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The prime objective of this article is to explore the entropy analysis of third-order

nanofluid fluid slip flow caused by a stretchable sheet implanted in a porous plate along

with thermal radiation, convective surface boundary, non-Fourier heat flux applications,

and nanoparticle concentration on zero mass flux conditions. The governing physical

systems are modified into non-linear ordinary systems with the aid of similarity variables,

and the outcomes are solved by a homotopy analysis scheme. The impression of

certain governing flow parameters on the nanoparticle concentration, temperature, and

velocity is illustrated through graphs, while the alteration of many valuable engineering

parameters viz. the Nusselt number and Sherwood number are depicted in graphs.

Entropy generation with various parameters is obtained and discussed in detail. The

estimation of entropy generation using the Bejan number find robust application in power

engineering and aeronautical propulsion to forecast the smartness of entire system.

Keywords: entropy generation, Christov-Cattaneo heat flux, third-grade nanofluid, porous medium, homotopy

analytic technique

INTRODUCTION

Nanoliquids are the type of liquids that have small volumetric quantities of nanoscale
(

10−9 − 10−7m
)

metallic
(

Cu, Ti, Hg, Fe, Ag, Au, etc.
)

or non-metallic particles
(

TiO2, SiO2, CuO, Al2O3, etc
)

taken as nano particles. Usually nanoliquids have a colloidal
suspension of nanoparticles inside a base liquid for example water, oil, ethylene glycol, etc. Initially,
Choi [1] proposed the “nanofluid” term. In general, the effective heat transfer enhancement has
the reason of nanoliquids generally restrict up to volume fraction of nanoparticles. Therefore,
in the latest technologies and engineering areas, nanoliquids receiving a phenomenal impact.
Mushtaq et al. [2] attempted the numerical study of the nanoliquids induced by an exponentially
stretchable sheet with rotating flow model. MHD nanoliquid flow toward a porous plate with
internal heat generation effects was presented by Reddy and Chamka [3]. Shit et al. [4] studied
the convective flow of hydromagnetic nanoliquid with entropy generation mechanism. Recently,
Gireesha et al. [5] explained a Hall current effects of two-phase transient nanoliquid flow induced
by a stretchable sheet. Reddy et al. [6] performed the combined convection flow of nanoliquid
toward a semi-infinite vertical flat sheet with convectively heated boundary and Soret effect. Few
more significant studies in this research area are seen in ref ’s [7–13].
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Due to various applications in different technical and
industrial areas, the fluid flow problems toward a stretching
surface have developed. It finds application in rubber and plastic
sheets production, melt-spinning, production of glass-fiber, and
metallic plate cooling systems. Sakiadis [14] studied the uniform
velocity of a magnetohydrodynamic flow past a solid medium.
Magyari et al. [15] examined the first order chemical reaction and
heat generation combination on micropolar fluid flow induced
by a permeable stretching surface. Gupta [16] analyzed the heat
and mass transfer effects of a boundary layer flow induced by a
stretchy sheet with suction or blowing impact.Magyari and Keller
[17] exposed the fluid flow over exponentially extending sheet
with heat and mass transfer impacts. Significances of thermal
boundary layer flow for a linearly stretchy sheet with viscous
dissipation were examined by Cortell [18]. The cutting-edge
research reports on stretching sheet flow are highlighted in these
works of literature [19–24].

Fluid flow saturated in the porous surface have numerous
applications in various fields like geothermal energy, fuel cell
technologies, material processing, etc. Chamkha et al. [25]
described the free convective flow past an inclined plate fitted in
a porous medium of variable porosity with solar radiation. Khan
and Aziz [26] studied the natural convective flow with double
diffusion caused by a vertical porous sheet. Oyelakin et al. [27]
analyzed the slip flow of unsteady radiative Casson nanofluid
toward a stretchy surface. Gorla and Chamkha [28] studied the
nanofluid flow toward a non-isothermal vertical plat entrenched
in a porous sheet. The same research group extended their work
for different models for various applications [29–32].

Heat transport problems in the flow of liquids have been
examined by several researchers for the last decade. In 1822,
Fourier [33] constructed the heat conduction law. This states that
“the heat transfer in a medium with inertial rate.” A parabolic-
type equation was used to state the heat conduction equation.
The problem rising at this time is that there exists no such
object or material that satisfies Fourier’s law, as argued by
Cattaneo [34] when using thermal relaxation time to customize
Fourier’s law. Later, Christov [35] developed and joined the
upper convected Maxwell fluid. This developed model is called a
Christov-Cattaneo heat fluxmodel. Loganathan et al. [36] studied
the thermal relaxation time effects on Oldroyd-B liquid with
second-order slip and cross-diffusion impacts. The Christov-
Cattaneo heat flux model for a third-grade liquid with chemical
reaction effects was examined by Imtiaz et al. [37].

