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The variable-coefficient Heisenberg ferromagnetic spin chain (vcHFSC) equation is
investigated using the Lie group method. The infinitesimal generators and Lie point
symmetries are reported. Four types of similarity reductions are acquired by virtue
of the optimal system of one-dimensional subalgebras. Several invariant solutions
are derived, including trigonometric and hyperbolic function solutions. Furthermore,
conservation laws for the veHFSC equation are obtained with the help of Lagrangian
and non-linear self-adjointness.
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INTRODUCTION

The investigation of physical phenomenon modeled by non-linear partial differential equations
(NLPDEs) and searching for their underlying dynamics remain the hot issue of research for applied
and theoretical sciences. A lot of attention has been concentrated on looking for the explicit
solutions of NLPDEs, for they can provide accurate information with which to understand some
interesting physical phenomena. A great many powerful methods have been proposed to construct
the explicit solutions of NLPDEs, such as the inverse scattering method [1], the Lie group method
[2-5], the Hirota bilinear method [6, 7], the extended tanh method [8-10], the homoclinc test
method [11-13], the F-expansion technique [14], and so on [15-18]. Among these methods, the
Lie group method is a powerful and prolific method for the study of NLPDEs. On the one hand,
based on the Lie group method, we can obtain new exact solutions directly or from the known
ones or via similarity reductions; on the other hand, the conservation laws can be constructed
via the corresponding Lie point symmetries. Recently, invariant solutions of a class of constant
and variable coefficient NLPDEs have been obtained by virtue of this method, such as Keller-Segel
models [19], generalized fifth-order non-linear integrable equation [20], KdV equation [21], and
Davey-Stewartson equation [22].

So far, many effective methods have been extended to construct exact solutions of different types
of differential equations. For example, the generalized Bernoulli sub-ODE and the generalized
tanh methods have been applied to establish optical soliton solutions of the Chen-Lee-Liu
equation [23]. The Lie group method has been used to find the exact solutions of the time
fractional Abrahams-Tsuneto reaction diffusion system [24] and the non-linear transmission line
equation [25].
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In this work, we will focus on the (2+1)-dimensional
variable-coefficient Heisenberg ferromagnetic spin chain
(vcHFSC) equation

iqr + 01(8)qxx + 82(6)qyy + 83(£)qxy + 54(t)|Q|2q =0, (D)

where 8;(¢), 82(t), 83(f), and 84(f) are arbitrary functions with
respect to f. The interaction properties and stability of the
bright and dark solitons are presented in [26]. Non-autonomous
complex wave and analytic solutions are obtained in [27]. When
8i(t) i = 1,---,4) are arbitrary constants, Equation (1)
can be reduced to the following (2+1)-dimensional Heisenberg
ferromagnetic spin chain (HFSC) equation:

ig; -+ 814xx + 82yy + 8305y + 84]q|’q = 0. )

Latha and Vasanthi [28] obtained multisoliton solutions by
employing Darboux transformation and analyzed the interaction
properties of Equation (2). Anitha et al. [29] derived the
dynamical equations of motion by employing long wavelength
approximation and discussed the complete non-linear excitation
with the aid of sine-cosine function method. Periodic solutions
were obtained by Triki and Wazwaz [30], and they also discussed
conditions for the existence and uniqueness of wave solutions.
Tang et al. [31] reported the explicit power series solutions and
bright and dark soliton solutions of Equation (2), and they also
obtained some other exact solutions via the sub-ODE method.

However, the Lie symmetries, invariant solutions, and
conservation laws of the (2+1)-dimensional vcHFSC equation
(1) have not been studied. In the current work, we study
the vcHFSC equation (1) via the Lie group method and
obtain new invariant solutions, including the trigonometric and
hyperbolic function solutions. Moreover, based on non-linear
self-adjointness, conservation laws for vcHFSC equation (1)
are constructed.

The main structure of this paper is as follows. In section
Lie Symmetry Analysis and Optimal System, based on the Lie
symmetry analysis, we construct the Lie point symmetries and the
optimal system of one-dimensional subalgebras for Equation (1).
In section Symmetry Reductions and Invariant Solutions, four
types of similarity reductions and some invariant solutions are
studied by virtue of the optimal system. In section Non-linear
Self-Adjointness and Conservation Laws, conservation laws for
Equation (1) are obtained with the help of Lagrangian and non-
linear self-adjointness. Section Results and Discussion provides
the results and discussion. Finally, the conclusion is given in
section Conclusion.

