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We review the main results from the literature on the consequences of link and node

removal in real social networks. We restrict our review to only those works that adopted

the two most common measures of network robustness, i.e., the largest connected

component (LCC) and network efficiency (Eff). We consider both binary and weighted

network approaches. We show that the study of the response of social networks

subjected to link/node removal turns out to be extremely useful for managing a number of

real problems. For instance, we show that the consequences of the imposition of social

distancing in many states to control the spread of COVID-19 could be analyzed within the

framework of social network analysis. Our mini-review outlines that in social networks, it

is necessary to consider the weight of links between persons to perform reliable analyses.

Finally, we propose promising lines for future research in social network science.

Keywords: social network, network attack, information spreading, network robustness and resiliency, link

(node) removal

INTRODUCTION

In the last few decades, a number of studies investigated the response of real networks to link/node
removal (LNR) in what is called “network attack analysis” because it simulates the consequences of
an attack on the network [1–8]. These studies found application in very different fields of science
such as biology [9–11], ecology [12–15], transport and infrastructure science [16–21], informatics
[22, 23], neurology [24], economics [25, 26], and social networks [27–30]. These studies aimed to
(i) assess network robustness, a measure that indicates the capacity of the system to maintain its
functions after LNR [6, 31], and (ii) identify the LNRs that trigger the greatest amount of damage
in the systems, thus revealing the links/nodes that act as key players in network functioning [5, 31].

In this mini-review, we focus on LNR in real social networks describing relationships between
individuals, groups, organizations, societies, etc. [32]. We will summarize the main results from the
literature and elucidate real applications.

BINARY AND WEIGHTED NETWORKS

Despite the fact that some of the preliminary works on social networks considered the link weights
[33], most of the LNR in the last two decades used binary (topological) models in which links
are only present or absent [31]. The binary network approach has the advantages of simplicity
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and low computational cost and is straight-forward in gathering
information to describe the network. Nonetheless, recent
analyses showed that a thorough description of real networks
should consider the heterogeneity of the links-interactions [34–
37]. In fact, almost all real networks are characterized by links
with different “weights” indicating the strength of the interaction
among nodes. For instance, in airport networks, the weight
of a link identifies the number of passengers flowing between
two airports [34], in neural networks, it identifies the number
or the strength of connections among neurons [38, 39], and
in ecological networks, it quantifies the amount of energy (or
matter) flowing between species [40]. In real social networks,
the link weight has been measured as the strength of friendship
[32, 33, 41], face-to-face contact time [42], co-appearance in
films [43], or the number of co-authored papers among scientists
[30]. In the following, we review the main findings on social
networks obtained by both a binary and a weighted description
of the networks.

THE NETWORK FUNCTIONING
MEASURES

Many measures have been used to evaluate the robustness of
network functioning under LNR [44]. Here, we summarize
the studies that have adopted two widely used indicators,
i.e., the largest connected component (LCC) and the network
efficiency (Eff). The LCC, also called “giant cluster,” represents
the maximum number of connected nodes in the network [5,
6, 31, 45]. Considering all the network clusters, i.e., the sub-
networks of connected nodes, the LCC can be defined as:

LCC = maxj(Sj) (1)

where Sj is the size (number of nodes) of the j-th cluster.
Spreading processes, such as information propagation among

users of an online social network or the diffusion of pathogens
among individuals, are dynamical phenomena occurring in
social networks [46]. The LCC furnishes a simple and heuristic
static snapshot of the network spreading entities by providing
the maximum number of nodes that are in contact among
them. The LCC can be used to evaluate both binary and
weighted networks under LNR. Nonetheless, the LCC may be an
imprecise functioning indicator in weighted networks. Consider
a comparison of two removal strategies, A and B, that trigger a
similar LCC decrease, but strategy A removes higher weighted
links (strong links) in the network. Strategy A is likely to induce
more damage than B, but the LCC is not able to discriminate
the difference. Further, one can remove many strong links,
which may play an important systemic role, and yet leave the
nodes connected and the LCC size constant (Figures 1A,B).
Even in this case, the LCC is not able to evaluate the network
functioning decrease, probably underestimating its damage. For
these reasons, even when adopted in weighted networks, the LCC
returns a pure topological description, neglecting to evaluate the
underlying weighted structure [34–37].

