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Snow is a highly porous material with properties that may strongly differ depending on

the environmental conditions. On slopes, the layered snowpack may fail and avalanches

occur. Hence, knowing how snow deforms and fails is essential for understanding and

modeling snow avalanche release and flow. The response of snow to imposed load

or deformation and the failure behavior depends on the rate of the applied load or of

displacement and follows from the complex, foam like, microstructure of snow and the

properties of ice. The mechanical response and failure of snow can well be captured

with fiber bundle models (FBM). We review the use of FBMs for studying snow failure.

In particular, we show how FBMs have been used for studying the micromechanical

processes, such as ice sintering and viscous deformation, to reproduce the results

of snow failure experiments. Moreover, FBMs can reproduce signatures of acoustic

emissions (AE) preceding snow failure, ease the AE interpretation, and shed light on

the underlying progressive failure process.

Keywords: fiber bundle model, snow, avalanche, sintering, healing, viscosity, acoustic emissions, failure

INTRODUCTION

Studying snow failure and its dependency on the rate of the applied load or of displacement is of
particular interest for snow avalanche formation. Among the various types of avalanches, dry-snow
slab avalanches are the most hazardous and cause the largest number of fatalities—at least about
200 per year worldwide (e.g., [1]). Slab avalanches start by a failure nucleating under mixed-mode
loading in a weak layer below a cohesive slab. Once this so-called initial crack reaches a critical size
it propagates within the weak layer across the slope, leading to detachment and downhill sliding of
the slab provided the slope-parallel gravitational force overcomes friction (e.g., [2]). The formation
of this initial crack is still not fully understood for the case of spontaneously releasing avalanches
and a crucial point for modeling avalanche release.

Snow is a highly porous material constituted by an ice matrix formed by ice grains welded
together whereas the pore space is filled with air. Themechanical properties of snow are determined
by its microstructure and the mechanical properties of ice. The loading or displacement rate
dependency of the mechanical and failure properties of snow are believed to be due to two ice
properties: ice sintering—i.e., ice bonds form on contact immediately with bond strength increasing
with time—and the viscous deformation of ice (e.g., [3]).

Fiber bundle models have been widely used for studying snow failure (e.g., [4, 5]). Moreover,
since FBMs replicate the macroscopic mechanical properties and failure behavior of materials
through a large set of single elements with simple mechanical properties, they are an ideal
choice for studying the micromechanical drivers of snow failure. We provide a review of the
use of the fiber bundle model in snow science. We first describe the FBMs that have been
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used for simulating snow failure. Then we describe the inclusion
of fiber healing and viscous fibers in FBM and discuss the
effects of these properties on the bundle mechanics and failure
dynamics. In a third part, we demonstrate how FBMs can
reproduce the results of snow failure experiments. Finally, we
introduce the use of FBMs to study the effects of sound wave
attenuation and of acoustic emissions (AE) for snow failure
prediction and application of AE to provide early warnings for
snow avalanche prediction.

Fiber Bundle Models
Originally developed for studying the strength of cotton yarns
[6, 7] fiber bundle models (FBM) are a family of statistical models
widely used for studying the failure of heterogeneous materials
[8, 9]. In a FBM the material consists of a set of single elements
(fibers) with heterogeneous strengths (Figure 1). An external
load or displacement is applied to the fiber bundle and the single
fibers fail when the load exceeds the strength. For load-controlled
FBMs the load of the failing fibers is redistributed to intact fibers
possibly causing a cascade of further fiber failures. The complex
damage process of the bulk material arises from the interaction of
multiple fibers (load redistribution) and the heterogeneous fiber
strengths representing the material disorder. In the classical FBM
the fibers are assumed to respond in a linearly elastic manner.
The influence of local microscopic mechanisms on the global
failure (i.e., failure of the whole system) can be investigated by
changing the mechanical properties of the fibers [10]. There exist
numerous applications as the study of local load distribution
(e.g., Hansen and Hemmer [11] Hidalgo et al. [12]), creep failure
[13, 14], or fatigue [15]. Moreover, FBMs are used to analyze the
failure process in the context of critical phenomena and phase
transitions [9, 16].

