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matrices which share a common null eigenvector is established, and its application in

electrical networks is illustrated by applying the result to Laplacian matrices of graphs.
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1. INTRODUCTION

The Hermitian matrices are an important class of matrices arising in many contexts. A complex
squared matrix is called a Hermitian matrix if it is equal to its conjugate transpose, in other words,
for all i and j, its (i, j)-th element (i.e., the element in the i-th row and j-th column) is equal to the
complex conjugate of its (j, i)-th element. It is widely known that all the eigenvalues of a Hermitian
matrix are real. In addition, it is easily seen that Hermitianmatrices contain real symmetricmatrices
as special cases.

LetM be an n×mmatrix. Anm× nmatrix X is called theMoore-Penrose (generalized) inverse
ofM, if X satisfies the following equations:

MXM = M,XMX = X, (MX)H = MX, (XM)H = XM,

where XH represents the conjugate transpose of the matrix M. It is well-known [1] that for any
matrix M, the Moore-Penrose inverse of M does exist and is unique. For this reason, the unique
Moore-Penrose inverse ofM is denoted byM+.

We proceed to introduce a special class of Hermitianmatrices – the Laplacianmatrices of graphs,
which play a fundamental role in graph theory and electrical network theory. Let G = (V ,E) be a
connected weighted graph of order n. For each edge e of G, we assign a positive real number we to
e, and we call we the weight of e. Then the adjacency matrix of G, denoted by A, is a n × n matrix
such that the (i, j)-th element of A is equal to the weight of the edge ij if i and j are connected by
an edge and 0 otherwise. Suppose that D is the n × n diagonal matrix such that the i-th diagonal
element is equal to the sum of the weights of the edges incident to i. Then the Laplacian matrix L
of G is defined as L = D−A. It is easily seen that the Laplacian matrix is real and symmetric. Thus,
the Laplacian matrix is a Hermitian matrix. According to the definition of the Laplacian matrix, we
readily seen that the Laplacian matrix is singular and not invertible.

It is natural to consider a weighted graph G as a (resistive) electrical network N by viewing
each edge e as a resistor such that the conductance of the resistor is we, where we is the weight
on e. In this guise, the resistance distance [2] between any two vertices i and j of G, denoted by
�(i, j), is defined as the net effective resistance between corresponding nodes i and j in N . It
should be mentioned that resistance distance, as an important component of circuit theory, has
been studied for a long time, dating back to the classical work of Kirchhoff in 1847. It is amazing
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that the resistance distance turns out to have many purely
mathematical interpretations, although it comes from physics
and engineering, among which a fundamental one is the classical
result which is given via the Moore-Penrose inverse of the
Laplacian matrix [2]:

�(i, j) = L+ii − 2L+ij + L+jj , (1.1)

where L+ij denote the (i, j)-th element of L+. Since the

identification of resistance distance as a novel distance function
on graphs, the resistance distance has been extensively studied in
the literature of mathematics, physics, and chemistry. For more
information on resistance distances, we refer the readers to recent
papers [3–13] and references therein.

In this paper, a relation between the Moore-Penrose inverses
of two nullity-1 n × n Hermitian matrices which share a
common null eigenvector is established. Then its application
in electrical networks is illustrated by applying the result to
Laplacian matrices of graphs.

2. A RELATION BETWEEN

MOORE-PENROSE INVERSES OF TWO

HERMITIAN MATRICES

All the matrices considered in this section are square matrices
of order n. For an invertible matrix M, we use M−1 to denote
the inverse ofM. Let I andO denote the identity matrix and zero
matrix, respectively. This section is devoted to establish a relation
between Moore-Penrose inverses of two Hermitian matrices of
nullity-1 which share a common null eigenvector. To this end, we
first give some properties on nullity-1 Hermitian matrices, which
will be used in the later.

