ
Zκ ,rU(β) (8)

of the partition function, yielding

U(β) = −
κ

κ + r − 1

Zκ ,r−1

Zκ ,r

(∂ logZκ ,r−1

∂β

)

{V}
(9)

2Historically, Renyi’s proposal of a q-entropy (for the complete theory see [18])
came first (in a badly accessible publication by Balatoni and Renyi [17] in very
general form, which implicitly already contained Tsallis’ entropy as a particular
case). This might have been known to Stan Olbert (who probably was familiar with
the Hungarian literature). He used the property that for large parameter q → ∞,
as proposed by Renyi, and the modified mathematical expression agreed with
Boltzmann’s exponential. Olbert, however, tried a substantially simpler analytical
form, calling the free parameter κ instead of q to distinguish it from Renyi’s
logarithm, as, in fact, it has a different meaning. Two decades later, Tsallis [19] used
the property of Olbert’s function, presumably not knowing Olbert’s or Vasyliunas’
much earlier papers and probably also not those by Balatoni and Renyi; Renyi,
however, referred to the latter in his book, which Tsallis should have been familiar
with because, at that time, Renyi’s q-entropy was already highly celebrated in the
then blossoming chaos theory. In contrast to Olbert, however, Tsallis did not apply
it to the probability distribution. Rather, following Renyi’s logarithmic approach,
he used it in the entropy definition, arriving at his analytically simpler modified
q-entropy. The two approaches of Olbert and Tsallis thus differ in the way of
how the substitution for the exponential is used. As with ours, Olbert’s interest
was in the observed probability or momentum space distribution, and it was
thus manifestly practical. Renyi’s interest and later that of Tsalli was theoretica,
and it was thus directed at entropy. Tsallis’ led, and consequently developed, to
his thermostatistics. In contrast, in an attempt to justify Olbert’s distribution,
we arrived originally at a κ-distribution from a consequent reference to kinetic
theory [20], not yet recognizing, however, the important role of the constant r.
As it turns out, both approaches are indeed rather different, even though a formal
relation between the parameters κ and q can easily be construed while maintaining
their different meanings, which is frequently overlooked when identifying q and κ
statistics, as these have little in common.

Here, generalization to Olbert-Lorentzian distributions
introduces the (inconvenient) partition function ratio of
different indices. It again shows the need for the additional
constant r 6= 1, which depends on the assumptions on an
underlying model. For instance, under classical ideal gas
conditions with continuously distributed energy states, the
average thermal energy (in three dimensions and isotropy) is
βU = 3

2 . On switching to momentum p with Eα → p2/2m and

integrating over momentum space, one obtains that r = 5
2 in this

particular case ([26], and elsewhere; see references therein). This
is not necessarily true, however, for discrete energy levels Eα in
more general non-ideal or quantum conditions. There r must
be chosen differently and a general prescription for its choice
cannot be given a priori.

Both the above forms apply to any micro-canonical κ-system.
Generalization to canonical systems is easily done in the same
way as in statistical mechanics (cf., e.g., [2]) via introducing the
dependence on (possibly variable) particle number N. It requires
reference to Lagrange multipliers µ playing the role of chemical
potentials for each subsystem and transforming Eα → Eα − µ

in the probabilities and partition functions. Clearly, all µ must
become equal in thermal equilibrium.

The two Equations (7, 9) allow for the determination of the
ratio of the partition functions by eliminating U(β)

Zκ ,r−1

Zκ ,r
=

κ + r − 1

κ + r − 1+ β
(

∂ logZκ ,r−1/∂β

)

{V}

(10)

This is a recursive relation between the κ partition functions.
Combined with Equation (9), it gives a final expression for the
mean energy

U(β) = −

κ

(

∂ logZκ ,r−1/∂β

)

{V}

κ + r − 1+ β
(

∂ logZκ ,r−1/∂β

)