Snow
Snow is a highly porous material (porosity 0.5–0.95) consisting
of an ice matrix with air filling the connected pore space1.
The ice matrix is a continuous structure, as shown by micro-
CT images (Figure 2; e.g., [17]), consisting of welded discrete
ice elements (grains). The snow microstructure (e.g., size, form
and connectivity of the ice matrix elements) strongly influences
the snow mechanical properties (e.g., [18, 19]). Moreover, the
high homologous temperature (i.e., temperature near to the
melting point) of ice under natural conditions leads to peculiar
material properties. The ice matrix undergoes a continuous
recrystallization known as snow metamorphism. The type and
speed of metamorphism depends on meteorological conditions.
At isothermal conditions the crystal shape is first transformed
from dendritic to small rounded particles and later from
smaller to larger round particles, as the water vapor pressure
is higher with higher curvature of the ice surface. This type
of metamorphism generally increases the strength of snow
[20–22]. Faceting (or temperature gradient) metamorphism
is induced by the temperature gradients typically caused by
snow surface cooling due to emission of longwave radiation.

1For wet snow at 0◦C, we additionally have water within the pore space. Within

this paper, we consider dry snow only.

Temperature gradients cause vapor transport from warmer to
the cooler ice surfaces leading to the growth of large faceted
and depth hoar crystals if the vapor flow persists (e.g., [23]).
Faceting metamorphism generally reduces snow strength and
can lead to the formation of weak layers. Simultaneously, the
gravitational load induced by the overlaying snow can contribute
to compaction of the snowpack (settlement) and increase of
snow strength.

The large range in porosity and microstructure of snow
leads to corresponding large differences in physical properties.
For example, the elastic modulus spans over several orders of
magnitude depending on density and snow type (e.g., [18]).
Therefore, a great challenge for finding a unified model for
describing the snow microstructure is given by the broad
range of density and snow types. Moreover, the ice particles
bond immediately on contact (sintering) and the bond strength
increases with time [24, 25] allowing to heal damage in the
snow. The increase of bond strength with time is initially fast,
then gradually slows down, but nevertheless continues with time
leading to the increase of strength and stiffness over several days
for new or sieved snow (e.g., [19, 22]).

Finally, the ice is subjected to viscous deformation or creep
(e.g., [26, 27]) leading to snow creep and relaxation of localized
stress. These phenomena result in the highly rate dependent
failure behavior of snow. Whereas under high strain rates
(ǫ̇ > 10−3 s−1) snow fails in a brittle manner with very
little deformation before fracture, at low strain rates (ǫ̇ <

10−3 s−1) snow can sustain large strain and undergoes ductile
failure—i.e., large irreversible deformation occurs before failure
or the snow does not fail at all [28]. Sintering is considered
one of the driving mechanism of the rate dependence of
snow failure by some authors [4, 29, 30]. On the other hand,
Kirchner et al. [31] used an open foam model including
viscous deformation and a ductile-to-brittle transition in ice
(at much lower strain rates ǫ̇ = 10−6 s−1) to reproduce
the ductile-to-brittle transition in snow. Moreover, the stress
and time dependent creep deformation of ice may cause the
relaxation of local load concentrations and influence the damage
process. More recently Löwe et al. [3] developed a scalar model
with rate-dependent, elastoplastic constitutive law and sintering
that correctly reproduces mechanical experiments. Hence, a
combination of the above-mentioned effects contributes to the
ductile-to-brittle transition observed for snow.

Slab Avalanche Formation
Snow avalanches are a serious hazard for human life and
infrastructures in snow-coveredmountainous regions around the
world; they cause on average about 100 fatalities annually in the
European Alps [32]. The majority of avalanche accidents are due
to dry-snow slab avalanches (see Figure 3A) [33]. For the release
of a slab avalanche a so-called weak layer below cohesive slab
layers is necessary. Weak layers typically consist of large poorly
bonded crystals (Figure 3B, mainly faceted crystals and depth
hoar, surface hoar, or new snow layers [34]). After an initial
crack of sufficient size has formed in the weak layer, the crack
propagates below the slab due to the stress concentrations at the
crack tip, which is caused by lack of support of the weight of
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FIGURE 1 | Schematic representation of (A) displacement-controlled FBM in shear [4] and (B) load-controlled FBM in tension [5]. The fiber width illustrates the

variability in fiber strength.

FIGURE 2 | Micro-computed tomography image of a snow sample (Snow

Physics Group, SLF).

the overlaying slab over the cracked area. The critical crack size
when rapid self-propagation starts, depends on both weak layer
and slab properties, primarily the specific fracture energy of the
weak layer and the thickness, density and stiffness of the slab
layers [35, 36]. Crack propagation in the weak layer arrests by
slope perpendicular fracture through the slab (Figure 3B). Once
the slab is detached, it slides downslope if the gravitational force
overcomes the friction, generally for slope angles >30◦ [37], and
an avalanche is released (Figure 3A).