LIE SYMMETRY ANALYSIS AND OPTIMAL
SYSTEM

In this section, our aim is to obtain the Lie point symmetries and
the optimal system of the veHFSC equation (1) by employing the
Lie group method.

The vcHFSC equation (1) can be changed to the
following system

Fr =u + 8l(t)vxx + SZ(t)Vyy + 83(t)ny
+84()WPv +13) = 0,

3
Fy = —vi + 81 (O)unx + 52(t)uyy + 53(t)“xy 3)
+84()(W + w?) = 0,
by using the transformation
qx, . 1) = ulx, y, t) + iv(x, y, t), (4)

where u(x, y, t) and v(x, y, t) are real and smooth functions.
Suppose that the associated vector field of system (3) is
as follows:

d d d
V=¢£(xptu, Moo+ E2(x, pot, 14, V)ETy + &3y, tu, Vo
1 0 2 0
+n optu,v)— + 07y tLu,v)—, (5)
u v

where Sl(x,y, t,u, v), Sz(x,y, t,u, v), 53(x,y, tu,v), 0t (9, t,u,v)
and n2(x, ¥, t,u,v) are unknown functions that need to
be determined.

If vector field (5) generates a symmetry of system (3), then V
must satisfy symmetry condition

prPV(A) |a, =0,prPV(A) [a, =0, (6)
where

Ay =+ 81(DVsx + 82(Dvyy + 83(B)vsy + 84Dy + ),
Az = =V + 81 (Dt + 82()utyy + 83(ttny + 84()(1® + ).

The infinitesimals £, £2, £3, !, and n?must satisfy the following
invariant conditions

N+ &8 (O)vex + 81(n3, + £8) (Dvyy + 820,
+‘é§_353/(t)vxy
+83(0)m3, + £384/ (D(WPv + V) + 84(8) 2un'v
+utn? +3v3 %) =0,

=07 + E381 (Dxx + 81()0ky 4 £38) (Duyy
+52(t)nr§y + £383 (1) uyy
+83(0)ny, + €84/ (0w + w?) + 84() e’
+n'v? + 2uvm?) =0,

7)

where

ml =D,n' — &'y, — §2uy —&u) + Eluy + Szuyt

+&uy,
n)lcx = Dxx(nl - 'i:l”x - 52“)/ - $3ut) + gluxxx
+€2uxxy + “:'_SMxxt,

U;lcy = ny(r/l - Slux - Szuy - 5311;) + sluxxy
+52uxyy + Esuxyt’

77}1;}/ = Dyy(nl - slux - 52”)/ - 5314[) + gluxyy
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621y + E Uy,

’7? = Dt(nz - fle - 52")’ - ESVt) + “;:Ith
+E2vy + Evi,

N = Dax(n® — E've — E2vy — £30) + Ve
+‘§2Vxxy + Vs

Moy = Dyy(n® — &lvy — E2v, — &7v)
+E Wiy + Vg + Evigyts

= Dy(n* — &'vy — %0y

_531)1’) + Slvxyy + Szvyyy + 53Vyyt.

Solving Equation (7), one can obtain

2¢c1 [ 81(t)dt
Sl = c1x+cz,$2 = c1y+63,$3 = 71f 10
81(1)
C4 1 2
—_—, = 5 = s 8
+81(t) n=aun =cqv (8)

where ¢}, ¢3, ¢3, and ¢4 are arbitrary constants, and the coefficient
functions 8;(t), 82(t), 83(t), and 84(t) are determined by

E385 + 78, — 28501 = 0,
E383 +£)83 — 28501 = 0,
5384t + 3;}354 + 2¢184 = 0. 9)

The Lie algebra of infinitesimal symmetries of system (3) is
generated by the four vector fields:

d 9 2[8(t)dt o d 9
R P P N P PR
S N TP ) 10
J2 = 8x"j3 = ay,d4— 5100 TS

The one-parameter groups g; generated by the J; are given
as follows:

2 [ §1(t)dt
fl(),uea,ves>,

(9.t u, S yel t
g1 :(xy uv)—)(xe ye',t+¢ 510)

oyt u,v) — (x+8,y, t, u,v),
ooy tu,v) = (x,y—i—a,t, u,v),

£
(st u, S+ ——,u, . 11
ga:(xy uv)—><xy +81(t)uv> (11)

If {u =Ux,p1),v=V(xy, t)} is a solution of system (3), by
employing symmetry groups g; (i = 1,2, 3,4), we can obtain the
following new solutions

(u(l), v(l)) — (eEU (xe_a,ye_s, t—e¢

2f81(t)dt)
E——— >
81(t)

@@,y - (U (x — & t) ,V (x — &), t)) ,

2f51(t)dt>

81(t)

% (xe_g,ye_s, t—

TABLE 1 | Commutator table of the vector fields of system (3).