{V}

(11)

which contains just the r-reduced partition function. Like in
ordinary statistical mechanics,U(β) is determined as a derivative
form of the partition function. This shows that all other
statistical mechanical quantities can be derived solely from the
partition function, which therefore contains all the physics of
the micro-canonical system. Still being quite involved, this form,
as expected for very large κ , coincides with the expression
U = −

[

∂(logZ)/∂β
]

{V}
of the mean energy in Boltzmann-Gibbs

statistical mechanics. It is thus consistent with the expectations.
Moreover, at increased temperatures β → 0, the mean classical
energy becomes

U(β) = −
κ

κ + r − 1

[∂(logZκ ,r−1)

∂β

]

{V}
T ≫ 0 (12)

The general second last equation (11), which holds for arbitrary
β < ∞, resolved for the derivative of the partition function as
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function of mean energy U(β), yields

(∂ logZκ ,r−1

∂β

)

{V}
=

(

1+
r − 1

κ

)

U(β)
(

1+
βU(β)

κ

)−1
(13)

=
(

1+
r − 1

κ

)[

1−
(

1+
βU(β)

κ

)−1]

(14)

an expression that can bemade use of later. At high temperatures,
i.e., small β , the first version shows that the derivative of the
partition function yields the mean energy, the usual Boltzmann-
Gibbs result.

At very low temperature β ≫ 1, the mean energy drops out,
which contradicts the physical intuition showing that the theory
in this form applies only to temperatures far from zero. The
logarithm of the partition function is the integral

logZκ+r−1 =
(

1+
r − 1

κ

)[

β −

∫

dβ

1+ βU(β)/κ

]

+ Gκ ({V})

(15)
with Gκ ({V}) a function of the constraints alone. Olbert-
Lorentzian statistical mechanics in the above form applies to
micro-canonical systems at high temperature only. It does, in
this form, not describe quantum systems consisting of many
components–a conclusion we had drawn already from different
reasoning. This conclusion may, however, be circumvented when
large external potential fields 8 are imposed, for instance,
strong electric (cf., e.g., [21], who tried an application to
high temperature non-ideal quantum systems) or gravitational
potential fields (an example would be the region around the black
hole horizon), in which case the difference U(β) − 8 > 0 may
become positive for−8 > κ/2β .

3.2. Entropy
The most important quantity in statistical mechanics is the
entropy. Differentiating the energy U(β) with respect to
temperature kBβ−1 while fixing the set of constraints {V} gives
the heat capacity

C{V}κ = −kBβ
2
(∂U(β)

∂β

)

{V}
(16)

With entropy S, one has quite generally TdS = C{V}dT holding
in the micro-canonical ensembles where the volume is fixed,
dV = 0. Hence C{V} = −β(∂S/∂β){V}. Keeping the constraints
fixed, these relations usually lead to

( ∂S

∂β

)

{V}
= −kBβ

(∂U(β)

∂β

)

{V}
(17)

Integration with respect to β then yields in full generality the
well-known formal expression for the wanted Olbert entropy Sκ
of the micro-canonical system

S

kB
= −βU(β)+

∫

dβ U(β)+ GS({V}) (18)

as the integral over the mean energy U(β), where GS({V}) is an
arbitrary function of the constraints alone. In classical statistics,

this formula yields the well-known closed analytical expression
of the entropy. Unfortunately, in Olbert’s case the mean energy
Equation (11) is not as simple as in Boltzmann-Gibbs statistical
mechanics3. We are thus stuck for the moment. Nevertheless,
taking the derivative of the mean energy with respect to β , one
obtains formally

( ∂S

∂β

)

{V}
= −κkBβ

∂

∂β

[ ∂(logZκ ,r−1)/∂β

κ + r − 1+ β∂(logZκ ,r−1)/∂β

]

{V}

(19)
as an implicit expression for the derivative of the entropy S as
functional of the partition function. It replaces the corresponding
relation in classical Boltzmann-Gibbs statistical mechanics,
which applies to any purely stochastic many particle system–in
particular to high-temperature plasmas.