Lemma 2.1. LetM be a nullity-1 Hermitian n×nmatrix. Suppose
that 0 = λ1, λ2, . . . , λn are eigenvalues of M with corresponding
orthonormal eigenvectors u1, u2, . . . , un. Then

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 . (2.1)

MM+ = M+M = I − u1u
H
1 . (2.2)

u1u
H
1 M

+ = O. (2.3)

Proof: Let U = (u1, u2, . . . , un) and 3 = diag{0, λ2, . . . , λn}.
Then

M = U3UH .

As u1u
H
1 = Udiag{1, 0, . . . , 0}UH , it follows that

M + u1u
H
1 = U3UH + Udiag{1, 0, . . . , 0}UH

= Udiag{1, λ2, . . . , λn}U
H .

ThusM + u1u
H
1 is invertible with

(M + u1u
H
1 )

−1 = Udiag

{

1,
1

λ2
, . . . ,

1

λn

}

UH .

Consequently,

(M + u1u
H
1 )

−1 − u1u
H
1 = Udiag

{

0,
1

λ2
, . . . ,

1

λn

}

UH .

Thus it is easily verified by the definition of the Moore-Penrose
inverse that

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 .

To prove Equation (2.2), note first that

MM+ = U3UHU30H
H = U330H

H and

M+M = U30U
HU3UH = U303UH ,

where 30 = Udiag
{

1, 1
λ2
, . . . , 1

λn

}

UH . Then, note that

330 = 303 = diag{0, 1, . . . , 1}.

Thus we have

MM+ = M+M = U(diag{0, 1, . . . , 1})UH

= U(I − diag{1, 0, . . . , 0})UH

= UUH − Udiag{1, 0, . . . , 0}UH = I − u1u
H
1 .

For Equation (2.3), by the above arguments we have

u1u
H
1 M

+ = (Udiag{1, 0, . . . , 0}UH)

(

Udiag{0,
1

λ2
, . . . ,

1

λn
}UH

)

= Udiag{1, 0, . . . , 0}diag{0,
1

λ2
, . . . ,

1

λn
}UH = O,

as required. �

According to the properties given in Lemma 2.1, a relation
between Moore-Penrose inverses of two Hermitian matrices
of nullity-1 which share a common null eigenvector could be
established, as given in the following result.

Theorem 2.2. Let M and M′ be two nullity-1 Hermitian n × n
matrices which share a common null eigenvector. Then

(M′)+ = M+[I + (M′ −M)M+]−1. (2.4)

Proof. For the sake of simplicity, set 1 : = M′ − M and
∇ : = (M′)+ −M+. Then

M′(M′)+ = (M + 1)(M+ + ∇) = MM+ +M∇ + 1M+ + 1∇ .
(2.5)

Let u1 be the common null eigenvector shared byM andM′. Then
by Lemma 2.1, we know that

M′(M′)+ = MM+ = I − u1u
H
1 .

Thus, Equation (2.5) gives

M∇ + 1M+ + 1∇ = O,
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that is,

M′∇ = −1M+.

Left-multiply both sides of the above equation by (M′)+, we get

(M′)+M′∇ = −(M′)+1M+.

Bearing in mind that (M′)+M′ = I − u1u
H
1 and that (M′)+ =

M+ + ∇ , we arrive at

(I − u1u
H
1 )∇ = −(M+ + ∇)1M+,

that is,

∇ − u1u
H
1 ∇ = −(M+ + ∇)1M+. (2.6)

Since it is shown in Lemma 2.1 that

u1u
H
1 (M

′)+ = u1u
H
1 M

+ = O,

we have

u1u
H
1 ∇ = u1u

H
1 [(M

′)+ −M+] = O.

Hence Equation (2.6) becomes

∇ = −M+
1M+ − ∇1M+,

or equivalently,

∇(I + 1M+) = −M+
1M+.