[3i, 351 J1 J2 Js3 Ja
J1 0 —J2 —J3 —234
J2 J2 0 0 0
J3 Js3 0 0 0
Ja 234 0 0 0

TABLE 2 | Adjoint table of the vector fields of system (3).

Ad J1 J2 J3 Ja
J1 Ji J26° Jse° Jse?
J2 J1—ed2 J2 Js Ja
Js J1—¢eJs J2 Js J4
Ja J1— 2834 J2 Js Ja

U, 9D) > (U (xy— 6,8),V (x,y — &, 1)),

) @) _ & _ &
oy H(U(x’y’t «mr))’V(”’t am))'(m

In order to construct the optimal system for system (3), we apply
the formula

2
Ad(exp(e3)Jj = Jj — & [JiJj] + % [36[363i]] = -+ (13)
where [3,-,3]-] = JiJj — JjJi and ¢ is a parameter. The

commutator table and the adjoint table of system (3) have been
constructed and are presented in Tables 1, 2, respectively.

Based on Tables 1, 2, system (3) has the following optimal
system [3, 32]

() J1; (i) J2 + aJs + BIa4; (iii) I3 + xJa; (iv) Ja  (14)
where «, B, and x are arbitrary constants.

SYMMETRY REDUCTIONS AND
INVARIANT SOLUTIONS

Based on the optimal system (14), our major goal is to deal with
the similarity reductions and invariant solutions for system (3).

Subalgebra J4

The characteristic equations of subalgebra JJ; can be written as

dx d dt du dv
X ¥ 50 [yt u 4

Solving these equations yields the four similarity variables

r= x(/ 81(t)dt>_§,s =y(/ 81(t)dt)_§,
u=F(r,s) - (/ 81(t)dt)§,v = H(r,s) - </ 81(t)dt>§, (16)
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and solving the constrained conditions (9), we get
82(8) = k161(2), 83(8) = k261(),

)
5a(t) = k361<r>< / slmdt) , (17)

where ki, ky, and kj are arbitrary constants. These variables
reduce system (3) to the following (1+4-1)-dimensional PDEs

F — tF, — sFs + 2H,, + 2k Hys + 2k, Hys
+2k3(F?H + H?) = 0,

—H + rH, + sH, + 2F,, + 2k Fy + 2k Fys + 2k3(F3
+FH?) = 0.

(18)

Subalgebra JJ; does not give any group-invariant solutions.
Subalgebra Jjs + aJ3 + BJs
The similarity variables of this generator are
r=ax—ys=px— / 81(t)dt,
u = F(r,s),v = H(r,s), (19)
and solving the constrained conditions (9), we get
82(t) = k181(2), 63(8) = k281(), 84(8) = k361 (1), (20)

where k; (i = 1,2,3,4) are arbitrary constants. Substituting
Equations (19) and (20) into (3), we have

Fs — (aZ + ki —aky))Hy — lsszs — QoB — Bka)Hs
—k3(FPH+ H?) =0,

H; + (az + ki — aky)Fr + ﬂsts + 2 — Bka)Fys
+k3(F* + FH?) = 0.

(21)

For solving Equation (21), we use the transformation ¢ = r — ks,
F = f(¢), H = h(¢), where « is an arbitrary constant, and then
(21) can be reduced to the following ODEs

—kf' + Qapi — Bkak — B2 — a? — ki + aky)h’
—ks(fPh+ ) =0,

—kch — Qapr — Bkak — B*A? — a? — ki + aky)f”
+k3(f* + fh*) = 0.