Equation (18) is the entropy of a micro-canonical κ system.
It is a quite involved form whose properties cannot be easily
inferred. Its discussion requires the complete knowledge of the
set of energy levels of the micro-canonical system. As discussed
above, its extension to canonical systems is straightforward, as
well as the inclusion of an exponential “ultraviolet” truncation
of the distribution at high energy Ec > U. All interesting
statistical mechanical properties of the κ ensemble can in
principle be deduced from this entropy respectively the partition
function Zκ ,r−1.

3.3. High-Temperature Limit
In the high temperature small β limit, one neglects the
derivative in the denominator in the second last equation. In
this case, the entropy becomes a κ-modified (Boltzmann-Olbert-
Lorentzian) entropy

( ∂S

∂β

)

{V}
= −

κkBβ

κ + r − 1

∂

∂β

[∂(logZκ ,r−1)

∂β

]

{V}
, T≫0 (20)

No zero-temperature expression exists, while the role of the
partition function is played by the sum of the probabilities of the
states indexed by the constant power r−1 instead of r. For a three-
dimensional ideal gas with continuous energy spectrum one has
r = 5

2 , and its high-temperature classical κ-partition function is

Zκ+ 3
2
(β) =

∑

α

pα,κ+ 3
2
≡

∑

α

(

1+
βEα

κ

)−κ− 3
2
, T≫0 (21)

With this partition function and the definition of the high-
temperature mean energy (12), we are in the position to obtain

3At this point κ and q statistics differ for the simple fact that in the latter the
entropy is analytically prescribed in the form of a rational function with real q,
and the complication is transferred to the construction of the distribution. Here,
instead, the starting point is the observed distribution, which, naturally, leads
to complications in finding the entropy, as it is the entropy which contains the
complicated physics; this then leads to the measured probability distribution. One
should also note that the combined entropies of two systems in both cases, q and
Olbert statistical mechanics, though the two theories are different and describe
different physics, are super-additive, sometimes called non-extensive. They contain
an additional mixed term which contributes to the entropy, as criticized by
Nauenberg [22]. This, however, does not mean that the theory has no physical
meaning. It just implies that the theory describes statistical quasi-equilibria far
from thermal equilibrium, i.e., slowly variable quasi-stationary states which pass
through several equilibria, typical for non-equilibrium statistical mechanics [23].
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the high-temperature entropy in the form in which it applies to
fluids and plasmas:

Sκ

kBκ
= −β

[∂ logZκ+r−1(β)

∂β

]

{V}
+ logZκ+r−1(β) (22)

where we left r undetermined available for application to any
non-ideal systems and dropped the arbitrary function GS of the
constraints, which can be added when needed–for instance to
account for boundary conditions. Except for the modification
of the partition function, the entropy at high temperatures is
measured in units of a κ-reduced Boltzmann constant

kBκ = kB

(

1+
r − 1

κ

)−1
, 0 � κ <∞ (23)

which in a three-dimensional ideal plasma becomes kBκ =

kB/(1+ 3/2κ).

3.4. Phase Space Density of States
As in ordinary Boltzmann-Gibbs statistical mechanics, the Olbert
partition function for large numbers of states (energy levels) �κ ,
which is the volume of the phase space, is well-approximated by

Zκ ,r−1 ≈ �κ ,r−1

(

1+
βU(β)

κ

)−κ−r+1
(24)

the product of the phase space volume�κ ,r−1 and the probability
of the most probable state, which is the state of mean energy
U(β). This holds, in particular for the exponentially truncated
distribution, because the high energy states contribute very little
if only the energy fluctuations are not overwhelmingly large.
These fluctuations become large only in systems containing very
small numbers of particles, which is barely given at the assumed
high temperatures in a plasma.