So if I + 1M+ is invertible, then by right-multiplying the above
equation by (I + 1M+)−1, we could obtain

∇ = −M+
1M+(I + 1M+)−1,

which yields

(M′)+ = M+ + ∇ = M+ −M+
1M+(I + 1M+)−1

= M+
[

I − 1M+(I + 1M+)−1
]

= M+
[

I − (I + 1M+)(I + 1M+)−1 + (I + 1M+)−1
]

= M+
[

I − I + (I + 1M+)−1
]

= M+(I + 1M+)−1

It remains to verify that I + 1M+ is invertible. As

M+ = (M + u1u
H
1 )

−1 − u1u
H
1 ,

it follows that

I + 1M+ = I + 1[(M + u1u
H
1 )

−1 − u1u
H
1 ]

= I + 1(M + u1u
H
1 )

−1 − 1u1u
H
1

= I + 1(M + u1u
H
1 )

−1 − (M′ −M)u1u
H
1

= I + 1(M + u1u
H
1 )

−1 −M′u1u
H
1 +Mu1u

H
1 .

Noticing that u1 is an 0-eigenvalue eigenvector of M and M′, it
gives that

I + 1M+ = (M + u1u
H
1 )(M + u1u

H
1 )

−1 + 1(M + u1u
H
1 )

−1

= (M + u1u
H
1 + 1)(M + u1u

H
1 )

−1

= (M′ + u1u
H
1 )(M + u1u

H
1 )

−1.

As M + u1u
H
1 is non-singular, by the same reason we know that

M′ + u1u
H
1 is non-singular, so that I + 1M+ is invertible. The

proof is complete. �

Obviously, the Laplacian matrix is a Hermitian matrix. In
addition, all the Laplacian matrices of connected graphs of the
same order are nullity-1 and share the same eigenvector. Hence,
Theorem 2.2 can be directly applied to Laplacian matrices.
Let G and G′ be weighted connected graphs of order n. As a
straightforward consequence of Theorem 2.2, we have

Corollary 2.3. Let G and G′ be connected weighted graphs of order
n with Laplacian matrices L and L′, respectively. Then

(L′)+ = L+[I + (L′ − L)L+]−1. (2.7)

3. AN APPLICATION TO ELECTRICAL

NETWORKS

The Laplacian matrix, also known as the Kirchhoff matrix,
or admittance matrix, has wide applications in electrical
networks. As introduced in the first section, the resistance
distance could be computed in terms of the Moore-Penrose
inverse of the Laplacian matrix. Actually, the computation of
resistance distances is a classical problem in circuit theory and
electrical network theory. Besides, this problem is relevant to
a number of problems ranging from Lattice Green’s functions,
harmonic functions to random walks on graphs. For this reason,
many researchers devote themselves to the computation of the
resistance distance. With the development of more than 170
years, various formulae and techniques have been established,
such as the traditional techniques like series and parallel circuits,
Kirchhoff’s laws and star-triangle transformation, as well as
newly developed techniques like (algebraic, probabilistic, and
combinatorial) formulae, local and global sum rules, recursion
relations. In [14], a novel recursion formula for computing
resistance distance is obtained. It turns out that resistance
distances in some networks could be computed very easily by
the recursion formula. In addition, the recursion formula extends
the famous Rayleigh’s monotonicity law by giving quantitative
characterization to the law.

In this section, we use Corollary 2.3 to give a new proof to the
recursion formula on resistance distances proposed in [14].

Theorem 3.1. [14] Let G and G′ be two weighted graphs which are
the same except for the weights on an edge e = ij are we and w′

e.
For any two vertices p and q, denote the resistance distance between
them in G and G′ by �(p, q) and �

′(p, q), respectively. Then

�
′(p, q) = �(p, q)−

δ · [�(p, i)+ �(q, j)− �(p, j)− �(q, i)]2

4[1+ δ · �(i, j)]
,

(3.1)
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where δ ≡ w′
e − we.

Proof. Denote the Laplacian matrices of G and G′ respectively
by L and L′, and let e be the (column) vector of order n whose
components are 0 except the i-th and j-th components are
respectively 1 and−1. Then

L′ = L+ δ · eeH .