In case of artificially triggered avalanches the initial crack
is caused by rapid near-surface loading due to e.g., a skier or
an explosion. For natural (spontaneous) avalanches the load
increase is much slower (additional weight due to precipitation
or snow drift by wind), and the initial crack is believed to be
the result of a progressive damage process at the microscale
[34]. The exact processes involved in initial crack formation
are, however, not well-understood. It is therefore fundamental
to increase our understanding of snow avalanche formation by
modeling snow failure.

Models in Snow Mechanics
Snow failure leading to avalanche release is a process involving
different scales with different types of heterogeneity—going from
the snow microstructure, through the vertical variation in snow
properties (stratigraphy), to the spatial variability at the slope-
scale. Modeling snow and avalanche formation requires dealing
with these heterogeneities at the different respective scales.
Generally different models are applied at the different scales.
The microscopic snow structure and ice properties must be
considered for modeling snow mechanical properties and failure
initialization. Snow stratigraphy and mechanical properties of
snow need to be considered for modeling crack propagation
(e.g., [36, 38, 39]). At the slope-scale, spatial variations of snow
stratigraphy and terrain are essential to model avalanche release
(e.g., [40, 41]). More recently, Gaume et al. [2] introduced a
model based on the material point method that can cope with
both snow stratigraphy and terrain variability covering the multi-
scale processes involved in avalanches: from failure initiation and
crack propagation to avalanche flow [42, 43]. However, even these
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FIGURE 3 | (A) Dry-snow slab avalanche (R. Pajarola). (B) Snow weak layer (surface hoar) buried below a cohesive slab. On the right side the weak layer is intact. On

the left side the weak layer failed leading to volumetric collapse of the porous structure. The black lines are a schematic representation of the FBM. Reprinted from the

Journal of Glaciology with permission of the International Glaciological Society [4].

advanced models rely on appropriate parametrizations of snow
including correct failure behavior and rate-dependent response.

Models aiming to reproduce the mechanical behavior of snow
and the failure process have to take into account both the snow
microstructure as well as the mechanical properties of ice. These
models can be grouped into (i) Continuum models that include
some parametrization of the microstructure – e.g. the snow
viscosity model of Bartelt and von Moos [44], the open-cell foam
model for snow [45, 46], or other models considering damage
healing [3, 47, 48]. (ii) Models reproducing the microstructure
in simplified form with discrete elements (beams, spheres) with
some random variations such as the discrete element models
[49–51]. (iii) Models that use the full 3-D representation of
the microstructure obtained by micro-tomography as input for
a finite-element model (e.g., [52–54]). Statistical models as the
FBM belong to the second group of models.

FIBER BUNDLE MODELS APPLIED TO
SNOW

The FBM was first applied to snow by Reiweger et al.
[4]. Incorporating healing of broken fibers representing the
fast sintering of broken bonds in snow, they were able to
reproduce the characteristics of displacement-controlled snow
failure experiments for different strain rates. Capelli et al. [5]
introduced a load-controlled FBM including both healing of
broken fibers and viscous deformation and described the effects
of these two mechanisms on the failure behavior. With the same
model it was possible to reproduce the mechanical characteristics
and the concurrent acoustic emissions (AE) characteristics of
load-controlled snow failure experiments with different loading
rates spanning over the ductile-to-brittle transition [55]. Acoustic
emissions are acoustic waves generated by the occurrence of
damage in solid materials. An example of AE is the crackling
noise produced by wood under load (e.g., [56]). AE are widely
used for monitoring the damage process of heterogeneous
materials (e.g., [57]). Attenuation of acoustic waves is a limitation

for the application of AE for early warning, since it reduces the
detection range and alters the AE signature. Attenuation in snow
is particularly high due to the high porosity (e.g., [58]). The
attenuation of AE is therefore particularly critical for applications
aiming at using AE for early warning of snow avalanches.
Faillettaz et al. [59] used a FBM for studying the effects of
attenuation of AE on the failure prediction and proposed to
use co-detection of AE for natural hazard early warning. Their
FBM results were supported by AE data from snow failure
experiments. In the following sections, we recap the working
principle of the FBMs applied to snow.

