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In this paper, the periodic solutions of a certain one-dimensional differential equation

are investigated for the first order cubic non-autonomous equation. The method used

here is the bifurcation of periodic solutions from a fine focus z = 0. We aimed to find

the maximum number of periodic solutions into which a given solution can bifurcate

under perturbation of the coefficients. For classes C3, 8,C4, 3,C7, 5,C7, 6, eight periodic

multiplicities have been found. To investigate the multiplicity >9, the formula for the

focal value was not available in the literature. We also succeeded in constructing the

formula for η10. By implementing our newly developed formula, we are able to get

multiplicity ten for classes C7, 3,C9, 1, which is the highest known to date. A perturbation

method has been properly established for making the maximal number of limit cycles

for each class. Some examples are also presented to show the implementation of the

newly developed method. By considering all of these facts, it can be concluded that the

presented methods are new, authentic, and novel.

Keywords: multiplicity, periodic solution, non-autonomous equation, bifurcation method, trigonometric

coefficients

1. INTRODUCTION

On August 8, 1900, David Hilbert presented a set of mathematical problems [1] to the Second
International Congress of Mathematicians in Paris. The sixteenth problem he posed was titled the
Problem of the Topology of Algebraic Curves and Surfaces. It is stated in two parts. In the first
part, Hilbert suggested a thorough investigation of the relative positions of the separate branches
of algebraic curves in nth-order vector fields, which is in the area of real algebraic geometry. In
the second part, Hilbert asked for a search for the upper bound of the number of limit cycles and
their relative locations in polynomial vector fields of order n. This part of the problem is related to
ordinary differential equations and dynamical systems. Generally, this part of the problem is what
is usually meant when talking about Hilbert’s 16th problem.

Limit cycle theory takes a central role in Hilbert’s 16th problem. Studying the number of limit
cycles for differential equations is the most difficult part of the problem. The phenomenon of the
limit cycle was first discovered and introduced by Poincaré in his four-part article, Integral curves
defined by differential equations [2–5] published between 1881 and 1886.

At that time, Poincaré also noticed the close relationship between the study of limit cycles and
the solutions of the global structural problems of a family of integral curves of differential equations.
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His work was later extended by Bendixson to the well-known
Poincaré-Bendixson theorem [6] on the limit set of trajectories
of dynamical systems in a bounded region. The driving force
behind the study of limit cycle theory was the invention of
the triode vacuum tube, which was able to produce stable self-
excited oscillations of constant amplitude. It was noted that this
kind of oscillation phenomenon could not be described by linear
differential equations. At the end of the 1920’s Van der Pol
[7] developed a differential equation to describe the oscillations
of constant amplitude in a triode vacuum tube. Limit cycles
are common solutions for all types of dynamical systems. They
model systems that exhibit self-sustained oscillations. In other
words, these systems oscillate even in the absence of external
periodic forcing. For a practical example, consider a specific
Holling-Tanner predator-prey model [8]. This model appears
to match very well with what happens for many predator-prey
species in the natural world, for example, house sparrows and
sparrow hawks in Europe, muskrat and mink in Central North
America, and white-tailed deer and wolf in Ontario, Canada.

Other examples of self-excited oscillation are the beating
of a heart, rhythms in body temperature, hormone secretion,
chemical reactions that oscillate spontaneously, and vibrations in
bridges and airplane wings. Due to the wide occurrence of limit
cycles in science and technology, limit cycle theory has also been
extensively studied by physicists, and more recently by chemists,
biologists, and economists [9–16].

We consider the differential equation of the form

·
z = γ (t)z3 + δ(t)z2 + υ(t)z (1)

where independent variable t and coefficients γ , δ, υ are real-
valued functions but z ∈ C. To find the maximum count of
periodic solutions we use the complexified form of the equation

(1) ; for more details, see [17–20]. Also consider that ∃ β ∈ R

such that:

z (β) = z (0) .

These solutions are periodic, even if γ , δ, and υ are not
themselves periodic. Our fundamental focus is to get the
maximum number of periodic solutions of any class of the
form (1) in which a solution may bifurcate by perturbing the
coefficients. Neto [21] states that for Equation (1) , until some
coefficients are restricted, we are unable to have an upper bound
for the number of focal values. The number of periodic solutions
depends upon the multiplicity of the solutions z = 0. The
multiplicity of z = 0, as solution of (1) is also multiplicity of
z = 0; as a zero of the following displacement function

p : r −→ z (β , 0, r)− r (2)

described in complex function theory. For z = 0, the means
of computing multiplicity (µ) is explained in Alwash and Llyod
[22], but for the sake of ease, we explained it briefly here. We
write z (t, 0, r) =

∑∞
i=1 ai (t) r

i for 0 ≤ t ≤ β where also r lies
in neighborhood of z = 0, and use it in equation (2); for more
detail, see [21, 23–26]. This provides a differential equation for

aµ (t) with some starting conditions a1 (0) = 1 and aµ (0) = 0
for i > 1. Therefore

p (r) = (a1 (α)− 1) r +

∞∑

i=2

ai (β) r
i (3)

The multiplicity (µ) is “µ > 1” if

a1 (β) = 1

a2 (β) = a3 (β) = ... = aµ−1 (β) = 0.