(22)

Solving Equation (22) yields

f=-B
2
+A tan (7 — 4“’3_2’3}‘2“_«/4522;22—%1)+4ﬁ(2a—kz)+1S))
h=A (23)
2
+B; tan (r . 4aﬂ72/3k2+17\/4ﬂ2i1;2274k1)+4/3(2a7k2)+1S) )
and
f=-B
_ _ 7 —
+A; cot (r— daf—2pky+1 ~/4ﬁzi/l;22 k1) +4p 2 kz)-HS)’
h= A, (24)
2
+Bj cot (r - 40"372’3k2+1*\/4/52i1;22*4k1)+4/3(2a7kz)+1S) ’

4aB—2Bky+1—/4B (3 —4k1)+4B(2a k) +1

4;32(A%+B%) and Al, Bl

where k3 =

are free parameters.
Based on Equations (19), (23), and (24), we obtain the
following trigonometric function solutions for system (3)

u= —Bl
_ _ 2(12 _
A tan (ax - 4af—2Bk+1—+/48 i];;zZ 4k1)+4BQ2a—ky)+1
(Bx — [ 81(t)dt) )
v = A, (25)
_ _ Jagre— —
+B, tan (le —y— 4af—2Bkr+1—+/4p 45222 4k1)+4p2a—kz)+1
(Bx — [ 81(t)dt) )
and
u= —Bl
_ _ Jiie= Z
+A; cot (ozx - 4af—2Bk +1—+/4p :;22 4k))+4BQ2a—ky)+1
(Bx — fSl(t)dt)>,
v= A (26)

_ _ 2(12 _ _
4B, cot (ozx—y— dap—2Bky+1—+/4B i};fz 4k1)+4BQ2a—ky)+1

(Bx — [ 81(0)dt) )

 4aB—2Bky+1—/4B* (3 —4k1)+4B(2a k) +1

where k3 = A TED and Aj, B;
are free parameters.
Subalgebra Jj3 + xJa
The similarity variables of this generator are
r=xs=xy— / 81(t)dt,
u = F(r,s),v=H(r,s), (27)

and solving the constrained conditions (9), we get
82(t) = k181(2), 83() = k281 (1), 84(8) = k361(1), (28)

where k; (i = 1,2,3,4) are arbitrary constants. System (3) can
then be transformed to

{ Fs — Hy — szles — xkoHys — kS(FZH + Hs) =0, (29)

Hs+Frr+X2less+Xk2Frs+k3(F3+FH2) =0.

For solving Equation (29), we use the transformation { = r — ks,
F = f(¢), H = h(¢), where « is an arbitrary constant; Equation
(29) can then be written as

{ —icf + (xkake = X2k = D' — ks(f2h + h*) = 0

e — (ko — xcky — f + k(1) = 0. 00
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To obtain the solutions of Equation (30), we shall apply the (%)

method, as described in [33].
Let us consider the solutions of (30), as

n i m

f= ;Ai<i)l’h = ;B,(CG;/)i.

By balancing the highest order derivative term and non-linear
term in (30), we obtain m = n = 1, and G = G(¢) satisfies
second-order ODE

(31)

G" 4+ LG +uG=0.
Solving Equation (30), we obtain

_ 2*(AT + BY) + 4Bo(Bo — ABn

442
s MA? 4+ B?) — 2BoB, k3(A? + B3)(2B, — ABl)
= K =
0 2A1 2A1

72A1((A% + B%)()»XBlkzkg - ZXAlBok2k3 + 2A1k3) + 2A1)
X2K2(LA2B, + 1B} — 242B) — 2B B?)

k= . (32)

where A, x, di, By, B, k2, and k3 are arbitrary constants.
Substituting (32) into (30), we obtain two types of solutions of
(30), as follows:
When A2 — 4 > 0,

__ AB1—2By
f="5"x

C cosh(%ﬂ;)«k@ sinh %«/ /4;
C sinh(%ﬂt)Jsz cosh %»,/ 4#5

_ AMABI—2By) _ ABy—2uBi

2i/Nr—ap i/ 22—an’ (33)
he B, m o Cy cosh(%./ 4#C)+Cz smh(%./ {)
Cy sinh(%«/ C)+C2 cosh(%«/ ()
—2B1 4 B,
where
2k3(ABoBy — uB? — B%) + A% — 4 + 2ixkaks(ABoBy
L —uB} — B3)y/A% — 4p
1= 2 >
4x2k%(ABoBy — uB} — B})
2k3(AByB; — uB? — B?)
é‘: - 1 0 Sa)‘-’ﬂ’X)BO:BI’

iVA2 —4u

Cy, Cy, ky,and k3 are arbitrary constants.