Fiber Strength Distribution
The intrinsic disorder of heterogeneous materials (such as snow)
is represented in the FBM by a large number of fibers with
varying strengths (Figure 1). The Weibull distribution, which is
commonly used for strength distributions in statistical models
[8], was also employed in snow models for fiber strength [4, 5,
55]. The density function for the fiber strength σth is given by:

p
(

σth
∣
∣µ, k

)

= kµ−kσth
k−1e

−

(
σth
µ

)k

, (1)

where µ is a scaling factor and k controls the amount of
damage in the system (lower k correspond to larger amount of
disorder). The disorder parameter k should depend on the snow
microstructure. There is, however, no measurement method that
allows determining k, so k must be assumed. Reiweger et al. [4]
looked at the sensitivity to k in the range of 0.5 to 3 on the
FBM and used k = 0.7 for fitting their mechanical experiments.
Further studies used the value k = 1.1 [5, 55].

Displacement-Controlled FBM
In the displacement-controlled model presented by Reiweger
et al. [4] a constant shear rate is imposed (Figure 1A). Assuming
elastic fibers, the stress on the single fibers increases linearly with
fiber strain. If the stress on a fiber reaches its strength, the fiber
fails. Thus, the total stress on the fiber bundle decreases. When
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half of the fibers failed, the entire bundle is considered as broken.
Reiweger et al. [4] introduced a variation to the classical FBM.
They assumed that the fibers are subjected to shear perpendicular
to the initial direction. The fiber elongation 1l is then:

1l =

√

l20 + 1x2 − l0, (2)

where1x is the shear deformation of the bundle and l0 is the fiber
length. The stress is then given by:

σ = Eǫ = E
1l

l0
, (3)

where E is the elastic modulus. Introducing shear deformation
shifts the stress-strain curve toward higher deformations [4],
since initially the fiber stress increase is slower than for the FBM
with displacement parallel to the fibers (Equations 2, 3).

Load-Controlled FBM
In case of load-controlled FBMs [5, 55], the load on the fibers
is increased step wise to the strength of the weakest fiber that
consequently fails. As a fiber fails, its load is distributed to
the other surviving fibers according to a redistribution rule
(Figure 1B). For the FBM described by Capelli [5] a “democratic”
or “equal” load-sharing rule was used. Meaning that the load was
redistributed equally to the surviving fibers. This is equivalent to
the assumption of stiff plates clamping the fibers and makes the
spatial position of the fibers irrelevant (0 dimensional material).
Other models use local load-sharing rules, where the load is
distributed to the neighboring fibers only [59]. With local load-
sharing rules the fiber position becomes relevant (one or more
dimensional material). Distributing the load of failing fibers
among the surviving fibers can cause a cascade of failures. The
number of fibers failing in a cascade following a failure due to
load increase is expressed as the burst size S. For linear elastic
fibers the bundle strain ǫJ is obtained from the sum of the strain
increase at each load increase step up to the step J:

ǫJ(σ ) =
∑J

j=0
1ǫel,j =

∑J

j=0

1

UjE
1σj

︸ ︷︷ ︸

load increase

+
1

UjE

∑

kǫsj

σk,j

︸ ︷︷ ︸

redistribution

, (4)

where Uj is the fraction of intact fibers, σk,j is the load of the fiber
k, and Sj is the set of fibers that failed at the load step j.

FBM WITH HEALING FIBERS

When two ice particles are brought in contact, a bond
is immediately created with increasing bond strength with
increasing time [25, 60]. This process, known as sintering, allows
damage in snow to heal with time. The FBM is well-suited to
study the effects of healing on the mechanical properties of snow
as implementing a healing mechanism is quite straight forward.
Healing has been incorporated in FBMs in different ways in
the past, e.g., in the stick-slip FBM the fibers regain strength
immediately after failure [61, 62].

Reiweger et al. [4] were the first to apply a FBM to snow
that included healing of broken fibers (Figure 4A). In their

displacement-controlled FBM at each time step1t a broken fiber
regains strength with the probability ps depending on the number
of brocken fiber Nb available for forming a new bond with ps =

pmax
Nb
N . The strength of a new bond is initially zero but increases

with time:

σth,i (t) =
(

1− e
−t
ts−t

)

σth,i,final (5)

for t < ts where ts is the sintering time and σth,i,final is drawn from
the same initial distribution.

Similarly, fiber healing has been implemented in the load-
controlled FBM with the probability of a broken fiber to regain
strength during the time 1t being:

ps(1t) =

(

1− e
−1t
tp

)
Nb

N
(6)

with the characteristic time tp [5]. In this case, it was assumed that
the fibers regain full strength immediately.

