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Characterization of Mercury’s internal and external magnetic field is one of the primary

goals of the magnetometer experiment on board the BepiColombo MPO (Mercury

Planetary Orbiter) spacecraft. A novel data analysis tool is developed to determine the

Gauss coefficients in themultipole expansion using Capon’s minimum variance projection

method. The construction of the estimator is presented along with a test against the

numerical simulation data of Mercury’s magnetosphere and a comparison with the least

square fitting method shows, that Capon’s estimator is in better agreement with the

coefficients, implemented in the simulation, than the least square fit estimator.
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1. INTRODUCTION

The reconstruction of planetary magnetic fields is one of the most important goals of a
magnetometer experiment on board an orbiting spacecraft. Various inversion methods have
successfully been applied to the data of former missions that visited different planets in our solar
system. For example, generalized inversion [1] and elastic net regression [2] have been applied to
the reconstruction of Jupiter’s internal magnetic field. The weighted least square fit [3] and robust
regression [4] appeared as useful methods for the analysis of Saturn’s magnetic field. The Earth’s
magnetic field has been analyzed among other methods by using the maximum entropy method
[5]. All these methods will be useful tools for Mercury’s magnetic field analysis, which is one of the
primary goals of the magnetometer experiment on board the BepiColombo mission. In this work
we present an alternative method, namely Capon’s method, for the analysis of Mercury’s internal
magnetic field.

Capon’s method [6], also known as minimum variance distortionless response estimator
(MVDR) [7], was introduced for reconstructing the velocities and wave vectors of seismic waves
measured on an array of sensors on the Earth’s surface. In space plasma physics, the method has
first been successfully applied to the analysis of plasma waves in the terrestrial magnetosphere
[8]. Later on, the method was extended for the mode decomposition of magnetic fields [9].
This establishes a basis to separate the planetary magnetic field from the total measured field in
Mercury’s magnetosphere.

The separation of the internal magnetic field from the external parts of the field, which
are generated by currents flowing in the magnetosphere is important for the reconstruction of
the internal field. There exists a paraboloid model of Mercury’s magnetosphere [10] which has
successfully been applied to the analysis of Mercury’s internal magnetic field [11, 12]. Since Capon’s
method is applied to the analysis of Mercury’s internal magnetic field for the first time, here only
the internal parts of the field are considered in the parametrization as a proof of concept.
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Concerning to the BepiColombo mission, in this work
magnetic field data resulting from the plasma interaction of
Mercury with the solar wind are simulated and Capon’s method
is applied to the magnetic field data to analyze Mercury’s internal
magnetic field.

2. PARAMETRIZATION AND INVERSION
METHODS

2.1. Parametrization of Mercury’s Magnetic
Field
The parametrization of planetary magnetic fields is based on the
Gauss representation [13]. If only data in curl-free regions are
analyzed, Ampère’s law ∂x × B = 0, where B is the magnetic
field vector and ∂x is the spatial derivative, yields the existence
of a scalar potential 8, so that B = −∂x8. In general, 8 is
composed of internal and external parts. In the following only
the internal parts 8i will be considered. For the parametrization
of the internal dipole and quadrupole fields the scalar potential is
expanded into spherical harmonics

8i = RM

2
∑

l=1

(RM

r

)l+1
l

∑

m=0

[

gml cos(mλ)

+ hml sin(mλ)
]

Pml
(

cos(θ)
)

, (1)

where planetary centered coordinates with radius r, azimuth
angle λ ∈ [0, 2π], and polar angle θ ∈ [0,π] are chosen.
RM indicates the radius of Mercury and Pm

l
are the Schmidt-

normalized associated Legendre polynomials of degree l and
order m. The expansion coefficients gm

l
and hm

l
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Gauss coefficients. Arranging the Gauss coefficients into a vector
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, for later application called

ideal coefficient vector, the contribution of the internal magnetic
field can be rearranged as

B = −∂x8i = H g, (2)

where the terms of the multipole series are arranged in the
matrix H (r, θ , λ). The magnetic field measurements B and the
underlying model H are known. The unknown coefficient vector
g is to be determined. In most applications the number of known

magnetic data points is much larger than the number of the
expansion coefficients, resulting in an overdetermined inversion
problem. Therefore, H is a rectangular matrix in general and the
direct inversion of Equation (2) is impossible. But there exist
several inversion methods for estimating g [7].