However, aµ (β) 6= 0. When a1 (β) = 1 and aµ (β) = 0, ∀
µ > 1, the origin is center. We can observe from Equation (1)

that
·
a1 (t) = a1 (t) υ (t) , where a1 (t) is defined as

a1 (t) = e
∫ t
0 υ(s)ds.

In this way, µ > 1 iff

∫ t

0
υ (s) ds = 0 (4)

because a1 (t) = 1. We are especially interested in the situation
where z = 0 has multiple solutions, so we consider that (4) holds.
By using the following transformation

ξ = ze−
∫ t
0 υ(s)ds.

(1) takes the form

·
ξ = γ̂ (t)ξ 3 + δ̂(t)ξ 3 (5)

where γ̂ (t) = γ (t) e2
∫ t
0 υ(s)ds and

δ̂(t) = δ (t) e2
∫ t
0 υ(s)ds.

We can see that γ̂ and δ̂ are periodic if γ , δ, and υ are periodic.
By using Lemma (2.6) in Alwash and Llyod [22], consider
multiplicity of z = 0 as a periodic solution of (1) . If, for equation

(1) , µ > 1, then the multiplicity of ξ = 0 as a periodic solution
of (5) is also µ. So we consider that υ (t) =̃ 0 in (1). As a result,
equation (1) takes the form

·
z = γ (t)z3 + δ(t)z2 (6)

where γ and δ may be polynomials (i) in t (ii) in cost and sint
(trigonometric functions). The functions ai (t) , for i > 1 are
calculated by utilizing the relation

·
ai = γ

∑

j+k+l=i
j,k,l ≥ 1

ajakal + δ
∑

j+k=i

j,k≥ 1

ajak (7)

with a1 (t) = 1. Calculation of these functions is tough because
of the integration by parts used in it. Assume that ηi = ai (β) ;
at that point, µ = i if η1 = 1 and ηk = 0 for 2 ≤ k ≤ i − 2
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but ηi 6= 0. These ηís are known as focal values. For i ≤ 8
functions ai (t) and ηi are given in Alwash and Llyod [22]. For
i = 9 N, Yasmin calculated a9 (t) and η9 in [27]. For i = 10 we
have calculated a10 (t) and η10 in Nawaz [28], also presented in
theorem 2.1 and 2.2.

In section 2, we write formulas with which we can calculate
the highest focal value, and we also implement stopping criteria
defined in Alwash and Llyod [22]. Some required conditions and
the method of perturbation are described in section 3. Section 2
and 3 are mainly concerned with the calculation of focal values,
which we will utilize in section 4. In section 4, we consider
polynomial coefficients for equation (6) and calculate the focal
values. Some examples are given in section 5. In the last section,
6, we make discussions and conclusions.

2. CALCULATION OF FOCAL VALUES η10

In the following theorem (2.1), some functions a2, a3, ..., a10 are
given that are obtained from Equation (7) and are helpful in
calculating the periodic solutions.

Theorem 2.1. For the equation (7), conclusive functions
a2, a3, ..., a8 are given in Alwash and Llyod [22], and a9, a10 are
described below:

a9 = δ
8
+ 7δ

6
γ + δ

6
γ + 6δ

5
δγ + 2δ

5
γ δ + 5δ

4
δ
2
γ

+3δ
4
γ γ + 3δ

3
γ δ

2
+ 5δ

4
γ γ +

39

2
δ
4
γ 2 − 2δ

3
δγ 2

+24δ
3
δγ γ + 6δ

3
γ γ δ − 10δ

3
γ δγ + 12δγ δ

3
γ

+4γ δδ
3
γ + 4δ

3
γ δ

3
+

43

6
δ
2
γ 3 + 4γ 3δδ + 4δ

2
γ γ δ

2

−10δδγ γ δ
2
+

15

2
γ 2δ

2
γ + 2δ

2
δ
2
γ − 4δ

3
γ δ

3
+

43

6
δ
2
γ 3

+4γ 3δδ + 4δ
2
γ γ δ

2
− 10δδγ γ δ

2
+

15

2
γ 2δ

2
γ

+2δ
2
δ
2
γ − 2δ

4
γ + 8γ δδ

3
+ 2δδ

2
γ δγ

+26δγ δ
2
γ δ + 6δ

2
γ γ − 6δ

2
γ γ + 12δ

2
δγ γ

+16δ
2
γ δδγ − 16δ

3
γ δγ + 9δ

2(
δγ

)2
+ 9

(
δγ

)2
γ −

δγ 3δ +
35

8
γ 4 − 6δγ δγ 2 + 8δδ

4
γ γ − 2γ δδ

4
γ +

1

2
δ
4
δγ

+2δδγ δ
3
γ + δδγ δγ 2 + δ

(
δ
2
γ

)2

.