The fiber healing speed is higher with either lower
characteristic time or lower loading rate. If the characteristic
time in the model by Capelli et al. [5] is compared to that of
Reiweger et al. [4], then the sintering probability in Reiweger
et al. [4] is linear with pmax = 1t

tp,Reiw.
. The characteristic time

used by Reiweger et al. [4] for fitting the model to mechanical
experiments was tp,Reiw. = 1t

pmax
= 0.66 s. Capelli et al. [55]

reported a larger characteristic time of healing tp,Cap. = 20 s. The
difference in time scale may be due to the different snow type and
testing mode (displacement- vs. load-controlled). Additionally,
in the model by Reiweger et al. [4] the strength of the new
bonds increases with time. The speed of the strength increase
is controlled by the sintering time ts = 1.09 s (Equation 7). A
DEM model for snow including bond sintering on contact with
increasing bond strength using a similar sintering time ts = 1 s
was proposed by Mulak and Gaume [50].

Effect of Healing on Mechanical Behavior
and Failure Dynamics
For both displacement- and load-controlled FBMs healing results
in higher stress at equal strain and in higher stress and strain
at failure [4, 5]. Healing counterweighs the damage process as
broken fibers regain strength. The number of intact fibers in
the bundle increases so that they can support a higher load
or, equivalent, a higher load is needed for equal deformation.
Therefore, the material becomes stiffer and has higher strength.

The effects on the failure behavior differ between
displacement- and load-controlled FBMs. For the displacement-
controlled FBM, Reiweger et al. [4] reproduced the
ductile-to-brittle transition of snow with the introduction
of healing. For large displacement rates the healing process is
slower than the damage process and does not affect the bundle’s
failure. After reaching the bundle strength the stress rapidly
decreases and all fibers fails (brittle failure). For low strain rates,
as the damage in the bundle increases and steady-state is reached
(i.e., the damage process is compensated by healing of fibers),
the number of broken fibers remaine constant with increasing
strain and ductile failure is observed (Figure 5). The type of the
stress-strain curve in the steady-state regime is controlled by
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FIGURE 4 | (A) Load evolution for a single fiber when healing is included. The load increases until the strength σth,1 is reached and the fiber fails. After a certain

random time, the fiber heals and is assigned a new strength σth,2 independent of the previous strength; subsequently it may fail and sinter again. (B) Relaxation of load

on the single fibers toward the mean load 〈σ 〉 for the FBM assuming viscoelastic fibers (schematic in inset). The speed of the load relaxation is controlled by the

characteristic loading time tr. Figures adapted from [5].

the fiber strength distribution. With higher disorder (Weibull
parameter k ≤ 1), strain strengthening and creep (increase of
strain at constant stress) is observed. Whereas, with low disorder
(k ≥ 1) failure (stress peak) is followed by strain softening and
final creep.

For the load-controlled FBM the steady state is not “visible”
since when the imposed stress exceeds the bundle strength (stress
peak in displacement-controlled strain-stress curve) all fibers
fail. On the other hand, stress control allows observing the
failure dynamics arising as the load sharing causes a catastrophic
cascade of fiber ruptures resulting in the complete failure of
the bundle. In the load-controlled FBM the damage process
diverges approaching failure (e.g., [9, 16]). The fiber failure

rate dS
dσ

, which is commonly known as susceptibility, diverges

approaching failure at σc with dS
dσ

∼ (σc − σ )−α . The order
parameter O (σ ) = U (σc) − U (σ ) approaches zero following
a power law with O (σ ) = (σc − σ)κ , where U (σ ) is the
fraction of broken fibers. With healing the amount of damage
(portion of broken fibers) immediately before failure is lower.
Moreover, with healing the exponent α decreases, whereas the
exponent κ increases (Figure 6) indicating that the period before
failure, where the damage process accellerate, is shorter—a sign
of increased brittleness. For the FBM the bursts size S is generally
power-law distributed with P (S) ∼ S−b, similarly to the
Gutenberg–Richter law for earthquakes (e.g., [9]). Generally, an
apparent decrease of the exponent b toward failure is observed.
This is explained by a truncated power-law distribution P (S) ∼

S−τ exp ( S
S0

) with diverging cut-off burst size S0 ∼ 1−γ and

1 =
σc−σ

σc
(e.g., [63, 64]). The exponents are linked by b =

τ + 1
γ
. Capelli et al. [5] reported a decrease of b with increasing

healing rate when all events were considered, whereas near to
failure the exponent was unaffected by healing. This is equivalent
to a constant exponent τ whereas the exponent γ increases
with increasing healing rate (Figure 6). In the context of failure
prediction, faster acceleration and lower apparent decrease of
exponent bmeans that that time lag for prediction decreases and
prediction becomes more difficult, yet not impossible.

