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In the present investigation, a novel neuro-swarming intelligence-based numerical

computing solver is developed for solving second order non-linear singular periodic

(NSP) boundary value problems (BVPs), i.e., NSP-BVPs, using the modeling strength

of artificial neural networks (ANN) optimized with global search efficacy of particle swarm

optimization (PSO) supported with the methodology of rapid local search by interior-point

scheme (IPS), i.e., ANN-PSO-IPS. In order to check the proficiency, robustness, and

stability of the designed ANN-PSO-IPS, two numerical problems of the NSP-BVPs have

been presented for different numbers of neurons. The outcomes of the proposed ANN-

PSO-IPS are compared with the available exact solutions to establish the worth of the

solver in terms of accuracy and convergence, which is further endorsed through results

of statistical performance metrics based on multiple implementations.

Keywords: singular periodic systems, particle swarm optimization, hybrid approach, interior-point scheme,

artificial neural networks, statistical analysis

INTRODUCTION

The singular differential equations have immense applications in a variety of areas of
mathematics and physics, such as dynamics, nuclear physics, chemical reactions and atomic
designs etc. The research investigations of non-linear singular periodic boundary value
problems (NSP-BVPs) are mainly based on differential equation models. Due to non-linearity,
singular points and the periodic nature of the mathematical models, only a few existing
analytical and numerical approaches are available in literature to present the solutions of
the NSP-BVPs [1–5]. A few problems are provided as Agarwal [6, 7] implemented a well-
known numerical shooting approach to solve NSP-BVPs. Geng and Cui [8] presented the
individuality and existence for solving the NSP-BVPs. Some other numerical techniques
are employed to analyze the significance of the proposed problem NSP-BVPs [9–11].
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Assadi et al. [12] exploited a fixed point iterative scheme, Xin
et al. [13] a non-trivial solution of NSP-BVPs, El-Syed andGaagar
[14] provided the existence of a solution for non-linear singular
differential equations, Wang et al. [15] and Wang and Ru [16] a
positive solution of periodic equations. The general form of the
second order non-linear NSP-BVPs is written as [8]:























d29(x)

dx2
+

p(x)

xβ1 (1− x)δ1
d9(x)

dx
+

q(x)

xβ2 (1− x)δ2
9(x)

+ N(9) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
,

(1)

where p(x) and q(x) are continuous, N(9) is a function of
9 . Moreover, β1, δ1, β2, and δ2 are the positive constant
values. All of the above cited analytical/numerical schemes have
their precise advantages, disadvantages, merits and demerits,
while a stochastic numerical solver based on the intelligent
computing approach by manipulating the strength of artificial
neural networks (ANNs), particle swarm optimization (PSO),
and interior-point scheme, i.e., ANN-PSO-IPS, has not been
implemented to solve second order NSP-BVPs.

Researchers have widely studied the meta-heuristic based
computing numerical approaches along with the neural network’s
strength for solving the linear/non-linear mathematical models
[17–24]. Some recent applications of heuristic computing are
corneal models for eye surgery [25], the non-linear Riccati
system [26], the Bagley-Torvik system [27], non-linear systems
of Bratu type [17], prey-predator non-linear models [28], non-
linear reactive transport models [29], non-linear optics models
[30], non-linear singular functional differential models [31],
singular non-linear systems arising in atomic physics [32],
non-linear doubly singular systems [33], nanofluidic systems
[34], micropolar fluid flow [35], the heartbeat model [36],
the singular Lane-Emden equation based model [37], the heat
conduction model of the human head [38], non-linear electric
circuit models [39], finance [40], and mathematical models in
Bioinformatics [41, 42]. These influences proved the value, worth
and consequence of the stochastic solvers based on robustness,
accuracy and convergence.

Keeping in view the value and worth of these applications,
the authors worked to exploit the strength and significance of
stochastic solvers for a reliable, efficient and stable approach to
solve the NSP-BVPs. The present analysis for NSP-BVPs given
in Equation (1) is performed via stochastic numerical solver
along with utilization of the strength of artificial neural networks
(ANNs) based on certain numbers of neurons, particle swarm
optimization (PSO) and interior-point scheme, i.e., ANN-PSO-
IPS. Some innovative influences of the presented solver are briefly
summarized as:

• Novel neuro-swarm intelligent/soft computing heuristics
ANN-PSO-IPS using different number of neurons are
accessible for the numerical behavior of the second order NSP-
BVPs.