and

a10 = δ
9
−

23

2
δ
7
γ −

1235

6
δ
5
γ γ + 3δ

5
γ γ + 111γ δ

4
δγ

−444γ δδ
3
δγ + 20γ δδ

4
γ − 12γ δδ

4
γ +

214

3
γ δ

3
δ
2
γ

+3γ δ
7
− 160γ δδ

2
δ
2
γ +

15

2
γ 2δ

3
γ −

970

3
γ γ 2δ

3

+30γ δ
2
δ
3
γ − 68γ δδδ

3
γ + 9γ δ

3
γ γ +

1015

9
γ 3δ

3

−237δδ
2
γ 3 + 8γ δ

7
−

11

2
γ δ

2
δγ 2 + 26γ δδδγ 2

+
319

2
γ 2δ

2
δγ − 174δδγ 2δγ − 90γ γ δδ

2
γ + 24γ δ

2
γ δγ

+40γ δγ γ δ
2
− 24γ δγ γ δ

2
+ 3γ δ

2
γ δγ − 154γ γ δ

2

δγ

−24γ γ 2δ
2
δ + 70γ δ

(
δγ

)2
+ 42γ δ

(
δγ

)2
− 70γ δ

3
γ 2

−
3

2
γ δγ 3 − 21δγ 4 + δδγ δγ 2 −

15

4
γ 2δγ 2 +

169

4
γ 4δ

+24γ γ 2δδ
2
γ − 24γ 2δδ

2
γ + 10γ 3δγ +

9

2
δ
4
δ
3
γ

−74γ γ 3δ + 8δδδγ 3 − 5γ δ
6
− 15δ

5
γ 2

+
34

3
γ δ

3
δ
2
γ + 2δδ

6
γ + 7δ

6
δγ + 6δ

5
δ
2
γ − 6γ δδ

4
γ

+2δ
3
δ
3
γ + 10δγ γ δ

4
+ 26γ 2δ

5
−

5

2
δ
4
δγ 2 +

5

2
δδ

4
γ 2

+
73

2
γ δ

4
δγ −

127

2
δ
4
γ δγ + 9δ

2
γ γ δ

3
− 20δδ

3
γ δγ

+19γ γ 2δ
3
γ − 21δ

2
γ δ

3
γ + 8δγ δδ

3
γ −

160

3
γ δ

3
δ
2
γ

−
4

5
γ δ

5
+ 32δ

4
γ δγ − 20δγ δδδ

2
γ + 24δγ 2δ

2
γ

+
4

3
δ
3
δ
2
γ −

31

30
γ δ

5
+ 16δδ

3
γ δ − 16γ δδ

4
+

13

2
δ
2
γ δγ 2

+3δ
2
δ
2
γ δγ + 42δ

2
δ
2
γ δγ + 12γ δδ

2
γ − 12γ δδ

2
γ

−12δδ
2
γ γ + 12δ

3
δ
2
γ γ + 32δ2γ δδ

2
γ − 32δδ

3
γ δγ

+14δ
3
(
δγ

)2
− 28γ δ

(
δγ

)2
−

3

2
δ
2
δγ 3 +

1

2
δ
4
δγ

+12δδγ 2δγ − 8δδ
4
γ γ − 2γ δδ

4
γ + 2δδγ δ

3
γ + δ

(
δ
2
γ

)2

−36(γ 2δδ(δγ ))− 48δ(γ 2δ(δγ ))− 16(γ δ(γ δ
2
γ ))

−8δ(δγ (δγ 2))+ 8δ
2
(δ

2
γ δγ ).

By using these functions, we obtained the next theorem, 2, which
enables us to find the maximum multiplicity in which the integral

is like
∫
γ (t) δ (t)dt; bar “−” shows that integral δ (t) =

∫ t
0 δ (t) dt

is definite.

Theorem 2.2. The solution z = 0 of (6) has a multiplicity k,
wherever 2 ≤ k ≤ 10 iff ηn = 0 for 2 ≤ n ≤ k − 1 and ηn 6= 0
where

η2 =
∫ β
0 δ

η3 =
∫ β
0 γ

η4 =
∫ β
0 γ δ

η5 =
∫ β
0 γ δ

2
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η6 =
∫ β
0 γ δ

3
− 1

2γ
2δ

η7 =
∫ β
0 γ δ

4
+ 2γ δ

2
γ

η8 =
∫ β
0 γ δ

5
+ 3γ δ

3
γ + γ δ

2
δγ − 1

2γ
3δ

η9 =
∫ β
0 γ δ

6
− 5γ δ

4
γ − 2δ

3
δγ + 20δγ 2 + 2δγ δγ 2

and
η10 =

∫ β
0 γ δ

7
− 1235

6 γ γ δ
5
− 970

3 γ γ
2δ

3
− 237δδ

2
γ 3 −

24γ γ 2δδ
2
−70γ δ

3
γ 2−21γ 4δ−74γ γ 3δ+ 5

2γ
2δδ

4
+32δ

4
γ δγ −

16δδ
4
γ − 15δ

5
γ 2 −36δδγ 2δγ − 8δδ

4
γ γ .

In theorem (2.1) some functions a2, a3, ..., a10 are given that are
obtained from Equation (7) and are helpful in calculating the
periodic solutions. As future work, one can calculate a maximum
multiplicity >10 by firstly generalizing theorem 2.1 and 2.2. This
should be calculated by substituting the value of i > 10 into
Equation (7).