Differently, the network efficiency (Eff) works properly with
both binary and weighted structures, being able to consider

FIGURE 1 | Network model with 10 nodes before (A) and after (B) the

removal of the three highest-weight links. (C) Network model representing the

“weak link” hypothesis where weak acquaintance links are more likely to

bridge social sub-community modules. (D) Network model representing the

opposite case with local neighborhoods mainly consist of weak links, whereas

strong links that bridge social sub-community modules are more important for

overall connectivity.

the difference in link weights for the network functioning. The
efficiency measure is based on the shortest paths (also called
geodesic path) between two nodes, i.e., the minimum number of
links used to travel from one node to another [47].

The network efficiency is [48]:

Eff =
1

N · (N − 1)

∑

i6=j∈G

1

d(i, j)
(2)

where N is the total number of nodes of network G, and d(i,j)
is the shortest path between nodes i and j. In the case where
the network is weighted, the efficiency is based on the weighted
shortest path. The weighted shortest path is computed as the
minimum sum of the inverse link weights to travel among
nodes [44]. Computing the inverse of link weight is a standard
procedure for considering strong links as shorter routes with
higher spreading capacity. Eff decreases with an increase in the
nodes’ shortest paths, thus defining as a more efficient networks
with closer nodes. Eff performs a more granular evaluation of the
network functioning after LNR by considering the elongation of
shortest paths when the nodes are still connected (Figures 1A,B)
and by giving more importance to the removal of strong links
that play a major role in routing the shortest paths and the
system spreading capacity [37, 49]. We remark that spreading is
a dynamic process and that LCC and Eff are “static” indicators
summarizing in a single value the extent of dynamic processes
occurring in networks.
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LINK REMOVAL IN SOCIAL NETWORKS

One of the first link removal analyses was originally conceived for
social networks. In the classic “The Strength of Weak Ties” study
[33], which arguably contains the most influential sociological
theory of networks, Granovetter described the complex social
networks of individual interpersonal relationships (links or
ties) by grading their weight as “strong,” “weak,” or “absent.”
Granovetter referred to strong links as friends and weak links as
acquaintances. A strong link occurs between a person and her/his
close circle of family or friends, thus joining together people with
a great deal of similarity. On the other hand, weak links are more
tenuous acquaintance connections bringing together different

groups of individuals. The “weak link hypothesis” describes
a specific social network structure in which strong links are
associated with dense neighborhoods (communities or groups),
while weaker links act as bridges between them. Granovetter

argues that contacts maintained through weak acquaintance links
play the important role of holding together groups with low

levels of similarity, thus providing access to novel information
(Figure 1C). In that study emerged the seminal idea of using
node connectivity as an indicator of social network information
spreading, an insight that is formalized in the LCC notion
[3, 45]. In other words, LCC connectivity, supporting the
overall information spreading in social systems, would be most
threatened by the removal of weak links [33].

Technical progress has made it easier to collect data on
complex social systems, and in the last two decades, many
studies expanded the Granovetter framework to different social
network databases. Onnela et al. [28] built a social network
collecting mobile phone call records by describing the nodes-
individuals and their phone calls links-interactions, weighting
the phone call links by their duration [28]. Corroborating
the “weak link hypothesis,” the authors found that the phone
call network LCC is more vulnerable to weak link removal,
revealing a networked structure where longer-duration calls
(strong links) generally occur within communities whereas
shorter-duration calls (weaker links) take place from individuals
of different communities. In complex socio-economic networks,
a weighted link was assigned between two nodes representing
different stocks according to the cross-correlation between
the return time series of each stock in the New York
Stock Exchange. Garas et al. [25] show that the removal
of weak connections decreases the LCC significantly more
than the removal of strong links. These studies confirm the
“weak link hypothesis” (Figure 1C), outlining the role of the
weak links-interactions in supporting the overall connectivity
and the information spreading of the network [25, 27,
28].

Searching for further evidence of the “weak link hypothesis,”
Pan and Saramaki [30] analyzed the co-authorship network in
the field of physics. The network is formed by nodes (scientists)
and links weighted by the number of co-authored papers.
In distinction from what occurred in other social networks,
the LCC of the scientific network shrinks faster when the
strongest links are removed first [30]. This analysis revealed a
specific topological-weight coupling of the science co-authorship
network, with dense local neighborhoods mainly consisting of

weaker links but strong links joining senior scientists leading
different research groups (Figure 1D).