In the last decade, several scientists have researched entropy
generation in the flow of fluids and heat transfer over
a stretching surface. In various engineering and industrial
divisions, the performance of heating and cooling are of
massive importance in different electronic and energy issues.
Aiboud and Saouli [38] examined the MHD viscoelastic
fluid flow with the application of entropy analysis using
Kummer’s function. Makinde [39] presented the thermal
radiation and Newtonian heating impacts of variable viscosity
fluid caused by a semi-infinite plate using shooting quadrature
and obtained the entropy generation number. Loganathan et al.
[40, 41] verified the entropy analysis for the third grade and
Williamson nanoliquid flow caused by a stretchable sheet with

various effects. They employed HAM to solve the non-linear
governing systems.

Based on our research in previously published works, entropy
generation of third-grade nanofluid flow caused by a stretching
sheet with a modified Fourier law has not been discussed with
a high standard of scientific attention. As far as we noticed in
literature, the studies taken for entropy generation are limited
with some parameters viz the Brinkmann number, Reynolds
number, Temperature difference parameter, and Hartmann
number. We have extended our investigations to include
thermal relaxation time, the Biot number, thermal radiation,
slip parameter, porous parameter, etc. The effective collection
and analysis of these results will open new gateways for diverse
engineering application in various streams.

PROBLEM DEVELOPMENT

We were interested in analyzing the entropy and Bejan
number of third-grade nanofluid saturated in a porous medium
with Christov-Cattaneo heat flux. In Figure 1, the stretching
parameter is taken along x direction where TW and CW are
represented the wall temperature and concentration, respectively.
T∞ and C∞ are used to index the ambient temperature and
concentration, respectively. A convective heating temperature
Tf is stimulated at the bottom of the sheet surface. The
Buongiorno nanofluid [42] is used for the present case.

FIGURE 1 | Flow diagram.
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Based on his consideration, the slip mechanisms, namely, the
Brownian diffusion, inertia, Magnus effect, diffusiophoresis,
thermophoresis, gravity, and fluid drainage, were analyzed. He
recommended that the thermophoresis and Brownian diffusion
are essential slip mechanism in low dimensional materials.

The following is an incompressible fluid model containing
body forces with the equation of continuity and motion:

div v = 0 (1)

ρ
dv

dt
= divT + ρb+ J + B (2)

Here, ρ is the fluid density, which is taken as a constant, v
is the velocity field, b indicates the body forces, J denotes the
electric current, and T states the third-grade incompressible
fluids Cauchy stress tensor [43]

T = −pI + µE1 + A∗
1E2 + A∗

2E
2
1 + β1E3

+ β2 (E1,E2 + E2E1)+ β3
(

trE21
)

E1 (3)

where µ, (E1, E2, E3) and A∗
1 , βi indicate the viscosity

coefficient, kinematics tensors, and material modulis as in

E1 = L+ (L)T (4)

En =
d

dt
En−1 + En−1L+ (L)TEn−1, n = 2, 3, and (5)

L = ∇v. (6)

d
dt
is expressed as the material time derivative

d()

dt
=
∂()

∂t
+ v. ∇ (). (7)

The relationship between Clausius-Duhem inequality and
thermodynamically compatible fluid is stated by Fosdick and
Rajagopal [44]:

µ ≥0, A∗
1 ≥ 0, β1 = β2 = 0, β3 ≥ 0 (8)

∣

∣A∗
1 + A∗

2

∣

∣ ≤ 2
√

6µβ3 (9)

T = −pI + µE1 + A∗
1E2 + A∗

2E
2
1 + β3

(

trE21
)

E1 (10)

Boussinesq and normal boundary layer approximations
were considered by Pakdemirli [45]. We made the
following assumptions:

1. The nanoparticles are small and of equal size to the pores.
2. The zero-mass flux of the nanoparticles is included.
3. Christov-Cattaneo heat flux is considering instead of normal

heat flux.
4. The magnetic field in the fluid flow is ignored due to a lower

magnetic Reynolds number.