3. CONDITIONS FOR THE CENTER AND

METHOD OF PERTURBATION

In this section, we describe some conditions for the center. From
theorem 2.2, we find the maximum value µ for different classes
of equations. We have to stop calculating multiplicity ηk. We
need some conditions that assure that there is no need to proceed
further with ηk. For this, we require some conditions that are
sufficient for z = 0 as a center. The conditions are given in
theorem 3 and corollary 4.

Theorem 3.1. Consider that there are continuous functions f ,
g defined on I = σ ([0,α]) and differentiable function σ

with σ (α) = σ (0) such that

γ (t) = f (σ (t))
·
σ

δ (t) = g (σ (t))
·
σ ,

then the origin is a center for (6).

Corollary 3.2. Consider that if any δ or γ is identically 0 and the
other has mean value zero. The origin is a center.

For more detail, see [17, 19, 20]. After determining the
maximum multiplicity µ, we now have to make a series of
perturbations of the coefficients, every one of which results in one
periodic solution coming out of origin.

For this, suppose the equation of the form given below:

·
z = γ (t)z3 + δ(t)z2 (8)

having multiplicityµ = j (suppose). Let U be in the region near 0
in the complex plane containing no periodic solution except z =
0. From theorem (2.4) in Alwash and Llyod [22], the initial point
that is contained in U remained fixed concerning a total number
of periodic solutions. With the condition that perturbations of
the coefficients considered are small enough, our goal is to get
η2 = η3 = ... = ηj−2 = 0 but ηj−1 6= 0 by perturbing
and making suitable choices of γ and δ, if possible. Obviously
the most effective solutions in U and ψ are zero solutions while

we get periodic solution ψ(t), where ψ(0) ∈ U as a non-trivial
solution. By considering the underlying fact that the complex
solutions always appear in conjugate pairs, we can say that ψ
is real. Now, let U1 and V1 be the neighborhood of zero and
ψ , respectively, such that V1 ∪ U1 ⊂ U and V1 ∩ U1 = γ .
The periodic solutions around V1 and U1 are preserved when
we make a small perturbation in the coefficients. By applying the
same procedure as above, our choice is to perturb the coefficients
such that ηk = 0 for k = 2, 3, ..., j − 3, but ηj 6= 0. So that we get
µ = j − 2. By applying that procedure, we get two non-trivial
real periodic solutions and the zero solution is of multiplicity
j − 2. Continuously, in this way, we end up with Equation (8)
with µ = 2 and j− 2 being distinct non-trivial (other than zero)
real periodic solutions.

4. POLYNOMIAL COEFFICIENTS FOR

SOME CLASSES

Let Ci,j indicate the class of the shape (6) in which the degree of
γ is i and δ is j and these are polynomial in “t” only. We consider
some classes C7,3,C7,5,C7,6,C3,8,C4,3,C9,1 and will evaluate the
maximum multiplicity; for more classes, see [19, 20, 28]. These
are described below in the form of theorems as:

Theorem 4.1. Let C7,3 be class of equation of the form

·
z = γ (t)z3 + δ(t)z2. (9)

with
γ (t) = a+ b(2t)+ c(2t)2 + d(2t)3 + e(2t)4 + h(2t)7,

δ(t) = i+ l(2t)3.

where the degree of γ (t) is 7 and δ(t) is 3. Then, µmax

(
C7,3

)
≥ 10.

Proof. By using theorem 2.2, we calculate

η2 = i+ 2l, (10)

η3 = a+ b+
4

3
c+ 2d +

16

5
e+ 16h. (11)

Thus, multiplicity of z = 0 is µ = 2 if η2 6= 0, and multiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then from (10) and

(11) , we take

i = −2l, (12)

and

a = −b− c
4

3
− 2d −

16

5
e− 16h. (13)

Now, by using (12) and (13) , γ (t) and δ(t) take the form of:

γ (t) = b(2t − 1)+ c[(2t)2 −
4

3
]+ d[(2t)3 − 2]+ e[(2t)4

−
16

5
]+ h[(2t)7 − 16],

δ(t) = l[(2t)3 − 2].
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and η4 is a constant multiple of “l” given as:

η4 = −
l(−3920h− 224e+ 90c+ 105b)

1575
.

If η4 = 0 then either l = 0 or

h = −
224

3920
e+

90

3920
c+

105

3920
b. (14)

If l = 0, then δ(t) = 0 and η3 = 0 shows the mean value of γ (t)
is zero. So by corollary 3.2, the origin is a center. Suppose l 6= 0.
If (14) holds, then η5 is calculated as:

η5 = −
8l2(264e− 35c+ 165b)

675675
.

If η5 = 0, then either l = 0 or 264e − 35c + 165b = 0. But
l 6= 0

(
taken above

)
, so we substitute

e =
35

264
c−

165

264
b. (15)

and calculate η6 as:

η6 =
cl(200984c+ 6416388l2 + 534699b)

81723972330
.

If η6 = 0, then either c = 0 or

c = −
6416388

200984
l2 −

534699

200984
b, (16)

because we already take l 6= 0. If c = 0 then by using (15) , γ (t),
and δ(t) take the following form:

γ (t) = [8t3 − 2][b
(
t4 − t

)
+ d],

δ(t) = l[8t3 − 2].