Following these results, Pajevic and Plenz [43] performed
a comprehensive analysis of science co-authorship and cinema
collaboration social network robustness. They found that the
LCCs of all four science co-authorship networks are more
vulnerable to strong link removal. These outcomes would falsify
the “weak link hypothesis” for this specific class of social networks
[30, 43]. In contrast, for the other two social networks of cinema
collaborations, in which the nodes represent actors and the link
weights represent the number of movies in which they appeared
together, the LCC was more vulnerable to weak link removal.

A recent study expanded the investigation concerning social
network robustness by comparing the effect of new link removal
strategies based on different network properties, with the classic
weak/strong link removals [37]. The authors found that the
removal strategy based on the binary betweenness centrality (BC)
of the links is the most efficient way to disrupt the LCC. The
BC is a widely used measure of link/node importance in social
network analyses, and it is based on the shortest paths between a
pair of nodes, e.g., the minimum number of links to travel from
one node to the other [44, 47]. The BC is a measure for the
number of shortest paths from any node couple passing along
that link, indicating links with higher BC as more important
articulation routes for the network communication paths [44,
47]. For this reason, the results of Bellingeri et al. [37] provide
an interesting insight into the long-standing debate about weak-
strong link importance started by Granovetter, indicating that the
links playing the main role in sustaining system connectivity are
neither the strong nor the weak but are those of highest BC.

All of the studies mentioned above used the LCC as an
indicator of the robustness of network functioning. Nonetheless,
different indicators rely on different rationales, thus furnishing
quite different interpretations of system functioning. For this
reason, a more comprehensive description of the social network
response to link removals should include the adoption and the
comparison of different indicators. With this aim, Bellingeri et al.
[35] performed link removal over science co-authorship [30] and
UK faculty friendship [41] social networks, finding that removing
a small fraction of strong links quickly reduced the efficiency (Eff)
despite the LCC remaining roughly unaltered. The removal of
strong interactions left the real social systems in a “connected
but inefficient” network state (Figures 2A–D). In this response
state, the real social networks undergo a heavy decrease in
information spreading capacity but are still well-connected. Since
the most likely link removal in real social systems may occur
with the network still connected, such as in the case of scholars
breaking up scientific collaborations in pursuit of others, the
end of friendships, or the interruption of working relationships,
the findings of Bellingeri et al. [35] outlined that in order to
properly evaluate the information spreading robustness in real
social networks, it is necessary to include weighted measures of
network functioning.

NODE REMOVAL IN SOCIAL NETWORKS

Classic results focusing on the problem of node removal
indicated that many real networks show a “robust yet fragile”
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FIGURE 2 | (A–D) Link removal process of the links with the highest weight over the UK faculty friendship social network [41] composed of 81 nodes and 817 links.

We progressively remove the strong links in the network to reach the removal of 20% of the total number of links. Strong link removal (thick black lines = strong links)

quickly decreases the network efficiency (Eff) with no network node disconnection, e.g., LCC does not decrease. The Eff and LCC measures are normalized by the

initial value, e.g., before any removals. Strong link removal may severily slow down the pace of spreading in the network without disconnecting the nodes. (E–H) The

UK faculty network subjected to the process of removal of the nodes with highest betweenness centrality (red nodes). The red nodes in each panel represent the

nodes removed at each step; the total number of removed nodes is 11. The node removal fragments the network into two isolated components, halting the

information spreading among nodes.

nature, i.e., they are robust to random node removal but very
fragile to attack of the nodes with the highest number of links
[1–4]. Following these seminal findings, a plethora of attack

strategies were proposed to determine the sequence of node
removal that maximizes the damage to the networks [5, 6, 50–
55]. A proper understanding of how the node removal affects
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real social systems has many practical applications. In social
networks, node removal may predict how the abandoning of
individuals affects the information spread in the network. This
can be useful for identifying the most important network nodes,
with very different interpretations. On one side of the coin,
in science co-authorship networks, determining which node
removals produce higher information spreading reduction may
help us to understand who are the nodes/scientists making
the greatest contribution to knowledge and idea spreading [30,
56, 57]. These findings may furnish useful tools for designing
policies facilitating the activities of these scholars, who act as
“influential spreaders” in the network. On the other side, these
analyses can be useful for finding which criminals play a major
role in shaping information delivery in criminal networks, thus
providing knowledge for investigative policies [58, 59].