FBM WITH VISCOUS FIBERS

As ice is a viscous material, Capelli et al. [5] introduced
ice viscosity in their FBM assuming that the fibers are
Maxwell elements (Figure 4B) with the corresponding
constitutive equation:

ǫ̇i =
σi

η
+

σ̇i

E
(7)

where σi is the stress on a single fiber, E is the fiber’s elastic
modulus and η its viscosity. Incorporating viscosity results in the
relaxation of load inhomogeneity in the bundle with time. The
load is redistributed from the older fibers carrying more load to
the younger ones carrying less load. The load of the single fiber i
converges exponentially toward the mean load with:

σi (t + 1t) = 〈σ 〉 + (σi (t) − 〈σ 〉) e−
1t
tr , (8)

where 〈σ 〉 is the intact fiber mean load, and the ratio between
elastic modulus E and viscosity η is the characteristic relaxation
time tr = E

η
determinig the speed of relaxation (Figure 4B). In

the model by Capelli et al. [5] the load inhomogeneity is due to
the healing process, since new fibers initially do not carry load. If
fiber viscosity is included, a viscous term is added to Equation (4)
for the bundle strain ǫJ :

ǫJ (σ ) =

J
∑

j=0

(

1ǫel,j + 1ǫvisc,j
)

=

elastic part
︷ ︸︸ ︷

J
∑

j=0

1

UjE
1σj

︸ ︷︷ ︸

load increase

+
1

UiE

∑

kǫsj

σk,j

︸ ︷︷ ︸

redistribution

+

viscous part
︷ ︸︸ ︷

J
∑

j=0

1

η

〈σ 〉j

Ui
1tj, (9)
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FIGURE 5 | FBM simulation results with varying shape factor k for the Weibull distributions of single fiber strength: (A) k = 0.5; (B) k = 1; and (C) k = 3. For each

shape factor, stress–strain curves for three different strain rates (1× 10−2, 7.2× 10−5, and 5× 10−6 s−1) are given. The vertical arrows mark the point where the

bundle fractures, while the horizontal arrows indicate that the bundle is still intact but the simulation was stopped. Reprinted from the Journal of Glaciology with

permission of the International Glaciological Society [4].

The magnitude of the effects of viscosity can be expressed with
the characteristic load σr = σ̇ tr = σ̇

η
E . Load relaxation and

viscous deformation are higher for low characteristic loads σr .

Effect of Viscous Fibers on Mechanical
Behavior
If viscosity is added to the FBM, fiber deformation can be divided
in an elastic and a viscous part. With the Maxwell model for
viscoelasticity, the elastic deformation takes place immediately as
the load is applied, whereas the viscous deformation increases
linearly in time with the strain rate depending on the applied
load (Equation 7). For high values of viscosity or high loading
rate, the bundle deformation is mainly elastic. For lower values
of loading rate or viscosity, the deformation is predominantly
viscous and strain at equal stress is larger than with primarily
elastic deformation (Figure 7A and [5]).

Effect of Viscous Fibers on Failure
Dynamics
Fiber viscosity also has consequences for the internal distribution
of fiber load. The viscous deformation rate is higher for fibers
carrying higher load. Therefore, the fiber load relaxes toward the
mean fiber load, transferring load from fibers carrying high loads
to fibers carrying low loads. This is equivalent to a load transfer
from older fibers to newly healed fibers, since with equal load-
sharing fiber healing is the only source of load inhomogeneity.
The load inhomogeneity in the bundle decreases for lower tr

FIGURE 6 | Critical exponents for different increasing healing speeds. The

healing speed increases with decreasing healing load σp = σ̇ tp.

leading to a more efficient distribution of load resulting in a
bundle strength increase [5]. Load relaxation has a large effect
on the failure dynamics. For high load relaxation speed the
acceleration of damage prior to failure is suppressed (Figure 7A).

No divergence of strain rate and fiber failure dS
dσ

is observed;
the order parameter O (σ ) develops from a power law decrease
approaching failure at σc with O(σ ) = (σc − σ)κ to a linear
decrease (Figure 7B). Fiber failure burst size distribution is

Frontiers in Physics | www.frontiersin.org 7 July 2020 | Volume 8 | Article 236

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Capelli et al. Studying Snow Failure With FMBs

FIGURE 7 | (A) Stress-strain relations of FBM for different relaxation characteristic loads σr and a constant sintering characteristic load σp = 1.5 × 10−2. The strain

was scaled with the strain at failure ǫc. The inset shows the strain at failure ǫc as a function of the relaxation characteristic load σr. (B) Evolution of the order parameter

O toward failure for different σr and constant σp = 1.5 × 10−2. The characteristic times tr/p were scaled to characteristic loads with σr/p = σ̇ tr/p. Reprinted from [5].

also affected by load relaxation. Both exponents b and τ of
the burst size distribution P (S) increase with increasing load
relaxation speed indicating a shift to a larger share of small
failure bursts.