Let σ (t) = 2t4 − 2t; then
·
σ (t) = 8t3 − 2. Also, σ (0) = σ (1) .

So γ (t) and δ(t) are as follows:

γ (t) = [b
(
t4 − t

)
+ d]

·
σ ,

δ(t) = l
·
σ .

By using theorem 3.1 the origin is a center having f (σ ) =

[b
(
t4 − t

)
+ d] and g (σ ) = l. Thus, suppose c 6= 0. By using

(16), we have η7 as follows:

η7 =
491l2(12l2 + b)(2060488754705b+ 22506362768324l2 − 757960558278d)

1336288792941284910
.

Recall that l 6= 0 (considered above). If η7 = 0 then either
b = −12l2 or

b = −
22506362768324

2060488754705
l2 −

757960558278

2060488754705
d. (17)

If (17) holds, then we find

η8 =
491l(307857d− 901484l2)ρ

170323661397720454173105679513834037327588400000
.

Here

ρ = 17315692509357951934114134681d2−
5633881623608845837583322950744dl2

−50148902845361498768071379821226736l4.
(18)

Now if η8 = 0 then either

d = −
901484

307857
l2, (19)

or because l 6= 0, ρ 6= 0. If l 6= 0, 307857d − 901484l2 6= 0
but (18) holds, then we have d = pil

2. For i = 1, 2, with
p1 = 340.28404100, p2 = −377.123069100, and in each case η9
is a multiple of l7, and l 6= 0 (taken above). If (19) holds, then we
compute η9 as:

η9 =
32l5(37026759569911l− 1736569072760400)

999670687490475
.

If ̹9 = 0 then, as l 6= 0 considered above gives that l5 6= 0, we
takes value of l as:

l =
1736569072760400

37026759569911
. (20)

If (20) holds, then we calculate ̹10 as:

̹10 = −

59819098508664589134261280679103302616549721
839869947627237537076566683783002143601338
80839216718016650781737345237712655039420363

0821875056577085440000000000000000

4973878997017328732440906864985754494327312
9235904875486944604484243602120619367493715
976441567349747422942013452414709681196758

182064297581227921

.

Here, ̹10 is equal to a constant number that is non-zero.
Thus, we conclude that the multiplicity of class C7,3 is 10, i.e.,
µmax

(
C7,3

)
≥ 10.

Theorem 4.2. For equation

·
z = γ (t)z3 + δ(t)z2 (21)

With
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γ (t) = −
1802968

307857
(
1736569072760400

37026759569911
+ ǫ1)

2 −
163228503184

41209750941
ǫ2 +

656215

121027
ǫ3

−
1080

539
ǫ4 −

16

7
ǫ5 − 16ǫ6 + ǫ7 + 2(−12(

1736569072760400

37026759569911
+ ǫ1)

2−

(
757960558278

2060488754705
ǫ2 + ǫ3)t + 4(

8065930672107

8241955018820
ǫ2 −

534699

200984
ǫ3 + ǫ4)t

2

+8(
1736569072760400

37026759569911
+ ǫ1)

2 + ǫ2)t
3 + 16(

4742797224165

13187128030112
ǫ2 −

224575

229696
ǫ3

+
35

264
ǫ4 +

15

2
(
1736569072760400

37026759569911
+ ǫ1)

2 + ǫ5)t
4 + 128(−

30780466431

3878567067680
ǫ2+

1699711

78785728
ǫ3 +

199

12936
ǫ4 − (

1736569072760400

37026759569911
+ ǫ1)

2 −
2

35
ǫ5 + ǫ6)t

7.





(22)

δ(t) = −
3473138145520800

37026759569911
− 2ǫ1 + ǫ8

+8(
1736569072760400

37026759569911
+ ǫ1)t

3. (23)

Choose ǫj for 1 ≤ j ≤ 8 to be non-zero and small as
compared to ǫj−1. Then (21) has eight distinct non-trivial real
periodic solutions.

Proof. If we substitute ǫp = 0, ∀ p = 1, 2, ..., 8, and coefficients
are as given in Equations (22) and (23). So, the multiplicity of the
origin ̹ is 10. Now, choose ǫ1 6= 0 and ǫp = 0 for 2 ≤ p ≤ 8;
then it can be easily seen that ̹9 is a constant multiple of ǫ1,
but ̹2 = ̹3 = ... = ̹7 = ̹8 = 0. So, the multiplicity
reduces by one and ̹ = 9. For that reason, one periodic solution
bifurcates out of the origin. Now, set ǫ1 6= 0, ǫ2 6= 0 and ǫp = 0
for 3 ≤ p ≤ 8; then we have ̹p = 0 for p = 2, 3, ..., 7.
But ̹8 results in a form of ǫ2 with some constant multiple. So,
̹ = 8. Now, set ǫ1 6= 0, ǫ2 6= 0, ǫ3 6= 0 and ǫp = 0 for
4 ≤ p ≤ 8; then we have ̹p = 0 for p = 2, 3, ..., 6. But ̹7 results
in a form of ǫ3 with some constant multiple. If ǫ2 is sufficient
small, then there are two non-trivial real periodic solutions.
Further, moving in the present way, we have eight real periodic
non-trivial solutions.
Corollary 4.1. For an equation

·
z = γ (t)z3 + δ(t)z2 + γ + υ . (24)

if γ (t) and δ(t) are as given in theorem 4.1, Equation (24) has ten
real periodic solutions if γ and υ are small enough.
Proof. If γ = 0 and υ = 0, µ = 2 then (24) has
eight real periodic solutions. If γ 6= 0 but is small enough,
then µ = 1 and by using the same arguments as in the
above theorem, there are nine distinct periodic solutions other
than 0; z = 0 is another solution. Thus, we have ten real
periodic solutions.