∂u

∂x
+
∂v

∂y
= 0 (11)

u
∂u

∂x
+ v

∂u

∂y

= ν
∂2u

∂y2
+

A∗
1

ρ

(

u
∂3u

∂y2∂x
+ v

∂3u

∂y3
+
∂u

∂x

∂2u

∂y2
+ 3

∂u

∂y

∂2u

∂x∂y

)

+ 2
A∗
2

ρ

∂u

∂y

∂2u

∂x∂y
+ 6

β∗1
ρ

(

∂u

∂y

)2
∂2u

∂y2
−
σB20
ρ

u−
ν

kp
u (12)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
−

1

ρcp

∂qr

∂y
+

Q0

ρcp
(T − T∞) (13)

+ τ

[

DB
∂C

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
]

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
(14)

u = uw (x) = ax+ L
∂u

∂y
, − k

∂T

∂y
= hf

(

Tf − T∞
)

,

DB
∂C

∂y
+

DT

T∞

∂T

∂y
= 0 at y = 0

u → 0, T → T∞, c → c∞ as y → ∞ (15)

The energy equation with a Cattaneo-Christov heat flux model is
stated as

u
∂T

∂x
+ v

∂T

∂y
+ λT

(

u2
∂2T

∂x2
+ v2

∂2T

∂y2
+
(

u
∂u

∂x

∂T

∂x
+ v

∂u

∂y

∂T

∂x

)

+ 2uv
∂T2

∂x∂y

)

+
(

u
∂v

∂x

∂T

∂y
+ v

∂v

∂y

∂T

∂y

)

=
k

ρcp

∂2T

∂y2

−
1

ρcp

∂qr

∂y
+

Q0

ρcp
(T − T∞)

+ τ

[

DB
∂C

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2
]

. (16)

Consider the transformation given below:

ψ =
√
aνxf (η) , u =

∂ψ

∂y
, v = −

∂ψ

∂x
, η =

√

a

ν
y,

v =−
√
aνf (η) , u = axf ′ (η) , θ ( η) =

T − T∞
Tf − T∞

,

φ ( η) =
C − C∞
C∞

. (17)

The non-linear governing equations are:

f
′′′
+ f f

′′
− f

′2
+ α1

(

2f ′f
′′′
− f f iv

)

+ (3α1 + 2α2) f
′ ′2

+ 6βRef
′′′
f
′ ′2

− (Mf ′ + Kf ′) = 0 (18)

(

1+
4

3
Rd

)

θ
′′
+ Prf θ ′ + PrSθ − Prγ f 2θ ′′ − Prγ f f ′θ ′

+ PrNb θ ′φ′ + PrNtθ ′
2 = 0 (19)
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φ′′ + Lefφ′ +
Nt

Nb
θ ′′ = 0 (20)

with the end points

f (0) = fw, f
′ (0) = 1+Ŵf

′′
(0), θ ′ (0) = −Bi(1− θ (0)),

Nb φ′ (0)+ Nt θ ′ (0) = 1

f ′ (∞) = 0, θ (∞) = 0,φ (∞) = 0 (21)

The non-dimensional variables are

α1 =
aA∗

1

ν
,α2 =

aA∗
2

ν
,β =

aβ∗1
ν

,Re =
uwx

ν
, Pr = ρCp/k,

M = σB20/ρa,Rd =
(

4σ ∗T3
∞
)

/
(

kk∗
)

, S =
Q0

ρcp
, γ = λTa,

Bi =
hf

k

√

ν�a ,Nb =
τDB

ν
(C∞) , Nt =

τDT

ν

(

Tf − T∞
)

.

The application of physical entitles is such that

Re
1
2Cf = f

′′
(0)+ α1f ′ (0) f

′′′
(0)+ βRe[f

′′
(0)]

3
(22)

Re−
1
2Nux = −(1+

4

3
Rd)θ ′ (0) . (23)

The local mass transfer rate becomes identically zero due to the
zero mass flux state [46]

Re−
1
2 Sh =

Nt

Nb
θ ′ (0) . (24)

ENTROPY OPTIMIZATION

The entropy minimization optimization for fluid friction, heat,
and the irreversibility of mass transfer are given below:

S
′′′
gen =

K1

T2
∞

[

(

∂T

∂x

)2

+
(

∂T

∂y

)2

+
16σ ∗T3

∞
3kk∗

(

∂T

∂y

)2
]

+
µ

T∞

[

2

(

∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
[

∂u

∂y
+
∂v

∂x

]2

+
RD

C∞

[

(

∂C

∂x

)2

+
(

∂C

∂y

)2
]

+
RD

T∞

[(

∂T

∂x

)(

∂C

∂x

)

+
(

∂T

∂y

)(

∂C

∂y

)]

+
σB20
T∞

u2 +
ν

kp
u2. (25)

Using Equation (25) modified with the help of Equation (17),

S
′′′
gen =

K1

T2
∞

[

(

∂T

∂y

)2

+
16σ ∗T3

∞
3kk∗

(

∂T

∂y

)2
]

+
µ

T∞

(

∂u

∂y

)2

+
RD

C∞

(

∂C

∂y

)2

+
RD

T∞

(

∂T

∂y

)(

∂C

∂y

)

+
σB20
T∞

u2 +
ν

kp
u2.