• The overlapping outcomes of the designed ANN-PSO-IPS
with the referenced exact solutions for two different variants
of the second order non-linear NSP-BVPs establish the
convergence, correctness and reliability.

• Authorization of accurate performance is validated through
statistical observations on multiple runs of ANN-PSO-IPS in
terms of Theil’s Inequality Coefficient (TIC), Variance Account
For (VAF), and semi-interquartile range (S-IR) and Nash
Sutcliffe Efficiency (NSE) metrics.

• Besides practically accurate continuous outcomes on
input training interval, ease in the concept, the smooth
implementable procedure, robustness, extendibility, and
stability are other worthy declarations for the proposed
neuro-swarm intelligent computing heuristics.

The remaining parts of the paper are planned as: section
Design Methodology defines the explanation of the proposed
methodology for ANN-PSO-IPS, mathematical forms of the
statistic based operators are provided in section Statistical
Measures, the detailed results and discussions are given in section
Results andDiscussion, while the conclusions and future research
plans are provided in section Conclusions.

DESIGN METHODOLOGY

The design approach of ANN-PSO-IPS is divided into two
categories for a numerical solution of the non-linear second
order NSP-BVPs. In category 1, the error-based fitness function is
introduced, while in the second category, the combination of an
optimization scheme PSO with IPS, i.e., PSO-IPS, is provided in
the sense of introductory material, applications, and pseudocode.

ANN Modeling
Mathematical models for non-linear second order NSP-BVPs are
assembled with the feed-forward ANNs strength, 9̂(x) shows the
continuous mapping results, and its derivatives using the log-

sigmoid U(x) =
(

1+ exp(−x)
)−1

activation functions given as:

9̂(x) =

k
∑

i=1

aiU(wix+ bi) =
k
∑

i=1

ai
(

1+ e−(wix+bi)

) ,

d9̂

dx
=

k
∑

i=1

ai
d

dx
U(wix+ bi) =

k
∑

i=1

aiwie
−(wit+bi)

(

1+ e−(wit+bi)
)2 ,

d29̂

dx2
=

k
∑

i=1

ai
d2

dx2
U(wix+ bi) (2)

=

k
∑

i=1

aiw
2
i

(

2e−2(wix+bi)

(

1+ e−(wix+bi)
)3 −

e−(wix+bi)

(

1+ e−(wix+bi)
)2

)

,

where the weights are a = [a1, a2, a3, ..., am], w =

[w1,w2,w3, ...,wm] and b = [b1, b2, b3, ..., bm]. In order to solve
the non-linear second order NSP-BVPs given in the system (1),
an error-based fitness formulation using the mean square error
sense is written as:

E = E1 + E2, (3)
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where E1 and E2 are the error functions related to the differential
system and the boundary conditions, respectively, written as:

E1 =
1

N

N
∑

m=1

(

d29̂m

dx2m
+

pm

x
β1(1−xm)

δ1

m

d9̂m

dxm
+

qm

x
β2(1−xm)

δ2

m

9̂m

+ N(9̂m)− hm

)

, 0 < xm < 1, (4)

E2 =
1

2

(

9̂0 − 9̂N

)2
+

1

2

(

d9̂0

dxm
−

d9̂N

dxm

)2

, (5)

where Nh = 1, pm = p(xm), qm = q(xm), hm = h(xm), 9̂m =

9̂(xm) and xm = mh., while 9̂ is the approximate solution of
9 of system represented in (1), N is total number of input grid
points and h is the step size.

Optimization Process: PSO-IPS
The parameter optimization for second order non-linear NSP-
BVPs is approved by the hybrid computing framework based on
PSO and IPS.

The PSO approach [43] is applied as an effective alternative
to the efficient global search mechanism of genetic algorithms
[44] that is used as an optimization apparatus for the
second order non-linear NSP-BVPs. Kennedy and Eberhart
proposed PSO, which is a famous algorithm for the global
search optimization strength, at the end of the 19th century.
PSO is considered as an easy implementation process with
low memory requirements [45]. This optimization algorithm
exploits mathematical modeling inspired bythe swarm pattern
of birds flocking as well as fish schooling. Recently, this global
optimization procedure is used in different applications, like
the fuel ignition model [46], non-linear physical models [47],
parameter approximation systems of control auto regressive
moving average models [48], balancing stochastic U-lines
problems [49], operation scheduling of microgrids [50], and
features classification [51].