The absence of damage acceleration suggests that load
relaxation changes the type of transition at failure from
continuous to abrupt indicating a change of the universality class.
This interpretation is supported by the change of the power law
exponent τ . Load relaxation causes a shift in the distribution
of fiber strength with increasing main strength and decreasing
disorder. Therefore, the fibers are likely to fail abruptly as a
critical load is reached. A similar change in the type of transition
at failure was reported by Biswas and Sen [65] for a FBM where
the load of failing fibers was redistributed according to the
fiber strength.

REPRODUCING SNOW FAILURE
EXPERIMENTS

The FBMs presented above were used to reproduce snow failure
experiments with the aim to investigate the micromechanical
principles governing the macroscopic mechanical behavior of
snow. In particular the FBM allowed to study the rate dependent
mechanical response of snow with the well-known ductile-to-
brittle transition [28].

Displacement-Controlled Experiments
With the FBM including healing Reiweger et al. [4] reproduced
the displacement-controlled snow failure experiments at different
strain rates presented by Schweizer [66]. Their FBM very well-
captured the observed ductile-to-brittle transition (Figure 8)
and reproduced the higher strength and strain at failure with
decreasing strain rate. Both, snow samples and fiber bundle,
showed brittle failure behavior for high strain rates (> 3 ×

10−4 s−1) and for low strain rates ductile failure followed by
strain softening and creep. The stress-strain relations obtained
with the FBM had a convex form at low strain. The convexity

FIGURE 8 | Comparison of FBM and experimental results for

displacement-controlled conditions. Reprinted from the Journal of Glaciology

with permission of the International Glaciological Society [4].

is due to the arrangement of the fibers relative to the load.
When the fibers are loaded in shear the fiber stress initially
increases just slowly (Equation 2). The experimental curves
did not show any convexity. The simple spatial arrangement
of the fibers in the FBM can obviously not fully reproduce
the complex structure of the ice matrix. A FBM with load
parallel to the fibers (pure tension) would better fit the
experimental results. Indeed, recent DEM studies suggest that
under mixed-mode loading (compression and shear) the ice
matrix mainly failed in tension [67]. The FBM results support
this view.

Load-Controlled Experiments and
Concurrent Acoustic Emissions
Capelli et al. [55] applied the FBM including healing of broken
fibers and viscous fibers for modeling load-controlled snow
failure experiments at different loading rates (32, 128, and
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FIGURE 9 | FBM and experimental results for load-controlled conditions. The

dotted line indicates the FBM results. Reprinted from [55].

400 Pa s−1) and the concurrent acoustic emissions [68]. Using
parameters in agreement with the snow values reported in the
literature, they reproduced the main features of the experimental
results. The stress-strain relations found in experiments and
obtained with their FBM were similar with higher stress and
strain at failure and higher strain at equal stress for lower
loading rates (Figure 9). Capelli et al. [55] compared the energy
of the AE with the elastic energy released at fiber failure—i.e.,
they assumed that the elastic energy stored in the fiber failing

in a failure burst U =

∑

j σ
2
j

2 E is equivalent to the energy of
measured AE. The FBM exhibited features similar to the loading
rate dependent AE signatures observed for the snow failure
experiments. For both, FBM and experiments, the AE energy rate
increased toward failure and the energy distribution exponent τ

was higher for the fast loading rates (Figure 10). Also, Pradhan
et al. [69] claim that the elastic energy exhibits a peak prior to
failure that can be used to predict the failure point of FBM.
The elastic energy is, however, difficult to quantify for the snow
experiments since the displacement measured includes elastic as
well as viscous deformation. However, there were also differences
between FBM and experimental results. For the FBM an apparent
decrease of the exponent b, indicating a divergence of the cut-off
energy of a truncated power law (see section FBM With Healing
Fibers) was present for all loading rates. For the experiments, the
apparent decrease of bwas not observed for the low loading rates,
although the exponent at failure τ was higher for low loading
rates (Figure 10A). Moreover, the divergence in the damage
process at failure for high loading rates, that is visible in the

strain rate and the energy rate dU
dσ

, was not observed in the
experimental results.