(26)

Dimensionless system of entropy generation is defined as:

EG = Re

(

1+
4

3
Rd

)

θ
′2
+ Re

Br

�
f
′ ′2

+ Re

(

ζ

�

)2

λφ′
2

+ Re
ζ

�
λφ′θ ′ +

Br

�
(M + K)f

′2
. (27)

The Bejan number states

Be =
Entropy genration due to irrevesablity of heat and mass transfer

Total entropy generated

Be =
(

Re
(

1+ 4
3Rd

)

θ
′2 ++Re

(

ζ
�

)2
λφ′2 + Re ζ

�
λφ′θ ′

)

Re
(

1+ 4
3Rd

)

θ
′2 + Re Br

�
f
′ ′2 + Re

(

ζ
�

)2
λφ′2 + Re ζ

�
λφ′θ ′ + Br

�
(M + K)f

′2
.

(28)

HOMOTOPY SOLUTIONS

There are several techniques available to solve non-linear
problems. The homotopy analysis method (HAM) is initially
constructed by Liao [47]. Moreover, he altered a non-zero
auxiliary parameter [48]. This parameter shows the way to
calculate the convergence rate. It also offers great independence
with which to make the initial guesses of the solutions.

The initial guesses for satisfying the boundary conditions

f0 = fw +
(

1

1+ Ŵ

)

1− e−η

θ0 =
Bi ∗ e−η

1+ Bi

φ0 = −
(

Nt

Nb

)

∗
Bi ∗ e−η

1+ Bi
.

Lf , Lθ , and Lφ are the linear operators

Lf = f ′′′ − f ′

Lθ = θ ′′ − θ
Lφ = φ′′ − φ

while obeying the resulting properties

Lf
[

E1 + E2e
η + E3e

−η
]

= 0

Lθ
[

E4e
η + E5e

−η
]

= 0

Lφ
[

E6e
η + E7e

−η
]

The zeroth order deformation is

(

1− p
)

Lf
[

f
(

η; p
)

− f (η)
]

= p hfNf

[

f
(

η; p
)]

(

1− p
)

Lθ
[

θ
(

η; p
)

− θ0 (η)
]

= p hθNθ

[

θ
(

η; p
)

, f
(

η; p
)

,φ
(

η; p
)]

(

1− p
)

Lφ
[

φ
(

η; p
)

− φ0 (η)
]

= p hφNφ

[

φ
(

η; p
)

, θ
(

η; p
)

, f
(

η; p
)]
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where p ǫ [0, 1]
hf , hθ , and hφ are the non-zero auxiliary constants, and Nf ,

Nθ , andNφ are the non-linear operators given by

Nf

[

f
(

η; p
)

, θ
(

η; p
)]

=
∂3f

(

η; p
)

∂η3
−

(

∂f
(

η; p
)

∂η

)2

+ f
(

η; p
) ∂2f

(

η; p
)

∂η2

+ α1

(

2
∂f
(

η; p
)

∂η

∂3f
(

η; p
)

∂η3
− f

(

η; p
) ∂4f

(

η; p
)

∂η4

)

+ (3α1 + 2α2)

(

∂f
(

η; p
)

∂η

)2

+ 6βRe
∂3f

(

η; p
)

∂η3

(

∂f
(

η; p
)

∂η

)2

− (M + K)
∂f
(

η; p
)

∂η

Nθ

[

f
(

η; p
)

, θ
(

η; p
)

, φ
(

η; p
)]

=
(

1+
4

3
Rd

)

∂2θ
(

η; p
)

∂η2

+ Prf
(

η; p
) ∂θ

(

η; p
)

∂η
− Prγ

[

[f
(

η; p
)]2 ∂

2θ
(

η; p
)

∂η2

− Prγ f
(

η; p
) ∂f

(

η; p
)

∂η

∂θ
(

η; p
)

∂η
+ PrSθ

(

η; p
)

+ PrNb
∂θ
(

η; p
)

∂η

∂φ
(

η; p
)

∂η
+ PrNt

[

∂θ
(

η; p
)

∂η

]2

Nφ

[

f
(

η; p
)

, θ
(

η; p
)

, φ
(

η; p
)]

=
∂2φ

(

η; p
)

∂η2

+ Le f
(

η; p
) ∂φ

(

η; p
)

∂η
+

Nt

Nb

∂2θ
(

η; p
)

∂η2

f
(

0; p
)

= fw, f
′ (0; p

)

= 1+Ŵf
′′
(0 : p), f ′

(

∞; p
)