In the search space theory, a single candidate solution is
called a particle using the optimization process. For the PSO
optimization approach, the prime swarms spread into the larger
and for the adjustment of the parameters of PSO, the scheme
delivers iteratively optimal outcomes Pδ−1

LB and Pδ−1
GB that indicate

the swarm’s position and velocity. The mathematical form is
given as:

X
δ
i = X

δ−1
i + V

δ−1
i , (6)

V
δ
i = ωV

δ−1
i + δ1(P

δ−1
LB − X

δ−1
i )r1 + δ2(P

δ−1
GB − X

δ−1
i )r2,(7)

where the position and velocity areXi andVi, respectively, r1 and
r2 are the pseudo random vectors between 0 and 1, while δ1 and
δ2 are the acceleration constant values. The inertia weight vector
is ω ∈ [0, 1]. The scheme performance stops when the predefined
flights are obtained.

The dynamic of the optimization PSO rapidly converges by
the hybridization process with the suitable local search scheme
by taking PSO global best values as an initial weight. Therefore,
an efficient local search approach based on interior-point scheme
(IPS) is used for quick fine-tuning of the outcomes achieved by

TABLE 1 | Pseudo code of the optimization tool PSO-IPS to find the weights of

ANNs.

Start of PSO

Step-1: Initialization: Randomly generate the

initial swarm and adjust the parameters of [PSO] and

[optimoptions] routine.

Step-2: Fitness Calculation: Scrutinize the [fitness

value] for every particle in Equation (3).

Step-3: Ranking: Rank each particle of the minimum

criteria of the [fitness function].

Step-4: Stopping Criteria: Stop, if one of the below

condition attained.

• Selected flights/cycles

• Level of Fitness

When achieved the above standards, then move to Step-5

Step-5: Renewal: For the position and velocity, use

systems (6) and (7).

Step-6: Improvement: Repeat the 2-6 steps, until the

whole flights are achieved.

Step-7: Storage: Store the achieved best fitness values

and designate as the best global particle.

End of PSO

Start the PSO-IPS process

Inputs : Best global values of the particle

Output : WPSO−IPS are the best vectors of PSO-IPS

Initialize : Use [best global values] as a [start

point]

Termination : The process terminates, when [Fitness

= E= 10−20], [TolFun = TolCon = 10−21], [Generation =

700], [TolX = 10−20] {MaxFunEvals = 270000}

While: {Stop}

Fitness Evaluation : For the fitness E by using the

Equation (3).

Adjustments: Invoke the routine [fmincon] for the IPS

to modify the weight vector values.

Store to fitness step by using the simplified form of the

weight vector

Store : Save WPSO−IPS values, which are final adaptive

weight values, function count, time, E, and generations

for the present run.

End of the PSO-IPS

the designed optimization approach. Some recent submissions
of the IPS are mixed complementarity monotone systems [52],
active noise control systems [53], simulation of aircraft parts
riveting [54], the economic load dispatch model [55], and non-
linear system identification [56].

The pseudocode based on the combination of PSO-IPS trains
the ANN as well as the crucial setting of the parameters for both
PSO and IPS are provided in Table 1. The optimization method
become premature using a minor change in the parameter
setting, thus, it requires several experiences, replications and
information on essential optimization impressions of appropriate
settings for the hybrid of PSO-IPS.

STATISTICAL MEASURES

The present study aims to present the statistical performance for
solving both variants of second order non-linear NSP-BVPs. In
this respect, three performance operators are implemented based
on Theil’s inequality coefficient (TIC), Nash Sutcliffe Efficiency
(NSE), and Variance Account For (VAF). The mathematical
notations of these operators are given as:
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TIC=

√

1

n

n
∑

i=1

(

9i − 9̂i

)2

(√

1

n

n
∑

i=1
92

i +

√

1

n

n
∑

i=1
9̂2

i

) (8)



























NSE =1−

n
∑

i=1

(

9i − 9̂i

)2

n
∑

i=1

(

9̂i − 9̄i

)2
, 9̄i =

1

n

n
∑

i=1
9i

ENSE =1−NSE,

(9)















VAF =



1−
var

(

9i(x)− 9̂i(x)
)

var
(

9i(x)
)



 ∗ 100,

EVAF = |100− VAF| .

(10)

{

SIR = 0.5 (Q3 − Q1) ,
Q3 = 3rd quartile, Q1 = 1st quartile.

