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Surface plasmons are usually excited by diffraction-limited optical methods with the

use of bulky optical components, which greatly limits the miniaturization and chip-scale

high-density integration of plasmonic devices. By integrating a plasmonic nanostructure

with a tunnel junction, plasmonic modes in the nanostructure can be directly excited

by low-energy tunneling electrons with the advantages including an ultra-small footprint

and an ultra-fast speed. In this mini-review, recent progress in the electric excitation of

localized and propagating surface plasmons by inelastic electron tunneling is overviewed.
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INTRODUCTION

Surface plasmons are highly confined electromagnetic modes coherently coupled to collective
oscillations of free carriers at metallic (or doped semiconductor) interfaces. They exist in the
form of surface plasmon polaritons (SPPs) propagating at an interface between a conductor and a
dielectric or as localized surface plasmons (LSPs) supported by confined conductive nanostructures
[1, 2]. Their ability to localize electromagnetic fields at a subwavelength scale and produce greatly
enhanced local fields for strong light–matter interaction offers the opportunity to combine the
advantages of nanoelectronics (small size) and dielectric nanophotonics (high speed), opening
an avenue for merging electronics and photonics at the nanoscale [3]. In the past 20 years, a
great progress has been made in the area of plasmonics, which have stimulated a variety of
applications, such as nano waveguides [4–6], plasmonic lasers [7–9], ultrafast electro-optical [10–
12] and all-optical [13, 14] modulation, photodetection [15, 16], bio-chemical sensing [17, 18], and
enhancement of non linear optics [19, 20].

Usually, surface plasmons are excited by diffraction-limited optical methods with the use of
bulky optical components (e.g., prisms, grating, objectives, etc.) [1], which greatly limits the
miniaturization and chip-scale high-density integration of plasmonic devices. At the same time,
there are some alternatives. In his seminal work, Ritchie proposed that fast electrons can be
used for the excitation of surface plasmons in metal [21]. Later, both the excitation of SPPs
[22, 23] and LSPs [24] have been experimentally demonstrated with high-energy (∼30 keV)
electron beams with an advantage of highly precise and localized excitation (with a spatial
resolution down to several nanometers). However, the requirements of a high electric voltage
and a vacuum environment make it impossible for practical applications. Low-energy electrical
excitation of SPPs has been demonstrated, e.g., by coupling plasmonic waveguides with electrically
driven nano light sources [25, 26], but a highly compact and faster approach not related to
the carrier lifetime would be highly desirable. In this mini-review, we focus on the recent

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00251
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00251&domain=pdf&date_stamp=2020-08-06
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nanopan@zju.edu.cn
mailto:alexey.krasavin@kcl.ac.uk
https://doi.org/10.3389/fphy.2020.00251
https://www.frontiersin.org/articles/10.3389/fphy.2020.00251/full
http://loop.frontiersin.org/people/940269/overview
http://loop.frontiersin.org/people/967840/overview


Liu et al. Tunnel Junctions for Plasmonic Excitation

breakthroughs in the low-energy direct excitation of surface
plasmons based on an inelastic electron tunneling (IET) effect in
tunnel junctions.

ORIGIN AND INITIAL STUDIES OF
OPTICAL EMISSION BY IET

In 1976, Lambe and McCarthy [27] observed a broadband
light emission from macroscopic planar metal-insulator-metal
(MIM) tunnel junctions with an external quantum efficiency
(EQE, i.e., electron-to-photon conversion efficiency) around
10−5. This phenomenon can be explained in terms of IET-
based excitation of surface plasmon modes subsequently coupled
to photons on rough planar MIM tunnel junctions. When
an electric bias is applied across an MIM structure with a
nanometer-scale insulator thickness, electrons can quantum-
mechanically tunnel through the insulating barrier. During the
tunneling process (Figure 1A), most electrons tunnel elastically
without energy loss, appearing as high-energy (in respect to
the Fermi level) electrons on the other side of the junctions,
so called “hot electrons.” Some small fraction of electrons,
however, tunnel inelastically, giving part of their energy to
the excitation of plasmonic modes in the junction, which can
then couple to extended propagating SPP modes or to free-
space photons. The resulting emission spectral profile I (ω) ∝

Itc (V ,ω) ρLDOSηrad is defined by the electromagnetic intensity

spectrum of the tunneling current Itc (V ,ω) ∝

(

1− ℏω
eV

)