= 0

θ ′
(

0; p
)

= −Bi
(

1− θ
(

0; p
))

, θ
(

∞; p
)

= 0

φ′
(

0; p
)

= −
Nt

Nb
θ ′
(

0; p
)

,φ′
(

∞; p
)

= 0

Themth order deformation equations are

Lf
[

fm (η)− χmfm−1 (η)
]

= hfRf ,m (η)

Lθ [θm (η)− χmθm−1 (η)] = hθRθ ,m (η)

Lφ [φm (η)− χmφm−1 (η)] = hφRφ,m (η)

where

χm =
{

0, m ≤ 1
1, m > 1

,

Rf ,m (η) = f
′′′
m−1 +

m−1
∑

k=0

[

fm−1−kf
′′

k − f
′

m−1−kfk
′

+α1
(

2f
′

m−1−kf
′′′

k − fm−1−kf
iv
k

)

+ (3α1 + 2α2) f
′′

m−1−kf
′′

k

+6βRef
′′′

m−1−l

l
∑

j=0

f
′′

l−jf
′′
j − (M + K) αfm−1−k

′





Rθ ,m (η) =
(

1+
4

3
Rd

)

θ
′′
m−1 + Pr

∑m−1

k=0

[

θ
′

m−1−kfk

]

− Prγ [

(

fm−l−1

∑l

j=0
f1−j

′θj
′ + fm−l−1θ

′′

l

)

]

+ PrNb
∑m−1

k=0
θm−1−k

′φk + PrNt
∑m−1

k=0
θm−1−k

′θk
′

+ PrSθm−1

Rφ,m (η) = φ
′′
m−1 + Le

∑m−1

k=0
φm−1−k

′fk

+
Nt

Nb

∑m−1

k=0
θm−1−k

′θk
′

fm (0) = 0, fm
′ (0)−Ŵfm

′′
(0) = 0, θm

′ (0)− Biθm(0) = 0,

φm
′ (0)+

Nt

Nb
θm

′(0) = 0

fm
′ (η)→ 0, θm

′ (η)→ 0, φm (η)→ 0as η→ ∞.

with boundary conditions

fm
′ (0) = fm (0) = fm

′ (∞) = θm (0) = θm (∞) = φm (0)

= φm (∞) = 0.

The appropriate solutions
[

f ∗m, θ
∗
m, φ

∗
m

]

are

fm(η) = f ∗m(η)+ E1 + E2e
η + E3e

−η,

ηm(η) = η∗m(η)+ E4e
η + E5e

−η,

ηm(η) = η∗m(η)+ E6e
η + E7e

−η.

CONVERGENCE ANALYSIS

The auxiliary parameters hf , hθ , and hφ act as a vital part of

convergence series solutions. The h-charts of f
′′
(0), θ ′ (0), and

φ′ (0) for Re,γ, and Nb are shown in Figure 2. From these
curves, the straight line is referred as the h-curve. The convergent
approximation is selected from this straight line of the curves.

We note that h-curve of f
′′
(0), θ ′ (0), and φ′ (0) shrinks as we

enhance the range of Re,γ, and Nb, which shows the larger order
approximation will be needed if the larger value of Re,γ, and Nb
is employed. Approximations values of HAM with CPU time is
denoted in Table 1.
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FIGURE 2 | (A–C) h− curves for hf , hθ , hφ .

TABLE 1 | Order of approximations of HAM.

Order −f
′′
(0) −θ ′(0) φ′(0) CPU time (s)

1 0.5006 0.1603 0.0801 0.422

5 0.5018 0.1474 0.7550 3.688

10 0.5018 0.1454 0.7273 21.781

15 0.5018 0.1441 0.7205 83.750

20 0.5018 0.1435 0.0717 290.735

25 0.5018 0.1432 0.0716 985.219

30 0.5018 0.1432 0.0716 2166.670

COMPUTATIONAL RESULTS AND
DISCUSSION

The numerical calculations of velocity, concentration,
temperature, entropy generation, and the Bejan number
are discussed in this section. The homotopy technique is used
for solving the non-linear governing Equations (18)–(20) with
boundary conditions (21). The graphical results of entropy,
Bejan number, temperature, Nusselt number, nanoparticle
concentration, Sherwood number, and velocity profiles are
computed via different flow parameters included in this study

with the fixed values of α1 = α2 = β = Bi = fw = Nt =
0.2, Re = Pr = Le = Ŵ = 1.0, M = γ = 0.5,Rd = 0.3, Hg =
−0.1, Nb = 0.4, Br = 5.0, and λ = � = ζ = 1.0.