The substantial differences in the failure dynamics of snow
for different loading rates could only be reproduced with the
FBM by including both healing of broken fibers and viscous
deformation with resulting load relaxation. It follows that both,
healing and load relaxation, are essential for understanding and
modeling snow failure and should be taken into account in
future models, which aim at reproducing snow behavior at low
loading rates.

ATTENUATION OF AE AND
CONSEQUENCES FOR FAILURE
PREDICTION

The amplitude of acoustic waves propagating in natural media
decreases with distance from the source due to geometrical
spreading, absorption and scattering. Faillettaz et al. [59]
introduced signal attenuation into the load-controlled FBM with
equal and local load-sharing, which was developed by Faillettaz
and Or [70]. The amplitude attenuation was computed for each
fiber failure burst (i) assuming that the amplitude is proportional
to the burst size S and (ii) accounting for geometrical spreading
only (decrease of amplitude with A (r) ∼ 1

r for the distance
from the source r). The attenuated amplitude Aa of the burst
Sj measured at the sensor at position xsensor is then: Aa =
∑

i∈Sj
1

‖xi−xsensor‖
, with xi being the position of the failing fiber

i. Faillettaz et al. [59] showed that attenuation changes the
frequency distribution of the recorded fiber failure bursts. The
apparent decrease of the power law exponent (b → τ ) is less
pronounced when signal attenuation is taken into account. The
decrease of the power law exponent is considered useful for
assessing the stability of geological structures (e.g., [63]).

However, for real cases where attenuation is present the
decrease is less prominent and occasionally hard to detect.
Therefore, using the decrease of the exponent as precursor
to failure for early warning purposes is limited. To overcome
this problem Faillettaz et al. [59] proposed the number of co-
detections (event detected by multiple sensor) as precursor to
catastrophic failure, since small events are generally detected by
nearby sensors only, whereas large events may be detected also
by sensors at larger distances. Faillettaz et al. [59] tested the co-
detection method with AE data from laboratory snow failure
experiments [71]. An increase of the AE maximum amplitude
was registered one second before failure, whereas a significant
increase in the number of co-detections was recorded 10 s before
failure increasing the early warning time lag by a factor 10.

CONCLUSIONS

The fiber bundle model (FBM) consists of a large number of
fibers with variable strengths following simple mechanical laws
(e.g., elastic or viscoelastic). Through the disorder and load
sharing (fiber interaction) a complex behavior arises. FBMs are
used to reproduce failure of heterogeneous materials and to
study effects of micromechanical processes on global failure.
For these reasons, the FBM is well-suited for studying the
failure of snow. The displacement or loading rate dependence of
snow failure observed experimentally, in particular the ductile-
to-brittle transition, was reproduced. Whereas, displacement-
controlled experiments were reproduced by including healing,
for reproducing load-controlled experiment both healing and
load relaxation (viscosity) were necessary. In particular, the
loading rate dependent failure dynamics revealed by the AE
signature preceding snow failure were reproduce only with both
healing and load relaxation. Therefore, the results of the FBM
studies on snow point out the importance of considering healing
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FIGURE 10 | Evolution of b-value with increasing load σ up to failure at σc for three different loading rates for: the AE energy EAE (A) and the FBM burst elastic energy

U (B). Adapted from [55].

and viscosity for modeling snow, especially at low displacement
or loading rates. The FBMwith healing and load relaxation shows
that for low loading rates there is a lack of failure precursors
suggesting that in some cases failure prediction is not possible.

The similarity between the fiber failure bursts in FBMs and
the AE produced prior to failure is useful not just for interpreting
the AE signatures, but can also be used for studying the effects
of acoustic wave attenuation of the recorded AE. Using a FBM
Faillettaz et al. [59] showed that the attenuation reduces the
applicability of AE as precursor to failure. As alternative they
suggested to use co-detection of AE for early warning and
demonstrated the working principle with a FBM [59].

Simplicity is a strength of the FBM since it allows to study the
effects of simple micromechanical drivers on failure. However,
reproducing the complex 3D microstructure of snow is not
possible. Nevertheless, it is important to include the findings

obtained with FBM into models able to reproduce the 3D snow
microstructure, such as the discrete element model (DEM). Rate
dependent snow failure experiments at different temperatures in
combination with FBM may be used for separating the effects
of healing and viscosity since both ice sintering and viscosity
are temperature dependent. The understanding of the damage
process in snow gained with FBM should be applied to slope-
scale models for studying natural avalanche release. The snow
FBM may be even incorporated into a slope scale model as it has
been done for modeling landslide release [72].
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