(which

can be found from the calculation of the quantum transition
matrix elements [30, 31] or from a Fourier transform of the
tunneling current shot noise [32]), local density of optical states
(LDOS) ρLDOS in the junction region and the radiative efficiency
of the tunneling system in terms of generation of output
photonic and/or plasmonic modes ηrad. In other words, the
intrinsic electromagnetic spectrum from the tunneling current,
Itc (V ,ω), is highly dependent on the applied bias V with a
high-frequency cutoff ωco (defined by the quantum relation for
the maximal energy conversion ℏωco = eV) and a monotonic
increase toward lower frequencies, and it is shaped into the
final emission spectrum by the optical (frequently resonant)
properties of the tunneling structure, defined by ρLDOS and ηrad.
Later in the 1980’s, IET-induced light emission was also reported
from plasmonic tunnel junctions formed between a scanning
tunnelingmicroscope (STM) tip and ametallic substrate [33–35].
By analyzing the leakage radiation of a tunnel junction formed
between an STM tip and a thin gold film in both image and
Fourier planes, Wang et al. found that up to 99.5% of the detected
photons come from leakage radiation of SPPs propagating on the
gold film with the remaining photon emission attributed to the
radiative decay of a localized plasmonic mode excited between
the STM tip and the gold film [36], explicitly demonstrating
the possibility of highly efficient coupling of inelastic tunneling
to propagating plasmonic modes. Furthermore, despite its low
EQE, this technique provides a high-spatial-resolution method
for the study of LSPRs in metallic nanostructures [37–39]. At
the same time, in combination with the atomic-scale spatial
resolution of an STM, this approach has been developed

into a useful optical spectroscopic method for single-molecule
characterizations [40].

IET-GENERATED LIGHT EMISSION FROM
OPTICAL ANTENNAS

Together with the success of IET-induced plasmon excitation and
light emission in the STM research community comes its main
challenge for the application in practical devices related to its low
efficiencies, including internal quantum efficiency (IQE, inelastic
tunneling efficiency, which is defined by the ratio of the generated
plasmonic quanta and the number of overall tunneling events)
and EQE (for photon-related applications). Overcoming this has
attracted continuous research interest in the past four decades
because of the ultra-small footprint of tunnel junctions, which
allows for high-density integration, and the ultra-fast speed of the
IET process (at a scale of few femtoseconds [41]), which offers
the potential for ultra-fast direct modulation of the excitation.
These efforts are further motivated by a theoretical prediction
that the IQE can be of the order of 10%, known from the
early days of the research [42]. From the theoretical point of
view, the IQE of a plasmonic tunnel junction is defined by the
electronic densities of states in both electrodes (as well as any
other electronic states inside the junction area) and the LDOS
in the tunnel junction, while the EQE is defined by a product
of the IQE and the radiation efficiency of the tunnel junction
[43–45]. By engineering the LDOS and radiation efficiency, a
significant increase in both IQE and EQE has been recently
demonstrated [28, 46–48]. For example, in 2015, Kern et al.
demonstrated the first electrically driven optical antenna by
integrating a tunnel junction into it [28]. In this experiment, the
tunnel junction was fabricated by placing a gold nanoparticle
into a gap formed between two arms of a linear dipole antenna
as shown in the left panel of Figure 1B. The emission spectrum
from the electrically driven optical antenna is then defined by the
applied bias and the nanoantenna plasmonic resonance, which
can be tuned by changing the geometry of the nanoantenna
(right panel of Figure 1B). Taking advantage of the high LDOS
and radiation efficiency of the resonant antenna design, the
EQE was increased to ∼10−4, which is about two orders of
magnitude higher than that for a non-resonant design. Later
in the same year, Parzefall et al. achieved resonantly enhanced
light emission by structuring an array of slot antennas on the
bottom electrode of a vertical MIM tunnel junction formed
by two gold electrodes and an insulating h-BN crystal [46].
Compared with an unstructured MIM tunnel junction, the EQE
of the nanostructured junctions is increased by two orders of
magnitude from ∼4 × 10−7 to ∼2.5 × 10−5 at a bias of 2.5 V
due to the enhanced radiation efficiency ∼4 × 10−3 provided
by the slot antennas. The authors further demonstrated direct
temporal modulation of light emission from the MIM tunnel
junctions at frequencies up to 1 GHz. In 2018, implementing a
tunnel junction produced by two chemically synthesized silver
nanocubes assembled into an edge-to-edge configuration with
the stabilizing polymer simultaneously working as the insulating
barrier, Qian et al. obtained a record-high EQE of up to 2% at
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near-infrared frequencies [47]. Such excellent efficiency values
are underlined by a very high LDOS in the tunneling junction
(a factor of 3.1 × 105 higher than in vacuum) provided by an
atomic-level quality of the gap between the silver single crystals
and prominent 24.6% radiative efficiency of the implemented
edge-to-edge nanoantenna design. In 2019, by cross-placing an
Ag nanowire and an Au nanostripe, He et al. demonstrated
the excitation of cavity plasmons with highly tuneable multiple
emission peaks and narrow (tens of nanometers) line widths
[49]. By using a dielectrophoresis trapping method, they
further demonstrated efficient fabrication of nanoparticle-based
electrically driven optical antennas with a measured EQE of
∼2.5 × 10−4 [50]. Looking into the tunneling system from
a conceptual point of view, Uskov et al. theoretically showed
that the close-to-unity IQE can be achieved by introducing a
quantum well structure in the tunneling gap with the energy
level in the well aligned in a way that the inelastic tunneling
happens in a resonant manner while the elastic counterpart does
not [44]. However, as the authors noticed, this is done on the