Theorem 4.3. For class C7,5 consider δ(t) = i+ n(2t + 1)5 and

γ (t) = a+ b(2t + 1)+ c(2t + 1)2 + f (2t + 1)5 + h(2t + 1)7.

Then µmax

(
C7,5

)
≥ 8.

Proof. By using theorem 2.2, we have

η2 =
182

3
n+ i,

η3 = 410h+
182

3
f +

13

3
c+ 2b+ a.

Thus, the multiplicity of z = 0 is µ = 2 if η2 6= 0. And
multiplicity µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then we
calculate η4 as:

η4 = −
n(−114470h+ 1079c+ 372b)

189
.

If η4 = 0 then either n = 0 or

h =
1079

114470
c+

372

114470
b. (25)

If n = 0, then η3 = 0 shows i = 0; hence, δ(t) = 0 and η2 = 0
implies that the mean value of γ (t) is zero. By corollary 3.2, the
origin is a center. Suppose n 6= 0. By using (25), we compute
η5 as:

η5 = −
8n2(886519816c+ 499588553b)

2109395925
.

If η5 = 0 then

c = −
499588553

886519816
b. (26)

because we already take n 6= 0. If (26) holds, then η6 is:

η6 =
2bn(−379667599239958655624n2 + 5813410092109719b)

815558371657762539807
.

If η6 = 0 then either b = 0 or

b =
379667599239958655624

5813410092109719
n2, (27)
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because n 6= 0. If b = 0, then by using (26) , (25), γ (t) and δ(t)
take the form:

γ (t) = f [(2t + 1)5 −
182

3
],

δ(t) = n[(2t + 1)5 −
182

3
].

Let σ (t) = 1
2 (2t + 1)6 − 182t; then

·
σ (t) = 3 (2t + 1)5 − 182.

Also, σ (0) = σ (1) . So, we can write it as:

γ (t) =
1

3
f
·
σ ,

δ(t) =
1

3
n
·
σ .

Then, by theorem 3.1, the origin is a center with f (σ ) = 1
3 f and

g (σ ) = 1
3n. So we take b 6= 0. If (27) holds, then η7 is as follows:

η7 = −

586877587954432n4(−9888560913986218905316
8639013752599n2 + 54255683216749379832543

161535450f )

392738038968759387059090863949933323736325
.

Now, if η7 = 0, recalling that n 6= 0 then

f =
98885609139862189053168639013752599

54255683216749379832543161535450
n2. (28)

With holding (28), we have

η8 =
2300397726692597332894199628622545916981609410130707279936768

793823482030814697509595313095537997395261781753311944606875
n7.

Which is a constant multiple of n7 and is non-zero because n 6= 0(
taken above

)
. Thus we conclude that the multiplicity of class

C7,5 is 8, i.e., µmax

(
C7,5

)
≥ 8.

Theorem 4.4. For equation

·
z = γ (t)z3 + δ(t)z2 + σ1z + σ2. (29)

Let

δ(t) = −
182

3
n+ ǫ6 + n(2t + 1)5,

γ (t) = −v1+ǫ5+b(2t+1)+ c(2t+1)2+ f (2t+1)5+h(2t+1)7.

Proof.With

v1 = −410h−
182

3
f −

13

3
c− 2b,

b =
379667599239958655624

5813410092109719
n2 + ǫ2,

c = −
19470134860245482491747

529020318381984429
n2 −

499588553

886519816
ǫ2 + ǫ3,

f =
98885609139862189053168639013752599

54255683216749379832543161535450
n2 + ǫ1,

and

h = −
576907546430940497

4283565331028214
n2−

281257

136387664
ǫ2+

1079

114470
ǫ3+ǫ4.

If ǫj
(
1 ≤ j ≤ 6

)
, σ1 and σ2 are chosen to be non-zero and also

|σ2| ≪ |σ1| ≪ |ǫ6| ≪ |ǫ5| ≪ ...≪ |ǫ1| .

Then (29) has eight distinct real periodic solutions other
than zero.

Theorem 4.5. Let δ(t) = j+ p(t − 1)6 and

γ (t) = a+ c(t − 1)2 + d(t − 1)3 + g(t − 1)6 + h(t − 1)7.

For class C7,6 of the form (9), then µmax

(
C7,6

)
≥ 8.

Proof. By using theorem 2.2, we have

η2 =
1

7
p+ j, (30)

η3 = −
1

8
h+

1

7
g −

1

4
d +

1

3
c+ a. (31)

Thus, themultiplicity of z = 0 isµ = 2 if η2 6= 0, andmultiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, by using values of a
& j,, δ(t) and γ (t) are as follows:

γ (t) = c[(t − 1)2 −
1

3
]+ d[(t − 1)3 +

1

4
]+ g[(t − 1)6 −

1

7
]

+h[(t − 1)7 −
1

8
],

δ(t) = p[(t − 1)6 −
1

7
].