When A2 — 4 < 0,

f ABy—2Bo Cy cosh(§«/4u A2 ) Cy smh(% ;/.7)\2()
= X

2 Cy sin (%«/4;}. A2 )+C2cosh(%«/4uf)\2[)
_ A(B1—2By) _ ABo—2pB,

23/4p—22 A=z’ (34)
he %m » Cy cosh(%«/ [) C smh(%«/‘lu—kzg‘)
Clslnh(la/ §)+C2cosh<% 4;17%2{)

—% + Bo,

where
2k3(ABoBy — B} — BY) 4+ A% — 4ju + 2 kaks(3.BoB,
. —uB} — B3)y/4u — A2
1= 3 >
4x2k3(ABoBy — uB} — BY)
2k3(uB? + B2 — AByB
{ =r— 3(M ! 0 0 I)S)A)M:X>BO>BI)CI)C2>k2’

VAL —4du

and k3 are arbitrary constants.

Taking into account Equations (27), (33), and (34), we obtain the
hyperbolic function solutions for system (3):

AB1—2By G COSh(%mC)JrCz Siﬂh(%\/m:)
2i C sinh( m;)+cz cosh(%\/i{)

_ AMABI—2By) _ ABo—2uBi

u =

2i/32—ap i/W—ap’ (35)
W e a cosh(%«/k2—4/4{)+C2 sinh(%«/k2—4u{)
Y= X\ G sinh(§ /32=4y1¢ ) +C; cosh( 1 /37— 4u¢ )
—% + Bo,
where 12 — 4 > 0,
k3(ABoB; — uB? — B2) + A% —
2k3(ABoB1 — uBy — By) + 4
' +2ixkoks(ABoBy — uB} — B)y/A2 — 4p
1= ,
4x2k3(\BoB, — uB? — B2)
2k3 (BoBy — 1B} — BY) ( /
t=—x— w— | sudt),
iv/AZ —4p 4
As 15 X> Bo, B1, C1, Ca, ko,
and ksare arbitrary constants.
2By —2B, Ci cos(%«/4u7k2§)—cz sin(%«/zlu—)hzc)
U=
2 C sin(%«/4u—)~2{)+cz cos(%«/4u—)»2{)
_ A(Bi—2By) _ ABo—2uBi
2\/4;4—)\2 \/4/4,—12 ? (36)
B ﬂ " C; COS(%«/4/;L*)»2{)7C2 sin(%«/ély.f)\zg)
y==2L -
2 " C sin(%«/4;t—)~2§)+cz cos(%«/élu.—)»z;‘)
—% + By,
where A2 —4u < 0,
2k3(ABoBy — uB} — B3) + A% — 41 + 2xkok3(ABo By
L —uB? — BY)y/Apn — A2
1 = bl
4x2k3(ABoB, — uB? — B2)

2k3(uB} + B3 — AByBy) ( / )
{=x— xy— [ &1()dt ),
VA2 —4p 4 '

As 1, X5 Bo, B, C1, Ca, ka, and k3 are arbitrary constants.

Subalgebra J; = ﬁ%

The similarity variables of this generator are

r=Xxs=1%,

u = F(r,s),v = H(r,s), (37)
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and solving the constrained conditions (9), we get
82(t) = k181(2), 63(1) = k281(1), 84(8) = k361 (1), (38)

where k; (i = 1,2, 3) are arbitrary constants. Thus, system (3) can
be transformed to
Hrr + less + kZHrs + k3(F2H + H3) =0, (39)
F,r + kyFs + kyFrs + k3(F? 4+ FH?) = 0.

For solving Equation (39), we use the transformation { = r — ks,
F = f(¢), H = h(¢), where A is an arbitrary constant, and then
(39) can be reduced to the following ODEs

(1 + k2ky — kk)l + ks(f2h + h®) = 0,
{ (1 + k%ky — kko)f” + ks (F> + fh?) = 0. (40)
Solving Equation (40) yields
f = Cysin (r _ ket 4k1k3(gij-cﬁ)+k§—4kls
Gy cos (r kot 4k1k3(§%kl+C§)+k§74k1$
h = Cysin <r _ ket 4k1k3((2?fk;i-C§)+k§—4k1 s (41)
+Cj cos (r _ kot 4k1k3(2fkl+C§)+k§—4kl s) ’

where Cy, Cy, k1, ka, and k3 are arbitrary constants.
On combining Equations (37) and (41), we obtain the periodic
function solutions for system (3):

o . ko+ 4k1k3(C%+C§)+k§—4k1
u = Cj sin (x — 2 y
Kot/ 4k1k3(C3+CH)+3—4ky
—C, cos <x - 2% y ,
4
—Cosi _ kata/4kiks (CE4C3) K5 —dki “2)
y=Cysin | x 2 y
ka+n/4k1k3(C34C3)+k3— 4k,
+Cj cos (x — 2k v,

where Cy, Cy, k1, kz, and k3 are arbitrary constants.