Impact on Velocity
It is observed from Figure 3A that the velocity is reduced to
increase the values of the velocity slip parameter due to the
ratio of stretching velocity and the viscosity of the fluid. The
effect of the slip parameter in velocity has had more impact in
the absence of a porous medium. Figure 3B indicates that the
velocity diminishes when themagnetic field (M) raises. Improved
Lorentz force is observed because of the increasing the values of
M that opposes the fluid motion. Thus, we conclude that the
velocity profile diminishes.

Impact on Temperature
The impact of the radiation parameter Rd on the temperature
profile is examined in Figure 4A. The temperature in the
radiation parameter is high. Comparing the radiation effects
with Christov-Cattaneo and normal heat flux, we observed that
the radiation effect is quite low for Christov-Cattaneo heat
flux. Figure 4B displays the influence of the Biot number on
the temperature profile. From this figure, we observed that
temperature is a rising function of Bi close to the sheet. Since
Bi affects more temperature near the surface. Heat transfer
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FIGURE 3 | (A,B) Impact of Ŵ and M on velocity profile f ′ (η).

FIGURE 4 | (A,B) Impact of Rd and Bi on temperature profile θ (η).

FIGURE 5 | (A,B) Impact of Nb and Nt on concentration profile φ(η).

resistance is higher within the body compared to the surface of
the sheet for rising values Bi.

Impact on Nanoparticle Volume
Concentration
In Figure 5A, the effect of concentration profile with growing
values of the Brownian motion parameter Nb is depicted. In
suction cases, higher values of Nb increase the concentration

profile close to that of the surface of the sheet, and, suddenly,
the concentration begins to fall, stabilizing far away from the
surface of the sheet. This is due to the appearance of passive
surface conditions for the concentration profile. Moreover, the
injection at the sheet shows the concentration is rising near
the sheet, and it diminishes far away from the surface of the
sheet. The influence of the thermophoresis parameter Nt in the
concentration profile φ (η). is highlighted in Figure 5B. When
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FIGURE 6 | (A–H) Impacts of K, Ŵ, fw, β, Bi, γ , Nt, and Nb on entropy generation EG.
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FIGURE 7 | (A–H) Impact of M, Ŵ, Rd, γ , Bi, Br, Nt, and Nb on the Bejan number B.
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there is suction in the sheet, with a rise in Nt, the concentration
of the liquid decreases near to thsheet at certain stage starts to
fall and stabilize away from the endpoints of the surface of the
sheet. When there is an injection at the sheet, higher values of Nt
decreases the concentration profile near the sheet, and it increases
far away from the surface of the sheet.

Impact on Entropy Generation
The Effects of distinct fluid parameters on the entropy generation
profile are highlighted in Figures 6A–G. Figure 6A depicts the
influence of porous parameter in entropy profile. Initially, the
entropy rate increases for the porous parameter at a certain
stage (η= 0.6) before it becomes to fall. The responses of the
slip parameter on entropy generation were succinctly depicted
in Figure 6B. From this figure, it was obviously noted that
entropy generation was inversely proportional to slip parameter.
This causes a decrease in large values of slip parameter and
temperature gradients in the boundary layer when retaining
the fluid friction as we proceed. This occurrence induces
a suppression in entropy generation since heat transfer was
committed. Figures 6C–E displayed the impact of the suction\
injection parameter (fw.), material parameter (β) and Biot
number (Bi) on the entropy profile (EG). Our examination
obtained that higher range of fw, reduces the entropy generation
profile, and the entropy generation rate is enhanced for higherβ
and Bi.

The effect of thermal relaxation time (γ ) on the entropy
genation profile is sketched in Figure 6F. It is obvious that
thermal relaxation time is small for temperature and heat transfer
rates. In addition, domination of the irreversibility in heat
transfer affected the heat flux. Thus, we have seen a small increase
in the entropy of the system. Performance of Nt and Nb on
entropy generation profile (EG) is shown in Figures 6G,H, which
shows that entropy is increased with an increase of Nt, whereas
EG is inversely proportional toNb. The Brownianmotion induces
the nanoparticles temperature, but it reduces the temperature
gradient on wall. As a result, entropy generation parameter
reduces whereNt is directly proportional to temperature gradient
and creates ambient atmosphere for higher values of EG.