Also, we calculate η4 as:

η4 =
p(792c− 486d+ 77h)

221760
.

If η4 = 0 then either p = 0 or

h =
486

77
d −

792

77
c. (32)

If p = 0, then δ(t) = 0 and η3 = 0 implies that mean value
γ (t) = 0. From corollary 3.2, the origin is a center, so consider
p 6= 0. If (32) holds, then we have η5 as:

η5 = −
p2(484c− 51d)

54428220
.
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If η5 = 0, then as p 6= 0 (considered above) implies

d =
484

51
c. (33)

And by using (33), we calculate η6 as:

η6 =
cp(51382814976p2 + 520996995995c)

115437830545837800
.

If η6 = 0, then either c = 0 or

c = −
51382814976

520996995995
p2, (34)

because p 6= 0. If c = 0 then γ (t) and δ(t) are:

γ (t) = g[(t − 1)6 −
1

7
],

δ(t) = p[(t − 1)6 −
1

7
].

Let σ (t) = (t − 1)7 − t, then
·
σ (t) = 7 (t − 1)6 − 1. Also,

σ (0) = σ (1) . So it takes new form as:

γ (t) =
g

7

·
σ ,

δ(t) =
p

7

·
σ .

By theorem 3.1, having f (σ ) =
g
7 and g (σ ) =

p
7 , the origin is a

center, so take c 6= 0. Using (34), we have η7 as:

η7 = −
41979424p4(4135364653107809477799p2 + 748144295421365642240g)

536575324409227144872262909825473125
.

If η7 = 0, recalling that p 6= 0 (η5), then

g = −
4135364653107809477799

748144295421365642240
p2. (35)

If (35) holds, then we find η8 as:

η8 =
6795652249525465319539097007446902881077050577

31767297065597743067007681874695840512233681534101600000
p7.

which is a constant multiple of p5, and p is also non-zero (as
shown above). Thus, we conclude that the multiplicity of class
C7,6 is 8, i.e., µmax

(
C7,6

)
≥ 8.

Theorem 4.6. Let C9,1 be a class of equation of the form (9), with

γ (t) = c+ dt + et2 + ft3 + kt8 + lt9.

δ(t) = m+ nt.

We then see that µmax

(
C9,1

)
≥ 10.

Proof. Using theorem 2.2, we take

η2 = m+
1

2
n,

η3 = c+
1

2
d +

1

3
e+

1

4
f +

1

9
k+

1

10
l.

Thus, the multiplicity of z = 0 is µ = 2 if η2 6= 0, and the
multiplicity µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then by
using values of “k” and “a,” γ (t) and δ(t) are as follows:

γ (t) = d(t−
1

2
)+e

(
t2 −

1

3

)
+f

(
t3 −

1

4

)
+k

(
t8 −

1

9

)
+l

(
t9 −

1

10

)
,

(36)

δ(t) = n

(
t −

1

2

)
. (37)

Also, we compute η4, given below as:

η4 =
n(108l+ 112k+ 99f + 66e)

23760
.

If η4 = 0 then either n = 0 or

l = −
112

108
k−

99

108
f −

66

108
e. (38)

If n = 0, then δ(t) = 0 and η3 = 0 gives that the mean value
of γ (t) is zero. Thus, the origin is a center from corollary 3.2, so
consider n 6= 0. Now, if (38) holds, then η5 is as below:

η5 = −
n2(56k+ 297f + 198e)

7207200
.

If η5 = 0, then as we already take n 6= 0 it implies

k = −
297

56
f −

198

56
e. (39)

and by using (39), η6 is:

η6 = −
n(2e+ 3f )(32e− 57n2 + 29f )

836559360
.

If η6 = 0, then as we already consider n 6= 0 either f = − 2
3 e or

e =
57

32
n2 −

29

32
f . (40)

If f = − 2
3 e then (36) and (37) are of the following form:

γ (t) =

(
t −

1

2

) [
d + e

(
−
2

3
t2 +

2

3
t −

1

3

)]
,
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δ(t) = n

(
t −

1

2

)
.

Let σ (t) = t2 − t; then
·
σ (t) = 2t − 1. Also, σ (0) = σ (1) . So

we can write

γ (t) =
1

2

[
d + c

(
−
2

3
t2 +

2

3
t

)]
·
σ ,

δ(t) =
n

2

·
σ .

Thus, from theorem 3.1, the origin is a center with

f (σ ) =
1

2

[
d + c

(
−
2

3
t2 +

2

3
t

)]
,

and g (σ ) = n
2 , so we take f 6= − 2

3 e. Holding (40), we compute
η7 as:

η7 =
19n2(3n2 + f )(−348307f + 1697231n2 + 1445136d)

254514115215360
.

If η7 = 0, recalling that n 6= 0, then either f = −3n2 or

f =
1697231

348307
n2 +

1445136

348307
d. (41)

If f = −3n2, then

γ (t) =
1

2

[
d + n2

(
−3t2 + 3t

)] ·
σ ,

δ(t) =
n

2

·
σ .