(11)

RESULTS AND DISCUSSION

In this section, the detailed results based on two variants of
the second order NSP-BVPs are presented using the ANN-PSO-
IPS and comparison of the proposed outcomes with the exact
solutions will also be discussed.
Example 1: Consider the second order SPBVP is written as:



























d29(x)

dx2
+

2

x4(1− x)1.5
d9(x)

dx

+
1

x3(1− x)1.5
9(x) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
.

(12)

The true solution of the Equation (12) is e10(x−x2)
2
and the fitness

function is written as:

E =
1

N

m
∑

i=1

(

d29̂m

dx2m
+

2

x4m(1− xm)
1.5

d9̂m

dxm
+

1

x3m(1− xm)
1.5 9̂m − hm

)2

+
1

2





(

9̂0 − 9̂N

)2
+

(

d9̂0

dxm
−

d9̂N

dxm

)2


 , (13)

Example 2: Consider the non-linear second order SPBVP is
written as:



















d29(x)

dx2
+

2

x2(1− x)

d9(x)

dx
+

1

x(1− x)
9(x)

+92(x) = h(x), 0 < x < 1,

9(0) = 9(1),
d9(0)

dx
=

d9(1)

dx
.

(14)

The exact solution of the above equation is e10(x−x2)
2
and the

fitness function is written as:

E =
1

N

m
∑

i=1

(

d29̂m

dx2m
+

2

x2m(1− xm)

d9̂m

dxm

+
1

xm(1− xm)
9̂m + 9̂2

m − hm

)2

+
1

2





(

9̂0 − 9̂N

)2
+

(

d9̂0

dxm
−

d9̂N

dxm

)2


 . (15)

In order to perform the solutions of the second order NSP-BVPs,
the optimization is accomplished using the hybrid of global and
local search capabilities, i.e., PSO-IPS. The process is repeated for
sixty trials to generate a large dataset parameter using the ANNs.
The best weight sets are provided to indicate the approximate
numerical outcomes of the model (1) using 5 and 10 numbers
of neurons. The mathematical formulations of the proposed
numerical outcomes for 5 neurons are shown as:

9̂1(x) =
5.8775

1+ e−(9.3350x−12.870)
+

7.3743

1+ e−(5.2745x−2.3623)

+
0.1197

1+ e−( −9.8796x+4.4603)
+

7.1505

1+ e−( −5.5221x+3.2724)

−
6.8433

1+ e−( 8.5033x+3.4988)
, (16)

9̂2(x) =
−7.2686

1+ e−(5.6952x−3.2662)
+

7.4887

1+ e−(6.7652x−9.3959)

+
11.9610

1+ e−( −5.7680x+3.3622)
+

9.0833

1+ e−( 4.5840x−2.2274)

−
4.0470

1+ e−( 3.2902x−4.1080)
. (17)

The mathematical formulations of the proposed numerical
outcomes for 10 number of neurons are written as:

9̂1(x) =
−0.3444

1+ e−(0.1021x−1.9508)
+

1.6234

1+ e−(−0.2443x+2.2795)
+ ...

+
7.3336

1+ e−( 9.9170x−13.6069)
, (18)

9̂2(x) =
−3.4763

1+ e−(5.7313x−3.7465)
+

1.0055

1+ e−(−0.0494x−0.1392)
+ ...

+
0.8568

1+ e−( −0.7378x−2.2455)
. (19)

The optimization of the relations (13) and (15) is carried out with
PSO-IPS for sixty trials and one set of trained weight of ANN
based on 5 and 10 neurons is plotted in the Figures 1A,B, 2A,B.
The comparison of the best, mean and exact solutions are drawn
in the Figures 1C,D, 2C,D for 5 and 10 numbers of neurons.
The best and mean results obtained by the designed approach
ANN-PSO-IPS are overlapped to the exact results for both of
the examples. This consistent overlapping of the results indicates
the exactness and correctness of the designed scheme. The plots
of absolute error (AE) for the 5 and 10 number of neurons are
drawn in Figures 1E,F, 2E,F. These AE values have been obtained
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FIGURE 1 | Best weight, results of the designed methodology, values of the AE, and performance measures of Examples 1 and 2 for 5 numbers of neurons. (A) ANN

best weights for Example 1. (B) ANN best weights for Example 2. (C) Result comparison for Example 1. (D) Result comparison for Example 2. (E) AE values for

Example 1. (F) AE values of for Example 2. (G) Performance measures for Example 1. (H) Performance measures for Example 2.