NON-LINEAR SELF-ADJOINTNESS AND
CONSERVATION LAWS

Conservation laws have been extensively researched due to their
important physical significance. Many effective approaches have
been proposed to construct conservation laws for NPDEs, such
as Noether’s theorem [34], the multiplier approach [35], and so
on [36, 37]. Ibragimov [38, 39] proposed a new conservation
theorem that does not require the existence of a Lagrangian and
is based on the concept of an adjoint equation for NLPDEs. In
this section, we will construct non-linear self-adjointness and
conservation laws for v¢HFSC equation (1).

Non-linear Self-Adjointness
Based on the method of constructing Lagrangians [38], we have
the following formal Lagrangian £ in the symmetric form

L=1u [ut +01(E)vax + 5Z(t)Vyy + %SS(t)ny
+183(Ovyx + 84Dy + )]

_ 43
+v [_Vt + 81(t)thxx + 82(t)uyy + %SS(t)uxy (43)
+183(Duye + 84() (W + w?)],
where u and v are two new dependent variables.
The adjoint system of system (3) is
Ff =% =y,
173 (44)
: B=%=0
where
BE_OE O | b 25 4 pup, 5 4 D, 2 (45)
Su_ du taut * xauxx * yauxy Y yauyy’
BE_OE b\ b E 4 b, 5 b, P ae)
sv_ ov tth x XBVXX x vaxy Y vay),’

with Dy, D), and D the total differentiations with respect to x, y,
and t.
For illustration, D, can be expressed as

. a9 n ad N ad N 9 n 0 n ad
= — Fur— +V— FUex— F+ Vex— + Uy —
T ox *u v "xaux ""avx Xtaut
0
+th87vt+

Substituting (43), (45), and (46) into (44), the adjoint system for
system (3) is

Fik = —i + 61 (D)Vxx + 82(t)1_’yy + 53(t)vxy
+284()uuy + 84(t)v(3u® + ),

F; =Vt + 81(Dhyx + az(t)ﬁyy + 83(t)ﬂxy
+284(t)vuv + 84()i(u? + 3v7).

(47)

The system (3) is non-linear self-adjoint when adjoint system (47)
satisfy the following conditions

{ Ff o= Loy bu)d = Yloptuy) = AF1 4+ A2F, (48)
F;( |i4 = pxyt,u), vy = Yxytuy) = A1Fy + Ak,

where ¢(x, y, t,u,v) # 0 or Y (x,y,t,u,v) # 0, and A;; (i,j = 1,2)
are undetermined coeflicients.
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Substituting the expressions of F; (i=1,2) and F} (i=1,2) into
(48), we obtain the following equations

(A2 = ) (1 (D) thax — 52(t)uyy - 83(t)uxy)
=1 = )1 (O)vax + 82(t)vyy + 83(1’)ny)

—(A11 + du)ur + (M2 — ) ve + Vi (281 () ux vy
+282()uyvy + 83()uxvy + 83(H)uyvy)

+¢uu(81(t)u;25 + 52(1')”5 + 83(t)uxuy) + 1//1/1/(51(1')1’;2(
+52(t)1/§ + 53(t)VxVy)

+(281 () Yrxu + 63(t)¢yu)ux + (282(t)¢yu + 53(t)l”xu)uy
+281 (O Yy + 83(t)1/fyv)"x

+(262(t)1/fyv + 83(t)wxv)vy + 51(1‘)%9: + 82(1’)1//)/}/
+83() Py — A1184(B) (v + V)

—21284()(uv? + 1) + 284(t)puv 4 384(t) Y u?
+84()Yv? — ¢y =0,

—(A22 — @u) (81 () usx + 52(t)uyy + 83(t)uxy)
=21 — P (B1(H)vax + 82(t)vyy + 53(t)vxy)

=21 — Yr)ur + Aoz + V) ve + (281 (D)t vx
+282(H)uyvy + 83(Huxvy + 83(H)uyvy)

+uu(81(Duz + 82(Duy + 83(Duxtty) + Pu(81 (v
+82(8)v] + 83()vavy)

+(281(t)¢xu + 53(t)¢yu)ux
+(232(t)¢yu + 53(t)¢xu)uy + (281 () v + 83(t)¢yv)vx

+(282(t)¢yv + 53(t)¢xv)vy + 31(O)xx + 52(t)¢y)/
+383(D)pxy — A1 84(H) (v +v7)

—A2284()(uv? + ) + 284()Yruv + 384(t)pv?
+84(t)pu? + Y = 0.