From another perspective, if the network in question is a social
contact network on which a disease can spread, it is critical to
understand how node removal through vaccination affects the
spread of the disease [60–65]. This is of great importance within
network epidemiology: how should a population be vaccinated
in the case of limited resources (vaccines, times, doctors, or
funding) to efficiently prevent an epidemic? This is tantamount
to finding the set of nodes whose removal causes the fastest
LCC disruption (Figures 2E–H). Many studies have proposed
strategies for minimizing the number of attacked nodes, such
as removing articulation points [52], equal graph partitioning
[64, 65], influence maximization [50], combined attacks [6, 51],
and many others [5, 31, 53, 66–68]. A recent large comparison of
node attack strategies demonstrated that the old and well-known
notion in social network theory of node betweenness centrality
more effective in determining the node sequence producing the
fastest LCC dismantling [31].

However, node attack models using the LCC neglect to
investigate the effect of link weight heterogeneity on information
spreading. Dall’Asta et al. [34] showed that introducing link
weights into the US airport network would decrease its
robustness with respect to classic topological frameworks. The
authors demonstrated that when removing highly connected
nodes, the total “outreach” (e.g., the product of the link weight
and the Euclidean distance between airports) of the US airport
network decreasedmore rapidly than its LCC [34]. Following this
finding, Bellingeri et al. [35] compared the LCC and Eff indicators
under the removal of a few nodes (1–5 removals) and discovered
a much faster Eff decrease. These outcomes outlined how the
simple adoption of binary measurements like the widely used
LCC may overestimate the robustness of real social networks
[34, 35].

Bellingeri and Cassi [36] showed how the network robustness
response to node attacks changes according to the measures
of system functioning considered, i.e., weighted or binary. The
authors traced the network functioning under different node
attack strategies, finding that the node set triggering the greatest
amount of damage may change when switching from the LCC
to the Eff measure. This result elucidates that the ensemble
of important nodes identified via binary-topological indicators
(LCC) may yield misleading information about node importance
[36]. Take the above example of a social network where the link

weights account for the contact duration between individuals
and consequently determines the probability that a susceptible
individual is infected after having been in contact with an
infectious individual. In this network, research using the node
sequence to arrive at the best vaccination strategies (i.e., the best
in fragmenting the LCC) would neglect the underlying weighted
structure of the network and not provide the best node selection.
For example, we know from the literature that vaccinating hubs,
i.e., more highly linked nodes, is efficient for disrupting the LCC
and is arguably a good vaccination strategy [60, 61]; in this case,
vaccinating nodes with higher binary connectivity may select
false hub-nodes, e.g., nodes with many weak links of negligible
contact time and low probability of infection.

Node removal optimal strategies hold for those cases where
a vaccine is available. On the other hand, when no vaccine is
available, measures such as social distancing act on the weights
of the network links, possibly reducing them to zero when a link
is removed. This is the case of the novel disease COVID-19 [69–
71]. The control policies applied all over the world, with different
intensity levels, from the beginning of 2020 to halt disease spread
follow this criterion: confining people at home; closing schools,
conferences, museums, and events; suppressing trains, flights,
and shipping; closing streets and national borders [72]. All of
these measures are equivalent to the removal of (suppression
of) links in social networks. For this reason, when no vaccine is
available, as is true for emerging diseases, link removal (attack)
analyses [37] would be the preferential benchmark frameworks
to model the disease spread in social networks and consequently
to investigate policies for preventing a pandemic. Thus, the
main problem within network epidemiology should be reframed:
which contacts within a population should be suppressed to most
effectively prevent the spread of the disease?

CONCLUSIONS

We summarized the main results in the field of social networks,
showing how LNR in networks can describe different real
situations. First, this review outlines that, although binary-
topological analyses present an advantage for furnishing simple
baseline frameworks, to perform more exhaustive network
descriptions, it is necessary to account for heterogeneity in link
weights. Second, the works mentioned in this review do not
consider the network reorganization after damage. In reality,
networks may be able to react to LNR by reorganizing their
structure, e.g., by forming new links (rewiring) [73–75]. For
example, ecological network species are able to switch their prey
(trophic link rewiring), dampening the decrease in ecosystem
functioning after species extinction [73]. For this reason, it
would be very interesting to test whether the indicators of social
network robustness presented here (LCC and Eff) are sensitive to
rewiring. Last, the LNR mentioned here is based on a complete
knowledge of the network. Nonetheless, real problems are often
poorly described. For this reason, it is recommended to perform
sensitivity analysis to test the robustness of the LNR results
in the presence of uncertainty about the structural features of
the network.
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