expense of the overall value of the tunneling probability, which
dramatically decreases.

Although the IQE and EQE in plasmonic tunnel junctions
have been significantly improved by engineering the LDOS
and radiation efficiency, the overall generated plasmonic or
photonic power is still quite low (pW level or smaller), which
causes a difficulty in the signal detection and greatly limits their
applications. This, however, is mainly due to the intrinsically
low tunneling current in single nanoscale tunnel junctions. A
promising way to solve this problem is increasing the number
and density of the optical antenna-coupled tunnel junctions.
For example, by constructing a macroscopic and high-density
plasmonic tunnel junction array at the top of a plasmonic
metamaterial produced by vertically oriented gold nanorods
(Figure 1C, nanorod areal density is around 1 × 1010 cm−2),
Wang et al. realized IET-driven light emission visible by the
naked eye (Figure 1D) [29, 51]. The spectrum of the emission
in this case is shaped by the metamaterial plasmonic modes,
which can be tuned throughout the visible and near-infrared

FIGURE 1 | (A) Schematic diagram of generation of surface plasmons and photons through IET. (B) Electroluminescence (data points) and scattering spectra (solid

lines) for antennas with various geometries and a micrometer-long non-resonant wire, together with the corresponding SEM images. (C) Atomic force microscopy

image of a gold nanorod array with the dips marking the positions of Au few nanometers below the surface of an Al2O3 matrix. (D) Photograph of an Au nanorod array

electrically driven at a bias of 2.5 V. (B) is reprinted with permission from Ref. [28]. Copyright © 2015, Springer Nature. (C,D) are reprinted with permission from Ref.

[29]. Copyright © 2018, Springer Nature.
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ranges by tuning the metamaterial modes via the nanostructure
geometric parameters [51]. The measured emission power was
around 100 nW, which makes the signal detection trivial for
applications such as optical sensing. Based on this, Wang
et al. further demonstrated an ultra-compact electrically driven
optical sensor by exploiting hot electrons generated via elastic
tunneling (usually ignored, as it decays by the generation
of heat) for the activation of chemical reactions in the
junctions and IET-generated photons for the monitoring of this
process [29].

IET-BASED EXCITATION OF WAVEGUIDED
MODES

Apart from coupling to free-space light emission and 2D
plasmonic modes, IET can also be coupled to waveguided
plasmonic or photonicmodes, which is highly desired for on-chip
applications, as they have a crucial advantage as information
carriers in comparison with traditional electronic signals in
terms of a higher bandwidth and lower loss. In 2011, Bharadwaj
et al. reported an electrical excitation of propagating SPPs in
a Au nanowire (Figure 2A) [52]. A plasmonic mode excited
with an STM tip at the left end of the nanowire by IET, was
subsequently coupled to SPPs propagating along the nanowire
and then converted to free-space photons at the right end.
However, the excitation of propagating SPPs with the use of STM
is difficult for practical applications where on-chip integration is
highly desired. In this respect, a promising design was realized
by integrating an electromigrated tunnel junction on the top
of a dielectric-loaded surface plasmon waveguide (DLSPPW)
(Figure 2B) [53] or by crossing a gold plasmonic waveguide
and an thin aluminum strip covered with a nanoscale oxide
layer [56, 57]. For the latter case, an SPP excitation efficiency
exceeding 1% was reported [56], which was further explained by
surface roughness–induced momentum matching between the

MIM modes in the junction and the output SPP modes present
in the system [57]. In 2019, Zhang et al. further demonstrated
enhanced excitation of SPPs along an aluminum–air interface
by fabricating an array of linear gold antennas on the top of an
oxidized aluminum surface [58]. The emitted SPP power was
increased to ∼10 pW, and the emission spectrum/polarization
was controlled by the design of the antenna arrays. According
to a recent calculation by Parzefall et al. [59], the IET-induced
excitation efficiency of SPPs in extended conventional plasmonic
waveguides is limited by a low coupling efficiency between
the extremely confined MIM modes excited in the tunnel
junction and the propagating waveguided SPPs due to the
dramatic mismatch between their propagation constants. An
additional problem might be caused by the low modal overlap.
This shows that more attention is required in the future to
improve the coupling efficiency, e.g., via structural design of the
coupling area.