(49)

(50)

Solving the above systems, we have

¢ = —Cu,l)[f = CV,)\U = )\21 = 0,)\.11 = C,)\zz =—C. (51)
Theorem 4.1. System (3) is non-linearly self-adjoint.
The formal Lagrangian corresponding to (43) reads as,
L = —Culu; + 81(H)vax + 52(t)Vyy + %83(1‘)1/,‘),
+383(B)vyx + 84(D Py + %)) (52)

+Cv[—v; + 81()thex + 82(t)uyy + %53(t)uxy
+383(Ouyx + 84(D)(W° + w?)].

Conservation Laws
In this section, we will construct the conservation laws for
system (3) by Ibragimov’s theorem. Next, we briefly review the

notations used in the following sections. Let x = (x!,x%,...,x")
be n independent variables, u = (ul,u?,...,u") be m
dependent variables,
X = & ) 6
=&l uuy, .. )— X U ULy - - )
i (1) O Ns (68} 34
be a symmetry of m equations
Fs(e, u,uqy, ..., upny) =0,s =1,2,...,m (54)
and the corresponding adjoint equation
F;“(x, u,v, u(l),v(l),.. M(N N))
S(V'F;
_OVE) 1o om (55)
Su®

Theorem 4.2. Any Lie point, Lie-Bicklund and non-local
symmetry X,as given in (53), of Equation (54) provides a
conservation law for the system (54) and its adjoint system (55).
The conserved vector is defined by

Dx’( )+DXJka <38u£>

(i) i) o
ljk x]kr
() e ]

— &uj is the Lie characteristic function and

EZE+WS[

+D; (W) [ g§

+D,j xk(Ws) |:

where W*° =

1 .
L = Y v'F; is the formal Lagrangian.

i=1

Based on the formula in Theorem 4.2, we next construct

conserved vectors for system (3) by employing the formal
Lagrangian (43) and the symmetry operator (10). For system (3),
Equation (56) becomes the following form

= 62w [D(35) + 0, (35

+D(W) (HE ) + Dy(W) (auw

R Dx< )+D( )]+Dx(W2)< )

+Dy(W?) aavf

= 5L~ WIC( (D + 183(t)vy)

+D (W) (C81(H)v) + Dy(W?) (3C83(t)v)
+W2C(S1(Dux + 383(H)uy) — De(W?) (C81(t)u)

—D,(W?) (5C83(t)u) ,

_ 1 9L AL
' =ne—w! D (55) + 0y ()]
1 0L 1
+DUW) (A ) + Dy (W) (£

2 oL oL
=2 (D (35) +0y (5]

+D(W2) (4£ ) + Dy(W?) (£
=nL — WIC[383(t)vx + 82(t)vy] + De(W) ($C83(t)v)
+D, (W) (C82(1)v)

+FW2C[383(ux + 82(t)uy ]
—Dy(W?) (Cé2(H)u) »

T' =1L+ W! 0L + w? % =71
8ut th

£ — W' (Cu) — W? (Cv),(59)

(57)

=

[}
—

(58)

— Dy(W?) (3C83()u)

with

w! = © — Euy — nuy — Ty,

=Q—8vy—nvy — TV

~ g ‘ 2(6 tdt[
Caseldlzxa—ic—i—y;—y—i— fsll(i) 0 +”au+"av

The Lie characteristic functions for this operator are

2 [ 81(t)dt

Wb = u — xu, — yuy — %ut, (60)
2 [ 81(t)dt

W2 =v— xv, —yvy — f(sl%vt. (61)
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FIGURE 1 | Plot of invariant solution (25) with 81 (t) = sint, Ay =1,B1 = 4,a = B =k = 1, ko = 3 att = 0. (A) Perspective view of the solution u. (B) Perspective
view of the solution v.

FIGURE 2 | Plot of invariant solution (36) with 8¢ (t) = 1, Cy
Perspective view of the solution v.