Frontiers in Physics | www.frontiersin.org 5 August 2020 | Volume 8 | Article 224

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Sabir et al. A Neuro-Swarming Intelligence

FIGURE 2 | Best weight, results of the designed methodology, values of the AE, and performance measures of Examples 1 and 2 for 10 numbers of neurons. (A)

ANN best weights for Example 1. (B) ANN best weights for Example 2. (C) Result comparison for Example 1. (D) Result comparison for Example 2. (E) AE values of

10 neurons for Example 1. (F) AE values of 10 neurons for Example 2. (G) Performance measures for Example 1. (H) Performance measures for Example 2.
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FIGURE 3 | Statistical analysis for Fitness, EVAF, ENSE, and TIC values along with the histograms for 5 numbers of neurons. (A) Analysis through Fitness values. (B)

Analysis through EVAF values. (C) Fitness histogram for Example 1. (D) Fitness histogram for Example 2. (E) EVAF histogram for Example 1. (F) EVAF histogram for

Example 2. (G) Analysis through ENSE values. (H) Analysis through TIC values. (I) ENSE histogram for Example 1. (J) ENSE histogram for Example 2. (K) TIC

histogram for Example 1. (L) TIC histogram for Example 2.
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FIGURE 4 | Statistical analysis for Fitness, EVAF, ENSE, and TIC values along with the histograms for 10 numbers of neurons. (A) Analysis through Fitness values. (B)

Analysis through EVAF values. (C) Fitness histogram for Example 1. (D) Fitness histogram for Example 2. (E) EVAF histogram for Example 1. (F) EVAF histogram for

Example 2. (G) Analysis through ENSE values. (H) Analysis through TIC values. (I) ENSE histogram for Example 1. (J) ENSE histogram for Example 2. (K) TIC

histogram for Example 1. (L) TIC histogram for Example 2.
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TABLE 2 | Statistical measures of second order NSP-BVPs for 5 numbers of neurons.

x Example 1 Example 2

Min Median S-IR Min Median S-IR

0 4.3800E-10 2.4322E-05 5.8941E-05 4.1548E-09 2.7870E-05 4.0175E-05

0.1 1.0811E-04 7.7025E-04 8.6001E-04 1.2196E-04 1.0068E-03 1.0410E-03

0.2 3.6511E-05 5.6142E-04 6.2835E-04 1.1680E-04 7.2896E-04 6.7197E-04

0.3 8.7597E-05 6.4440E-04 5.9016E-04 8.0975E-05 5.2411E-04 3.5493E-04

0.4 2.9869E-05 6.4334E-04 7.4767E-04 7.8613E-05 5.7963E-04 6.0679E-04

0.5 4.8751E-05 5.6677E-04 6.4867E-04 8.1846E-05 4.9090E-04 4.7209E-04

0.6 6.9083E-05 6.0762E-04 7.6064E-04 3.3751E-05 2.7292E-04 3.2479E-04

0.7 1.9878E-05 5.8409E-04 5.8424E-04 5.4564E-05 2.6714E-04 2.3180E-04

0.8 3.2494E-05 5.0037E-04 6.1557E-04 1.4562E-08 8.5972E-05 1.0953E-04

0.9 1.2129E-05 6.6068E-04 8.2711E-04 1.9492E-05 1.8377E-04 2.5713E-04

1 6.2420E-06 3.2533E-04 2.7669E-04 3.7593E-05 1.6656E-04 2.0026E-04

TABLE 3 | Statistical measures of second order SPBVP for 10 numbers of neurons.