Taking advantage of the dependence of the ratio of the
partition functions Zκ ,r−1/Zκ ,r on the average energy U(β),
which does not depend on r, one finds that

�κ ,r−1 = �κ ,r ≡ �κ (25)

At high temperatures β≪ 1, we have

Sκ ≈ kBκ logZκ ,r−1+kBκ (κ+r−1) log
(

1+
βU(β)

κ

)

≈ kBκ log�κ

(26)
which can also be written

Pκ ∼ �κ = exp
(

Sκ/kBκ

)

(27)

In classical high-temperature micro-canonical systems (many-
particle plasmas) this closes the circle, as we have shown [24]
that from this equation it follows by standard methods that the
probability distribution is given by Equation (2). Generalization
to the canonical system ofN particles is straightforward. Notably,
it generalizes to κ-systems Einstein’s prescription [25] of the
dependence of the phase space density on entropy in his proof of
the stochastic nature of the diffusion in Brownianmotion, though
with substantially more complicated expression for the entropy.

3.5. Approximation
The Olbert κ-distribution maintains the structure of statistical
mechanics at high temperatures while it substantially modifies
it at moderate and low temperatures with no zero-temperature
limit existing. We have argued previously that this is quite
reasonable whenever internal correlations come into play causing
κ to deviate strongly from κ = ∞. Classically, this can happen
only at large T and is due to non-linear interactions that violate
ideal stochasticity and cause anomalous effects like anomalous
diffusivity. Nevertheless, in the range

logZκ ,r−1 ≫ (κ + r − 1) logβ or Zκ ,r−1 ≫ βκ+r−1 (28)

which holds for sufficiently large β , the equation for the Olbert
entropy simplifies. In this case the derivatives of the logarithms of
the partition function cancel, and the entropy equation becomes

( ∂S

∂β

)

{V}
≈ −κkBβ

∂

∂β

1

β
, 1≪ β <∞ (29)

which of course holds for finite β only. Integration then yields
that in this β range

S

kB
∝ κ logβ≪

κ

κ + r − 1
logZκ ,r−1 (30)

or otherwise

Zκ ,r−1 ≫ exp
S

kBκ
(31)

In the moderate temperature range where 0 ≪ β ≪ ∞ no
closed forms for either the energy nor the entropy are obtained.
For those values of β , the full expression (19) for the derivative of
the entropy applies. A correction to this equation follows when
taking the first next term of the expansion of the denominator

( ∂S

∂β

)

{V}
= −

κkB

κ + r − 1
β
∂

∂β

{(∂ logZκ ,r−1

∂β

)

{V}

−
β(∂ logZκ ,r−1/∂β)2{V}

κ + r − 1
+ h.o.t.

}

(32)

The first term yields, when integrated, the above high-
temperature entropy. The second term is quadratic and hence
remains to be negative. It subtracts from the first term. Reducing
the temperature, i.e., increasing β , obviously diminishes the
derivative of the entropy because the last quadratic term is always
positive. It seems that the derivative of the entropy as function
of temperature in a κ-system flattens out when the temperature
drops into the intermediate range. Any κ 6= ∞ affects the
increase in entropy.

In principle, the last equation can be solved iteratively for the
entropy, which then retains the effects of the parameter κ outside
the ranges of very large and small β .

4. ENTROPY AS FUNCTIONAL OF

PROBABILITY

Boltzmann defined the micro-canonical entropy SBα ∝ log pα
as a functional of probability. The average measured entropy
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is its expectation value, the sum 〈SB〉 ∝
∑

α pα log pα of all
probability-weighted contributions of the states to the entropy.
For a continuous distribution of states, this is as usually
defined as the probability integral taken over the micro-canonical
entropy. For arbitrary temperatures, the above expression cannot
be integrated to provide a general analytical form for the
entropy comparable to conventional Boltzmann-Gibbs statistical
mechanics. This was possible only at high temperatures. One
can, however attempt to find an expression for the functional
dependence of the entropy on the probability in order to have an
equivalent representation to the Boltzmann-Gibbs entropy when
dealing with the Olbert entropy.