FIGURE 3 | Plot of invariant solution (42) with C1 = 1, Co = 2, k1 = ko = ks = 1 att = 0. (A) Perspective view of the solution u. (B) Perspective view of the solution v.

The corresponding conservation laws are = %C [2k151(t)(u1’xy + UVy — UyVy — Uy V) + k281 (2)
(UVix — Ugev) ]| x
+%C [Zal(t)(uxxv — UVyy) + k281 ()

T — —%C [2k181(t)(uvyy _ uyyv) + kr81(8) (u)’vx ‘li UxyV — UVyxy — uXV}’) — 2(uuy + VV[)])’ (63)
(Uvyy — txVy + UV — tgyV) + 2(uny + vvp) | x +3C [ S1(0)dt [ 2k (v — ey + vy — )
v )X 4 +4k1(uvy — upv + ugvy — uyvt)]
—5C [kzé‘l(t)(uyyv — uvyy) + 281(8) 1
(s — sy — vy 1ty y 62) +3C k281 (1) (uxv — uvy) + 2k181 () (uyv — uwy) ],
—1C [ 81(0dt [2ka(uryv — uvy — ugvy + uyvy) T' = C[(uux + vv)x + (uuy + viy)y — (% + )]
F4(UpV — UVie — UV + uxvt)] —C [ 81(t)dt [2ky (uvyy — uyyv) (64)
—%C [kzél(t)(uvy — uyv) + 28, () (uvy — uxv)] , +2k2(”vxy - uxyV) + 2(uveye — uxxV)] .
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Case2 J, = %

The Lie characteristic functions for this operator are
W' = —u, W2 = —v,. (65)

The corresponding conservation laws are

1
T = _EC [252(t)(141/yy - uny) + 83(t)
(UVxy — UnyV — Uyvy + tyvi) + 2(uug + 1), (66)
1
= iC [282(6)(uvsy — xyv + txvy — uyvy) + 83(t)
(qux - uxxv)] > (67)

T = Cluuy + vvy).  (68)

Ny = D
Case3 J3 = 3
The Lie characteristic functions for this operator are

W= —u), W? = -, (69)

The corresponding conservation laws are

1
T = EC [281(5) (uvyy — txyv — wxvy + uyvy) + 83(1)
(uvyy — uyyv)] ,  (70)
1
= EC [261(t)(uxxv — UVyy) — 83(2)
(Uvxy — UxyV + tVy — tyVy) — 2(uny + vvt)] , (71
T = Cluuy +vvy). (72)
~ 19
Case 4 J4 = 5.(0) at
The Lie characteristic functions for this operator are

1 1
= - W2 = — : 73
RO RO 73)

The corresponding conservation laws are,

1
T = EC [kz(uvt), — UV + Upvy — tyvy)
F2(uvix — UV + v — eve) | (74)

1
T = EC [k2(uvex — ey + upvy — uxvy)

+2k1 (uvy — ugyv + upvy — uyvt)] s (75)
T"=C [kl(uyyv — uvyy)
k(v — uvy) + Uy — uvy)| - (76)

RESULTS AND DISCUSSION

The Lie group method has been successfully used to establish
the invariant solutions for the vcHFSC equation. Some results
for the vcHFSC equation have been published in the literature.

Huang et al. [26] used the Hirota bilinear method and found the
bright and dark solitons to Equation (1). Peng [27] reported some
new non-autonomous complex wave and analytic solutions to
Equation (1) with the aid of the (G’ /G )method. In this article, we
constructed the trigonometric and hyperbolic function solutions
to the studied equation. Compared with the solutions obtained
in references [26, 27], our results are new. To better understand
the characteristics of the obtained solutions, the 3D graphical
illustrations are plotted in Figures 1-3.

With the Lagrangian, we find that the v¢cHFSC equation
is non-linearly self-adjoint. Furthermore, a new conservation
theorem has been used to construct conservation laws for the
vcHFSC equation. Based on the four infinitesimal generators,
we obtained four conserved vectors. It worth noting that the
conservation laws obtained in this article have been verified by
Maple software.

CONCLUSION

In this research, the infinitesimal generators and Lie point
symmetries of the v¢HFSC equation have been investigated
using the Lie group method. Based on the optimal system of
one-dimensional subalgebras, four types of similarity reductions
are presented. Taking similarity reductions into account, the
invariant solutions are provided, including trigonometric and
hyperbolic function solutions. Furthermore, conservation laws
for the vcHFSC equation are derived by non-linear self-
adjointness and a new conservation theorem.
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