x Example 1 Example 2

Min Median S-IR Min Median S-IR

0 1.3750E-11 1.1115E-06 1.0015E-05 1.3497E-10 8.5111E-06 1.7554E-05

0.1 6.2531E-06 3.4802E-04 2.0725E-04 1.0887E-06 5.0029E-04 2.8479E-04

0.2 3.4460E-05 2.6909E-04 1.2230E-04 4.0212E-05 3.6106E-04 1.5219E-04

0.3 4.0693E-06 2.9278E-04 1.5321E-04 1.0086E-05 3.3328E-04 1.6158E-04

0.4 3.8667E-05 2.8024E-04 1.5726E-04 5.8796E-06 2.8468E-04 1.8934E-04

0.5 5.0393E-05 2.8371E-04 1.3840E-04 2.3541E-05 2.1966E-04 8.6765E-05

0.6 1.1706E-06 2.5999E-04 1.3755E-04 5.1929E-06 1.6256E-04 9.2463E-05

0.7 1.6981E-05 2.7881E-04 1.4362E-04 1.4313E-05 1.2823E-04 6.5314E-05

0.8 1.9865E-05 2.4636E-04 1.1779E-04 3.1422E-06 4.8243E-05 2.1416E-05

0.9 1.0978E-06 2.9394E-04 1.4451E-04 1.9040E-05 9.1881E-05 4.3721E-05

1 2.5240E-07 1.2135E-04 1.0572E-04 3.9770E-07 1.0216E-04 5.0242E-05

by using the proposed results obtained by ANN-PSO-IPS and
the exact solutions. It is clear in Figures 1E,F that most of the
best solutions lie around 10−04−10−05 for both examples, while
the mean values lie around 10−02−10−03 and 10−03−10−04 for
examples 1 and 2, respectively. The best AE values for 10 neurons
are plotted in Figures 2E,F lie around 10−04−10−06, while the
mean values lie around 10−03−10−04 for both examples. In order
to find the best and mean values of the performance indices
based on the VAF, ENSE, and TIC values, the Figures 1G,H,
2G,H have been plotted using the 5 and 10 number of neurons
for both examples. The best ENSE, TIC, and EVAF values for 5
neurons lie around 10−06−10−08 for both examples. Whereas,
for both examples using 5 numbers of neurons, the best ENSE
values lie around 10−02−10−04 and the best TIC and EVAF values
lie around 10−04−10−06. Furthermore, for the 10 numbers of
neurons, the best values of ENSE, TIC, and EVAF are close to
10−08 for example 1, while for example 2, these best values lie
around 10−08−10−09. The mean ENSE and EVAF values for
the example 1 and 2 lie around 10−06−10−07, while the mean
TIC values lie around 10−07−10−08 for both examples. It is

noticed that the results of AE and the performance measures
for 10 neurons are found to be better when compared to
5 neurons.

Statistical investigations of the present methodology for 60
independent trials using the 5 and 10 numbers of neurons for the
examples 1 and 2 are provided in Figures 3, 4. The Fitness, EVAF,
ENSE, and TIC values along with the histogram are plotted in
Figures 3A,B,G,H. These investigations show that around 70%
of independent trials of the designed approach ANN-PSO-IPS
achieved higher accuracy for all the statistical performances.

Statistics measures based on Minimum (Min), Median and
S-IR gages for solving the second order SPBVP using the
5 and 10 numbers of neurons are tabulated in Tables 2, 3.
The statistical measures are provided in order to check the
accuracy analysis of the presented scheme ANN-PSO-IPS. In
Table 2, the Min values for example 1 and 2 lie around
10−04−10−10 and 10−04−10−09, respectively, while the Median
and S-IR values lie around 10−04−10−05 for both examples.
In Table 3, the Min values for the examples 1 and 2 lie
around 10−05−10−11 and 10−05−10−10, respectively, while
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the Median and S-IR values lie around 10−04−10−06 for
both examples.

CONCLUSIONS

A novel application of a stochastic numerical solver based
on neuro-swarm intelligent computing is presented to solve
the singular non-linear second order periodic boundary value
problems using different numbers of neurons based on the
neural networks optimized with the global search capability of
particle swarm optimization supported with quick fine tuning of
decision variables bymanipulating the strength of local search via
interior-point scheme. The singular periodic model is efficiently
evaluated by the designed computing solver with the layer
structure based neural networks with 5 and 10 neurons and it
is found that the accuracy of numerical outcomes is enhanced
by large neurons-based networks. The precision of the stochastic
designed approach is verified by obtaining identical outcomes
with the exact solutions having 4–6 decimal places of accuracy
for solving both the singular periodic non-linear models. From
the plots of performance measures using the neuron analysis,
one can also conclude that the calculated accuracy is better
for 10 numbers of neurons. Statistical interpretation of findings
through performance indices of TIC, EVAF, and ENSE based on
60 executions/trials of the solver for obtaining the solution of
singular periodic non-linear model validate the trustworthiness,
accurateness and robustness. Moreover, the values of the mean,

median and semi interquartile range tabulated in Tables 1,
2 provide the precise and accurate values of the presented
scheme ANN-PSO-IPS.

In future, the designed approach is a promising alternate
solver to be exploited/explored to investigate the computational
fluid dynamics problems, especially thin film flow, wire coating
analysis, squeezing flow models, Jeffery Hamel flow, calendaring
problems, stretching flow problems, food processing models, and
related fields [57–62].
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