Impact on the Bejan Number
The Bejan number (Be) is a dimensionless quantity that specifies
the ratio of entropy generation between heat transfer and the total
entropy generation where Bejan numbers take values from 0 to
1. If Be is nearly equal to 1, the entropy generation will become
more due to heat transfer. It is clear from Figure 7A that, with an
escalation in the applied magnetic field, there is an augmentation
in the Bejan number. The consequence of heat transfer entropy
develops as we move up from the surface. The entropy effect
has full domination because of the heat transfer while it is also
outlying from the region. This is the reason behind how the
augmenting value of M brings a stronger frictional effect, which
leads to an increase in the liquid temperature. There is also a
consequent development in the Be, as shown in Figure 7A. From
Figure 7B, it is observed that the Be is increased for the increase
in the slip parameter (Ŵ). Physically, larger values of (Ŵ) enhance

the temperature gradient inside the regime, which induces the
Bejan number and irreversibility of heat transfer.

Figure 7C states that, with the rise of the radiation constant
Rd, the Bejan number is boosted. This is due to the total entropy
generation dominated by thermal irreversibility. Figure 7D

shows the effect of the thermal relaxation time (γ ) on the Be.
At first, the Be is augmented for higher values of γ at a sudden
point (η = 2.2). Consequently, the Bejan number profile reduces
for the values of γ . Figure 7E shows that the Bi displays a trend
of raising the Be. The demonstration of such an increasing trend
of the Bejan number explains how the entropy production near
the surface is large due to the liquid friction—at least relative
to that of the heat transfer irreversibility. The variation of the
Brinkmann number Br is sketched in Figure 7F. This figure
shows that the Bejan number is reduced, as we have to enhance
the Br. Figures 7G,H shows the influence of thermophoresis (Nt)
and Brownian motion (Nb) parameters on the Bejan number.
From these plots, we note that Ntand Nb have inverse effects on
the Bejan number profile.

Impact on Physical Entities
Figures 8–11 illustrate the effects of different physical parameters
on the local Nusselt number and local Sherwood number.
The influence of fw and γ on Nux is shown in Figure 8: heat
transfer decays for higher values of fw and γ . The same
phenomena can be observed for larger values Hg and γ on the
Nusselt number profile, as presented in Figure 9. The combined
effects of Nb and M as well as Nt and M are shown in
Figures 10, 11, respectively. From these figures, we conclude that
thermophoresis (Nt) and Brownianmotion (Nb) parameters have
produce the converse trend in the mass transfer rate.

FIGURE 8 | Effects of γ and fw on Nux .
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FIGURE 9 | Effects of Hg and γ on Nux .

FIGURE 10 | Effects of Nb and M on Shx .

NUMERICAL CODE VALIDATION

In this segment, we examine the code validation of early
published works of literature. Table 2 validates the results of

FIGURE 11 | Effects of Nt and M on Shx .

TABLE 2 | Validation of −f ′′ (0) and −θ ′(0) for the limiting case

M = 0, K = 0, Nb = 0, Nt = 0, Rd = 0, S = 0, and Bi → ∞.

Order −f
′′

(0) −θ ′(0)

Imtiaz et al. [37] Present Imtiaz et al. [37] Present

1 0.81450 0.8145 0.72778 0.727778

5 0.81211 0.812208 0.58070 0.580701

8 0.81235 0.812345 0.57779 0.577789

14 0.81235 0.812353 0.57871 0.578711

17 0.81235 0.812353 0.57878 0.578778

25 0.81235 0.812353 0.57878 0.57877

30 0.81235 0.812353 0.57878 0.57877

35 0.81235 0.812353 0.57878 0.57877

−f
′′
(0) and −θ ′(0) for the limiting case M = 0, K = 0, Nb =

0, Nt = 0, Rd = 0, S = 0, and Bi → ∞ with Imtiaz
et al. [37]. Moreover, the skin friction rate is also validated by
the same literature [37] when M = K = 0 (see Table 3).
Table 4 exhibits the matching results of reduced Nusselt number
with the references [20, 49–51]. From the above validation,
results show that the current simulation is considered an
efficient one.

KEY RESULTS

The present research work examines the entropy generation
influence on third-grade nanoliquid flow caused by a stretching
sheet in the appearance of Magnetic field, radiation, and
convective heating effects. Christov-Cattaneo heat flux replaces
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TABLE 3 | Comparison of Re0.5Cf for different values when M = K = 0.

α1 α2 β Re Imtiaz et al. [37] Present

0.0 0.1 0.1 0.1 0.04605 0.04605

0.1 1.06680 1.06680

0.2 1.17470 1.17470

0.1 0.0 0.1 0.1 1.12010 1.12010

0.1 1.06680 1.06680

0.2 1.01830 1.01830

0.1 0.0 1.06290 1.06290

0.1 0.1 1.06680 1.06680

0.2 1.07030 1.07030

0.1 0.0 1.06290 1.06290

0.1 1.06680 1.06680

0.2 1.07060 1.07060

TABLE 4 | Matching results of reduced Nusselt number with the restricting case

Rd = Ec = M = Nt = Nb = γ = S = K = Ŵ = fw = 0, and Bi → ∞.