4.1. Reformulation of Mean Energy and

Entropy
For this to achieve, the mean energy (7) must be rewritten in
terms of the probability pκα(β). This can, indeed, be done, and
the corresponding expression reads

U{pκα(β)} =
κ

β
Z−1
κ {pκα(β)}

∑

α

[

p1−γκα (β)− pκα

]

(33)

where we introduced the exponent

γ ≡
1

κ + r
(34)

The braces indicate the functional dependence on pκα . In fact,
Equation (33) is identical to the inverse function that has been
proposed [20, 26] in the particular case of the Olbert-Lorentzian
probability distribution4. On use of this functional dependence
in the expression for the β-derivative we have

1

κkB

( ∂S

∂β

)

{V}

= −
∑

α

β

{ ∂

∂β

1

β
Z−1
κ {pκα(β)}

[

p1−γκα (β)− pκα(β)
]}

{V}
(35)

which shows that the derivative of the micro-canonical entropy
with respect to β respectively temperature T is the sum over all
states of the particular entropies

1

κkB

(∂Sα

∂β

)

{V}
= −β

{ ∂

∂β

[

p
1−γ
κα (β)− pκα(β)

]

βZκ {pκα(β)}

}

{V}
(36)

of the α states. This expression replaces Boltzmann’s definition to
become Olbert’s micro-canonical entropy, and it follows that

Sα{pκα(β)}

κkB
= −

pκα(β)

Zκ {pκα(β)}

[

p−γκα (β)− 1
]

+

∫

dβ
pκα(β)

Zκ {pκα(β)}

[

p
−γ
κα (β)− 1

]

β
(37)

4In other approaches this inverse appears as a mysterious “escort distribution,”
which plays the role of some integration condition when forming lowest order
moments. In fact, it is nothing but an inverse function as was proposed already
[26] and, in other choices of the probability distribution, would be obtained in the
same way by inversion.

The factor pκα/Zκ = Pκα is the normalized Olbert-Gibbs
distribution, and the first term becomes its product with
a function

Rκα = 1− p−γκα (38)

This function also appears under the integral sign, such that we
can write the latter in an abbreviated version

Sα{pκα(β)}

κkB
= PκαRκα −

∫

dβ

β
PκαRκα (39)

This is the relation between the probabilities of states α and
their corresponding entropies. The sum over all α states gives the
total entropy

Sκ (β)

κkB
= 1− log(βU0)−

〈

p−γκα (β)
〉

+

∫

dβ

β

〈

p−γκα (β)
〉

+ G({V})

(40)
in terms of the average probability, i.e., the expectation value
of the probability raised to the power −γ . Again, the angular
brackets indicate the probability weighted average over all states
α. U0 is some normalizing thermal energy which to chose is
arbitrary. The term containing it is of little importance.

This entropy is substantially more complicated than in
ordinary classical statistical mechanics. Nevertheless, it exhibits
the relation between entropy and probability. It distinguishes the
Olbert-Lorentzian entropy from Boltzmann-Gibbs-Shannon.

4.2. Boltzmann-Gibbs Like Form of the

Olbert Entropy
Some insight can be obtained when considering the functional R,
writing it

Rκα = 1− exp
(

− γ log pκα
)

(41)

Expanding the exponential yields to first order

Rκα = γ log pκα + higher order terms (42)

Except for the factor γ this is just Boltzmann’s micro-canonical
entropy which, after multiplication with the probability and
summation respectively integration yields the classical expression
for the average entropy. From this equivalence, we conclude that,
in the Olbert entropy Sα{pκα(β)}, the functional Rκα plays exactly
the role of Boltzmann’s micro-canonical entropy. However, in
Boltzmann theory, the logarithm of the probability is just the
inverse of the Boltzmann factor of the energy of state α, with the
energy Eα expressed in terms of the probability pα . This is also
exactly the meaning of the functional Rκα{pκα}, which enables us
to formulate the general