By Corollary 2.3, we have

(L′)+ = L+[I + (L′ − L)L+]−1 = L+(I + δ · eeHL+)−1.

To compute (L′)+, we first compute (I + δ · eeHL+)−1. Note that
the elements of I + δ · eeHL+ are given by

[I + δ · eeHL+]kl =



































1, if k = l 6= i, j,

δ · (L+
il
− L+

jl
), if k = i and l 6= i,

1+ δ · (L+ii − L+ji ), if k = l = i,

−δ · (L+
il
− L+

jl
), if k = j and l 6= j,

1− δ · (L+ij − L+jj ), if k = l = j,

0 otherwise.

Simple algebraic calculation leads to

det(I + δ · eeHL+) = 1+ δ · (L+ii + L+jj − 2L+ij ).

Then by the adjoint method, we could obtain the inverse of
I + δ · eeHL+, whose elements are given by

[(I + δ·eeHL+)−1]kl =














































































1, if k = l 6= i, j,

−
δ · (L+

il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = i and l 6= i,

1−
δ · (L+ii − L+ji )

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = l = i,

δ · (L+
il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = j and l 6= j,

1+
δ · (L+ij − L+jj )

1+ δ · (L+ii + L+jj − 2L+ij )
, if k = l = j

0, otherwise.

Then, by algebraic calculation, we could obtain the product of L+

and (I+δ ·eetL+)−1. Thus, (L′)+ is obtained, whose elements are
given below. For 1 ≤ k, l ≤ n,

(L′)+
kl
= L+

kl
−

δ · (L+
ki
− L+

kj
)(L+

il
− L+

jl
)

1+ δ · (L+ii + L+jj − 2L+ij )
.

Now we are ready to prove Equation (3.1) according to the
formula given in Equation (1.1). By Equation (1.1), we have

�
′(p, q) =(L′)+pp + (L′)+qq − 2(L′)+pq = L+pp + L+qq − 2L+pq

−
δ · (L+pi − L+pj)

2 + δ · (L+qi − L+qj)
2

1+ δ · (L+ii + L+jj − 2L+ij )

−
2δ · [(L+pi − L+pj)(L

+
qi − L+qj)]

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq −
δ · [(L+pi − L+pj)

2 + (L+qi − L+qj)
2]

1+ δ · (L+ii + L+jj − 2L+ij )

−
2δ · [(L+pi − L+pj)(L

+
qi − L+qj)]

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq −
δ · (L+pi − L+pj − L+qi + L+qj)

2

1+ δ · (L+ii + L+jj − 2L+ij )

=L+pp + L+qq − 2L+pq

−δ ·





(L+pi − L+pj − L+qi + L+qj)+
1
2 (L

+
pp − L+pp + L+ii

−L+ii + L+qq − L+qq + L+jj − L+jj )





1+ δ · (L+ii + L+jj − 2L+ij )

2

=L+pp + L+qq − 2L+pq

−δ·





(− 1
2L

+
pp + L+pi −

1
2L

+
ii )+ ( 12L

+
pp − L+pj +

1
2L

+
jj )

+( 12L
+
qq − L+qi +

1
2L

+
ii )+ (− 1

2L
+
qq + L+qj −

1
2L

+
jj )





1+ δ · (L+ii + L+jj − L+ij − L+ji )

2

= �(p, q)−
δ · [− 1

2�(p, i)+ 1
2�(p, j)+ 1

2�(q, i)− 1
2�(q, j)]2

[1+ δ · �(i, j)]

=�(p, q)−
δ · [�(p, i)+ �(q, j)− �(p, j)− �(q, i)]2

4[1+ δ · �(i, j)]
.

The proof is completed. �

4. CONCLUSION

The Moore-Penrose inverse of the Hermitian matrix has various
applications. In this paper, a relation between generalized
inverses of two nullity-1 n× nHermitian matrices which share a
common null eigenvector is established, and a simple application
in electrical networks is illustrated. Further applications of the
relation needs to be revealed in the future.
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