Pr Wang

[49]

Gorla and

Sidawi [50]

Khan and

Pop [20]

Makinde

and Aziz [51]

Present

0.20 0.1691 0.1691 0.1691 0.1691 0.1691

0.70 0.4539 0.5349 0.4539 0.4539 0.4539

2.00 0.9114 0.9114 0.9113 0.9114 0.9114

7.00 1.8954 1.8905 1.8954 1.8954 1.8954

ordinary heat flux. HAM is employed to validate the non-
linear governing equations. Results of velocity, temperature,
nanoparticle volume concentration, the system of entropy, the
Bejan number, mass, and heat transfer rates are presented
graphically. We obtained the following main upshots:

1. A falling tendency of the velocity profile is detectable while we
keep increasing the values of the velocity slip and magnetic
field parameter.

2. An augmentation in the range of radiation parameter and Biot
number causes an increasing trend.

3. The concentration of the nanoparticle volume fraction is
found to be a diminishing function of the thermophoretic
parameter. On the other hand, a contrary impact is identified
for the Brownian motion parameter.

4. The irreversibility of the system rises as we keep enhancing the
values of the Biot number, thermal relaxation time, material
parameter, and the Brinkmann number, but an inverse
occurrence takes place as we increase the slip parameter and
suction/injection parameter.

5. The Bejan number increases with greater values of the slip
parameter, Biot number, thermophoresis parameter, magnetic
parameter, and radiation parameter, whereas it reduces for
larger values of the Brinkmann number and Brownian
motion parameter.
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a Stretching rate
(

s−1
)

Bi Biot number

Be Bejan number

Br Brinkman number

B0 Constant magnetic field
(

kgs=2 A−1
)

C Concentration
(

kgm−3
)

Cp Specific heat
(

J kg−1 K−1
)

C∞ Ambient concentration
(

kgm−3
)

Cw Fluid wall concentration
(

kgm−3
)

Cfx Skin friction coefficient

DB Brownian diffusion coefficient
(

m2 s−1
)

DT Thermophoretic diffusion coefficient
(

m2 s−1
)

EG Entropy generation parameter

f (η) Velocity similarity function

fw Suction/injection parameter

hf Convective heat transfer coefficient
(

W m−1K−1
)

α1, α2, β Fluid parameters

k Thermal conductivity
(

W m−1K−1
)

K Porous parameter

L Auxiliary linear operator

Le Lewis number

M Magnetic parameter

N Non-linear operator

Nb Brownian motion parameter

Nt Thermophoresis parameter

Nux Nusselt number

Pr Prandtl number

Q0 Dimensional heat generation/absorption coefficient

q Heat flux
(

W m−2
)

Rd Radiation parameter

Re Reynolds number

Shx Sherwood number

S Heat generation parameter

S
′′′
gen Local volumetric entropy generation rate

(

Wm−3K−1
)

S
′′′
0 Characteristic entropy generation rate

(

Wm−3K−1
)

T Temperature (K)

T∞ Ambient temperature (K)

Tf Convective surface temperature (K)

uw Velocity of the sheet
(

m s−1
)

u,v Velocity components in (x, y) directions
(

m s−1
)

vw > 0 Suction velocity

vw < 0 Injection velocity

x,y Cartesian coordinates (m)

GREEKS

χm Auxiliary parameter

φ ( η) Concentration similarity function

Ŵ Slip parameter

γ Dimensionless thermal relaxation time

η Similarity parameter

λT Thermal relaxation time

λ Dimensionless constant

(Continued)

ν Kinematic viscosity
(

m2 s−1
)

� Dimensionless temperature difference

θ ( η) Temperature similarity function

τ Ratio of the effective heat capacity

ρ Density
(

kgm−1
)

σ Electrical conductivity
(

S m
)

ψ Stream function
(

m s−1
)

ζ Dimensionless concentration difference

Frontiers in Physics | www.frontiersin.org 14 November 2020 | Volume 8 | Article 250

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Entropy Optimization of Third-Grade Nanofluid Slip Flow Embedded in a Porous Sheet With Zero Mass Flux and a Non-Fourier Heat Flux Model
	Introduction
	Problem Development
	Entropy Optimization
	Homotopy Solutions
	Convergence Analysis
	Computational Results and Discussion
	Impact on Velocity
	Impact on Temperature
	Impact on Nanoparticle Volume Concentration
	Impact on Entropy Generation
	Impact on the Bejan Number
	Impact on Physical Entities

	Numerical Code Validation
	Key Results
	Data Availability Statement
	Author Contributions
	Funding
	References
	LIST OF SYMBOLS