Theorem

Let pα(β ,Eα) = fα(β ,Eα) be the properly defined probability of a
micro-canonical state Eα , and F{pα} = Eα(pα) the inverse of fα .
Then, up to some numerical factors, the micro-canonical entropy
Sα of the state α, expressed in terms of the probability pα , is defined
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as Sα{pα} ∝ F{pα}; and the mean entropy S ≡ 〈Sα〉 of the micro-
canonical system, given by the sum over all probability-weighted
states α, is obtained in the form

S ∝
∑

α

pαSα{pα} ∝
∑

α

pαFα{pα} (43)

if only the inverse functional F{pα} exists and can be given
either analytically or numerically. This formula is the general
prescription of calculating the entropy in the micro-canonical state.

Let us, for convenience, discuss just the leading first order
terms in the above expression for the Olbert entropy, assuming
for our purposes of understanding that the higher order terms do
not substantially contribute, which in general might not always
be true. It then follows from Equation (37) that

Sα{pκα(β)}

γ κkB
= Pκα(β)

(

log Pκα + logZκ
)

−

∫

dβ

β
Pκα

(

log Pκα + logZκ
)

+ . . . (44)

Except for the difficulty with the integral term, the first
terms look about familiar. However, interestingly, this holds
for the unsummed entropy. Summation then leads to the
average entropy

Sκ

|γ |κkB
= 〈log Pκ (β)〉+〈logZκ 〉−

∫

dβ

β

[

〈log Pκ (β)〉+〈logZκ 〉
]

(45)
It reproduces the logarithmic dependence on the mean logarithm
of the partition function in the second term. The first term
also reproduces the classical dependence on the logarithm of
the mean probability Pκ . Further discussion is, however, less
transparent, and the role of any higher order terms in the
expansion as well as the structure of the integral term obscure
its interpretation. In this form, however, we may conclude that
the κ-generalization of classical statistical mechanics maintains
its basic structure at least to lowest order. In any case, it becomes
clear that the Olbert-Lorentzian generalization can be justified
in its application to micro-canonical and, after proper extension
to include the dependence on particle number, also to canonical
systems. This is very satisfactory, as it gives Olbert-Lorentzian
statistical mechanics and the resulting Olbert-κ distribution
a physically justified place in the treatment of many-particle
systems like high temperature plasmas. The different expressions
for the entropies are then available for the proper description
of the evolution of such states in thermal equilibrium as well as
in non-equilibrium.

4.3. Quantum Considerations
In this subsection we, for completeness, though just briefly, touch
on the quantum extensions of Lorentzian entropies. We argued
above that there is no zero-temperature limit of the Lorentzian
statistics. This holds generally. Fermi statistics in addition
inhibits correlations in the sense that any states α could be
occupied by more than one particle. Hence, correlations involved
in κ can only be of the nature of entanglements, and, in addition

to our finding that the state T = 0 is principally excluded, this
additional restriction categorically excludes application to Fermi
systems other than entanglement of two particles of opposing
spins. Below we briefly consider this case.

What concerns Bose statistics, the latter restriction is relaxed.
States can obey arbitrary occupation numbers. Hence, high
energy states can exist. Then, one will be able to find an
appropriate expression for the Bose entropy, which we will
provide in a follow-up communication, as this requires another
lengthy derivation which goes beyond the present note.