2.2. Least Square Fit (LSF) Method
The most commonly used method for inverse problems is the
least square fit method. The method minimizes the quadratic
deviation between the disturbed measurements B and the model
H g with respect to the unknown set of coefficients g [7]

min
g

∣

∣H g − B
∣

∣

2
= min

gl

(

giH
†
ij Hjk gk − 2BjHji gi + Bi Bi

)

, (3)

providing us

∂gl

∣

∣H g − B
∣

∣

2
= 0, (4)

where † symbolizes the Hermitian adjunction. The LSF estimator
g
L
realizing the minimal deviation is given by

g
L
=

[

H†H
]−1

H† B. (5)

2.3. Capon’s Method
Capon’s method is based on the construction of a filter matrix w
so that the output power

tr
[

w†Mw
]

(6)

is minimized with respect to w, subject to the
distortionless constraint

w†H = I, (7)

where tr
[

w†Mw
]

is the trace of the matrix w†Mw and I is

the identity matrix. The matrix M : = 〈B ◦ B〉 is called the
data covariance matrix, where the angular brackets indicate
averaging over ensemble, e.g., different samples, realizations, or
measurements. The error of the magnetic data is assumed to
be Gaussian with variance σn and zero mean. In this case, the
data covariance matrix can be written as M = 〈B〉 ◦ 〈B〉 + σ 2

n I.
Capon’s estimator realizing the minimal output power, subject to
the distortionless constraint, results in [9]

g
C
=

[

H† M−1 H
]−1

H† M−1 〈B〉, (8)

which has the same structure as the LSF estimator (Equation
4), but with additional weighting by the covariance matrix.
This demonstrates that the Capon filter discriminates between
preferred and deprived data whereas the LSF treats all data
equally. Adding a constant value σ 2

d
to the diagonal of the

covariance matrix improves the robustness of Capon’s estimator
[14]. The diagonal loaded covariance matrix results in

M = 〈B〉 ◦ 〈B〉 + σ 2I, (9)

where σ 2
: = σ 2

n + σ 2
d
.

3. SIMULATION OF MERCURY’S
MAGNETIC FIELD

For the evaluation of Capon’s estimator in comparison with the
LSF estimator simulated magnetic field data are analyzed. The
data are simulated with the hybrid code AIKEF [15], that has
successfully been applied to several problems inMercury’s plasma
interaction [16]. The internal Gauss coefficients g01 = −190 nT
and g02 = −78 nT [17], defining the non-vanishing components
of the ideal coefficient vector g (Equation 2), are implemented

in the simulation code and the magnetic field resulting from the
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FIGURE 1 | Simulated magnitude of the magnetic field B in multiples of the

solar wind magnetic field B0 = 20 nT in the x-z-plane. The black lines describe

the magnetic field lines. The white circle of radius 1RM symbolizes Mercury.

The implemented internal Gauss coefficients are g01 = −190 nT and

g02 = −78 nT [17].

interaction ofMercury with the solar wind is simulated. The solar
wind velocity of 400 km/s is orientated parallel to the x-axis and
the solar wind magnetic field with B0 = 20 nT is orientated
toward the z-axis. The y-axis completes the right hand system.
The solar wind density was chosen to 30 cm−3. In Figure 1, the
simulated magnitude of the magnetic field B is displayed in the
x-z-plane (meridional plane).

4. APPLICATION AND DISCUSSION

Now Capon’s method is applied to the simulated data for
reconstructing the ideal Gauss coefficients implemented in the
simulation. The comparison of Capon’s estimator g

C
with the

ideal coefficient vector g enables the judgement of the method.

To classify the role of Capon’s method in terms of the diversity
of existing inversion methods, Capon’s estimator furthermore is
compared with the LSF estimator g

L
. The data are evaluated at

an ensemble of data points with distance 0.2RM from the surface
on the night side of Mercury (x < 0). The reconstructed Gauss
coefficients are presented in Table 1.

The underlying model only describes the internal magnetic
field H g. The external parts of the field b : = B − H g are not

parameterized. Thus, the deviation of the LSF estimator and the
ideal coefficient vector is given by

∣

∣g
L
− g

∣

∣ =
∣

∣

[

H†H
]−1

H† b
∣

∣ ≈ 32.9 nT, (10)

TABLE 1 | Capon’s and LSF estimators for the internal Gauss coefficients in nT.