It is worth mentioning that in addition to plasmon excitation
based on metallic tunnel junctions plasmon and light emission
can also be generated with metal-insulator-semiconductor (MIS)
tunnel junctions [60]. The advantage of the MIS tunnel junctions
is that they can be directly integrated into, e.g., a silicon photonic
waveguides for on-chip applications [61, 62]. Particularly, with
the coupling efficiency of the hybrid junction optical mode to
the silicon waveguide of ∼ 75%, Doderer et al. experimentally
generated a waveguided optical power of 6.8 pW [61].

DIRECTIVITY CONTROL OF THE
PLASMONIC EXCITATION AND LIGHT
EMISSION

The ability to control the flow of optical energy is of
great importance in nanophotonic applications. The directional
control of SPPs and light emission excited by IET has been
demonstrated in a variety of systems [54, 55, 63–65]. For

FIGURE 2 | (A) A map of optical emission intensity from an Au nanowire excited by an STM tip. (B) False color SEM image of a tunnel junction on the top of a

DLSPPW waveguide, together with an optical intensity map, showing generation of the propagating plasmonic mode at the junction region and its outcoupling to the

free-space radiation at the other end of the waveguide. (C) Tunneling-driven highly directional emission from a V-shaped nanoantenna. (D) The dependence of the

directivity of the SPP excitation on the structural characteristics of self-assembled S(CH2)nBPh polymer molecules filling the tunneling gap defined by the chain

parameter n. The inset shows an experimental measure defocused patterns corresponding to a tunnel junction with n = 2. (A) is reprinted with permission from Ref.

[52]. © 2011 American Physical Society. (B) is reprinted with permission from Ref. [53]. Copyright © 2016 Optical Society of America. (C) is reprinted with permission

from Ref. [54]. Copyright © 2017 American Chemical Society. (D) is reprinted with permission from Ref. [55]. Copyright © 2019 American Chemical Society.
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example, Dong et al. demonstrated a directional control of
SPP-assisted light emission from a gold stripe cavity with
a directivity of extinction ratio around 2.6 : 1, which was
realized by varying the distance between an STM probe and
the edge of the cavity to attain a constructive or destructive
interference with the generated and reflected SPP waves [63].
Taking advantage from an excellent directivity provided by
optical antennas, Gurunarayanan et al. achieved a directivity of
light emission of ∼ 5 dB by aligning two nanorod antennas
edge-to-edge at an angle of 90◦ (Figure 2C) [54]. Such a
strong directivity is provided by an interplay between the
dipolar radiation pattern of the tunnel junction emission and
the quadrupole-like resonance of the rod antennas. Recently,
Kullock et al. obtained a directivity of light emission as high
as 9.1 dB in an optical Yagi-Uda antenna with a tunneling feed
[64]. The directivity control can also be achieved by placing
molecules in the junction region, particularly utilizing their
chemical composition and/or orientation [55, 65]. For example,
implementing tunneling through a self-assembled monolayer of
polymer molecules (Figure 2D, inset), Du et al. experimentally
achieved directional launching of SPPs by adjusting the tilt
angle of a self-assembled monolayer of S(CH2)nBPh (BPh =

biphenyl) molecules in respect to the electrode surface, which
was realized by controlling the length of the alkyl chain n
[55]. The highest directivity (defined as IL−IR

IL+IR
, where IL and

IR are the maximum intensities of left and right lobes of the
emission pattern, respectively) of 0.4 was obtained for n = 2
(Figure 2D, main graph), corresponding to a left/right intensity
ratio of∼2.3.

CONCLUSION AND OUTLOOK

In this review, we have overviewed the recent developments
in the IET-assisted excitation of surface plasmons, including
both LSPRs and SPPs, which open an opportunity for the
miniaturization and chip-scale integration of plasmonic devices.
However, for practical applications, there are still many things
to be done and questions to be answered. For example, how to
improve the overall output power from single tunnel junctions?
How to optimize the coupling efficiency between an MIM mode
excited by IET and SPPs in an extended waveguide for on-
chip integration? How to achieve narrow-band excitation of
surface plasmons? Finally, the question of long-term stability of
tunnel junctions is a key concern for applications. Despite these
challenges, as an ultra-fast and compact approach that can bridge
electronics and plasmonics directly at the nanoscale, IET-based
plasmonic excitation will continue to attract research interest
and find applications in areas, such as optical interconnections
and sensing.
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