We just briefly mention another interesting quantum case
resulting in Fermi systems, the entanglement, or von Neumann
entropy [27]. It is defined as

SvN = Trace
(

ρ log ρ) (46)

where ρ =
∑

α |ψα〉〈ψα| is the average scattering matrix in a
quantum system, and Trace is its trace. Clearly, if all ψα are
true eigenstates of the entire system, ρ = 0, then the system is
in its own eigenstate, and no entropy is produced. Otherwise,
the entropy results from superposing all eigenstates |α〉 of its
components, yielding ρ =

∑

α ηα|α〉〈α|, which contains all
the irreversible interactions encoded in the superpositions of
eigenstates of the components which contribute to the common
wave function of the entire many particle system. Intuitively
this is clear because all the different phases of the components
will mix; the common wave function, being the superposition
of all individual or grouped particle wave functions, will by
no means become an eigenstate of the system. This is very
frequently misunderstood when talking about fluid models of
quantum theory and identifying the density with the expectation
value of the wave function. In a quantum mechanical Olbert κ
system, where the particles are correlated and by some interaction
mechanism are bunched together one may even expect that
the scattering matrix contains non-diagonal terms indicating
dissipation. One such mechanism is entanglement between two
prepared Fermions of opposite spin. By it, two particles (electrons
in the same state but of different spin) are bound together in their
common behavior. They are subject to von Neumann’s entropy.
If the entanglement can be encoded into a parameter κ , then its
entropy may be conjectured to become

SvNκ ∼ Trace
(

ρκ log ρ
1−γ
κ

)

= (1− γ )Trace
(

ρκ log ρκ
)

(47)

and one has ρκ =
∑

α |ψκα〉〈ψκα| =
∑

α ηκα|ακ 〉〈ακ |. The
κ wave function might, however, not be known a priori. Since
entanglement applies to electrons, or in general Fermions, which
by our above reasoning are not subject to Lorentzian statistics,
then, in κ-statistics, it would apply to the bosonic property
of paired electrons of opposite spin and must thus somehow,
though not in an elucidated manner, relate to Boson-Lorentzian
entropy of collectively grouped pairs like in superconductivity.
If true, the parameter κ appearing in the von Neumann entropy
then contains the physics of group entanglement. Otherwise, κ
statistics do not apply in any manner to any entanglement, and
no von Neumann-Lorentzian entropy exists.
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5. CONCLUSIONS

In the present paper, we have undertaken the task of trying to
understand what physically would be behind Olbert-Lorentzian
statistics. As the Olbert-κ distribution function that belongs to it
is well-confirmed from a large number of observations mainly
in space plasmas, this effort is needed to give a clue on its
foundations. Applying statistical mechanical reasoning we have
obtained expressions for the entropy as a functional of energy
and also as functional of probability of states. What is most
interesting in such an approach is that the Olbert entropy Sκ has
an equivalent form to that in ordinary non-equilibrium statistical
mechanics. Olbert entropy, however, contains additional terms
which can be calculated in an iterative perturbation theoretical
way. It is for this reason super-additive (or super-extensive if
wanted), a property that it has in common with q-statistics
though being rather different. We have elucidated the main
difference here. This means that in κ-systems, i.e., for instance,
in high-temperature plasmas exhibiting Olbert-distributions, the
particles are correlatively grouped together to behave collectively,
thereby providing the collective contribution to entropy. Such
correlations are implicit to the index κ and indicate strong non-
linear couplings, which are provided by interaction potentials
which are mediated not by collisions but by excitation of
waves. It is thus not surprising if κ-distributions are found in
turbulent dilute high temperature plasmas like the solar wind

[28], near collisionless shock waves [29], Earth’s bow shock [30],
the magnetosheath [31], at the boundaries of the heliosphere
and astrospheres [32], where various types of waves can be
excited as both, eigenmodes or sidebands, which even occupy
the evanescent branches of the dielectric response function
causing a continuous almost featureless power spectrum of
fluctuations, which is typical for well-developed turbulence. One
may, therefore, expect that the statistical mechanics underlying
well-developed collisionless turbulence will become kind of
Olbert-Lorentzian in terms of the probability distribution. The
precise relation between these interactions and the particular
value of the parameter κ is still open to investigation. The
consideration of entropy given here only shows its micro-
canonical statistical-mechanical effect.
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