Gauss coefficient Input Output Capon Output LSF MESSENGER

[17]

g01 −190.0 −191.6 −215.9 −215.8 to −190.0

g11 0 0.4 0.5 −2.9 to 1.1

h11 0 0.6 0.7 0.8 to 2.7

g02 −78.0 −69.1 −77.9 −83.2 to −57.0

g12 0 16.9 19.0 −1.5 to 3.4

h12 0 5.5 6.2 −1.4 to 0.2

g22 0 −2.8 −3.2 −7.0 to −0.8

h22 0 0.7 0.8 −3.3 to 0.4

In the last column the ranges of Gauss coefficients, reconstructed from MESSENGER

data, are shown [17].

whereas the difference between Capon’s estimator and the ideal
coefficient vector results in

∣

∣g
C
− g

∣

∣ =
∣

∣

[

H†M−1H
]−1

H†M−1b
∣

∣ ≈ 20.1 nT. (11)

To judge the quality of Capon’s estimator the comparison of
individual coefficients presented in Table 1 is not a vital metric.
For example, the Gauss coefficient g02 reconstructed by the LSF
method is in better agreement with the ideal coefficient than the
coefficient estimated by Capon’s method. But for all coefficients
together

∣

∣g
C
− g

∣

∣ <
∣

∣g
L
− g

∣

∣ holds.

Therefore, Capon’s estimator is in better agreement with the
ideal coefficient vector than the LSF estimator.

The choice of the diagonal loading parameter σ 2
d
is essential

for the difference
∣

∣g
C
−g

∣

∣. The diagonal loaded covariance matrix

results from the additional quadratic constraint tr
(

w†w
)

=

T0, where T0 = const. and σ 2
d
is the corresponding Lagrange

multiplier [14]. The choice of T0 controls the diagonal loading
parameter σ 2

d
and defines how the data will be weighted by the

filter matrix w. It depends on the underlying model and the
evaluated data. Figure 2 illustrates how σ in principle controls
the difference

∣

∣g
C
− g

∣

∣. For σ → 0 Capon’s estimator shows a

large deviation to g. If σ → ∞, Capon’s estimator approaches

the LSF estimator. But if the data are not completely described by

the model (b 6= 0) there exists a parameter σ =

√

σ 2
n + σ 2

d
= σ0,

so that for all σ ≥ σ0

∣

∣g
C
− g

∣

∣ ≤
∣

∣g
L
− g

∣

∣. (12)

Furthermore it even exists an optimal parameter σopt., that
realizes the best agreement between Capon’s estimator and g.

For the results presented in Table 1 this optimal parameter is
σopt. ≈ 276 nT.

Since the choice of σ controls tr
(

w†w
)

, the value of the

optimal diagonal loading parameter is not directly related
with an error of the magnetic measurements. More likely
σopt. can be understood as a parameter that measures the
model mismatches.
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FIGURE 2 | Sketch of the deviation
∣

∣g
C
− g

∣

∣ between Capon’s estimator g
C

and the ideal coefficient vector g subject to σ . For large σ → ∞ the deviation

converges to the deviation of the least-square-fit estimator g
L
and the

implemented coefficient vector g. There exists σ0 so that
∣

∣g
C
− g

∣

∣ ≤
∣

∣g
L
− g

∣

∣,

for all σ ≥ σ0, and an optimal parameter σopt., that realizes the best agreement

between Capon’s estimator an the ideal coefficient vector.

When Capon’s method is applied to real spacecraft data, the
ideal coefficient vector g is not available anymore and therefore

the deviation
∣

∣g
C
− g

∣

∣ cannot be used as metric for calculating

the optimal diagonal loading parameter. In this case, there exist
other methods for estimating σopt., e.g. the L-curve method, that
solely depend on the underlying model and the data [18].

5. SUMMARY AND OUTLOOK

In this work Capon’s method has been applied to simulated
magnetic field data to analyze Mercury’s internal magnetic
field. The internal field, parameterized by the internal Gauss
coefficients, was implemented in the simulation code AIKEF
and the magnetic field resulting from the plasma interaction
of Mercury and the solar wind was simulated. The comparison
of Capon’s method and the commonly used least square fit
method showed that Capon’s estimator is in better agreement
with the implemented Gauss coefficients than the least square
fit estimator. A helpful procedure is the diagonal loading of the
data covariance matrix, that improves the robustness of Capon’s
estimator. It turns out that there exists an optimal diagonal

loading parameter where Capon’s estimator is nearest to the ideal
coefficient vector.

Since only the internal magnetic field was parameterized,
Capon’s estimator shows some deviation to the implemented
coefficients. Additional parameterizing of the external
contributions of the magnetic field, for example by using
the paraboloid model for Mercury’s magnetosphere [10], may
still improve Capon’s estimator, especially when data points
are collected in some distance above the planetary surface.
Moreover, this enables us to reconstruct higher-order terms such
as octupole terms. Furthermore, as the Gauss representation is
restricted to curl-free regions, the Mie representation (poloidal-
toroidal decomposition) would extend the data collection to
regions where electrical currents flow.
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