From theorem (3.1) , the origin is a center with f (σ ) =
1
2

[
d + n2

(
−3t2 + 3t

)]
and g (σ ) = n

2 , so consider f 6= −3n2.
Using (41), we calculate η8 as:

η8 =
23n(1122d + 2129n2)ζ

1029474284594079894479022764851200
.

where ζ = 273879615326996052d2 +

1713735341555455508dn2 − 132695961322089231627n4.
Now, if η8 = 0 then either ζ = 0 or

d = −
2129

1122
n2. (42)

because n 6= 0. If Equation (42) 6= 0, n 6= 0, but ζ = 0, then b =

rin
2 for i = 1, 2, where r1 = 38.208145460, r2 = −50.722660920.

If (42) holds, but ζ 6= 0, n 6= 0, then we compute η9

η9 = −
n5(5168n+ 449059)

2749402656
.

If η9 = 0, then we substitute n = − 449059
5168 and calculate η10 as:

η10 = −

277526056388652430908651014962873
088740929681514867177588679

164738202978811962713659536291595
7451747785441280

That is a non-zero constant number. Thus, we conclude that the
multiplicity of class C9,1 is 10, i.e., µmax

(
C9,1

)
≥ 10.

Theorem 4.7. Choose n, k, l with nl 6= 0. In the equation

·
z = γ (t)z3 + δ(t)z2 + σ1z + σ2. (43)

Let

δ(t) =
449059

10336
−

1

2
ǫ1 + ǫ8 + (−

449059

5168
+ ǫ1)t,

and

γ (t) = u1 + dt + et2 + ft3 + kt8 + lt9.

With

u1 =
223

1122
(−

449059

5168
+ ǫ1)

2 −
287723

4179684
ǫ2 +

419

4032
ǫ3

−
31

126
ǫ4 −

1

135
ǫ5 −

1

10
ǫ6 + ǫ7,

d = −
2129

1122
(−

449059

5168
+ ǫ1)

2 + ǫ2,

f = −3(−
449059

5168
+ ǫ1)

2 +
1445136

348307
ǫ2 + ǫ3,

e =
9

2
(−

449059

5168
+ ǫ1)

2 −
2619309

696614
ǫ2 −

29

32
ǫ3 + ǫ4,

k = −
24270543

2786456
ǫ2 −

1881

896
ǫ3 −

99

28
ǫ4 + ǫ5,

and

l =
31461815

4179684
ǫ2 +

1045

576
ǫ3 +

55

18
ǫ4 −

28

27
ǫ5 + ǫ6.

If ǫk
(
1 ≤ k ≤ 8

)
, σ1 and σ2 are chosen to be non-zero such that

|σ2| ≪ |σ1| ≪ |ǫ8| ≪ |ǫ7| ≪ ...≪ |ǫ1| .

then (43) has ten real distinct non-trivial periodic solutions.

Proof. The proof is similar to that in theorem in (4.2) , so it is
omitted.

It is pertinent to mention that µmax

(
C4,3

)
≥ 5 given in

Yasmin and Ashraf [20] but we succeeded in increasing its
multiplicity from 5 to 8, i.e., µmax

(
C4,3

)
≥ 8 by using variable

(t) instead of (2t-1).

Theorem 4.8. Let

γ (t) = e+ ft + gt2 + ht3 + it4,

δ(t) = a+ dt3.

for the class C4,3 of form (9) . Then we prove that µmax

(
C4,3

)
≥ 8.
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Proof. From theorem 2.2, we calculate solutions as:

η2 = a+
d

4
.

η3 = e+
f

2
+

g

3
+

h

4
+

i

5
.

Thus, themultiplicity of z = 0 isµ = 2 if η2 6= 0, andmultiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then

a = −
d

4
. (44)

e = −
f

2
−

g

3
−

h

4
−

i

5
. (45)

By using (44) and (45), γ (t) and δ(t) are as given below:

γ (t) = f

(
t −

1

2

)
+ g

(
t2 −

1

3

)
+ h

(
t3 −

1

4

)
+ i

(
t4 −

1

5

)
,

(46)

δ(t) = d

(
t3 −

1

4

)
. (47)

Also we calculate η4 as:

η4 = −
d(−28i+ 45g + 105f )

25200
.

If η4 = 0 then either d = 0 or

i =
(45g + 105f )

28
. (48)

If d = 0, then δ(t) = 0, and also η3 = 0 gives that δ(t) has mean
value 0. From corollary 3.2, the origin is a center. Consider d 6= 0.
By using (48), we compute η5 as:

η5 = −
d2(199g + 1617f )

60540480
.

If η5 = 0 as d 6= 0, then

f = −
199

1617
g. (49)

By using (49), we compute η6 as:

η6 =
gd(78600753d2 + 13597688g)

2050291017815040
.

If η6 = 0, then either g = 0 or

g = −
78600753

13597688
d2, (50)

because we already take d 6= 0. If g = 0, then (46) and (47) can
be written as:

γ (t) = h

(
t3 −

1

4

)
,

δ(t) = d

(
t3 −

1

4

)
.

Consider σ (t) = t4− t; then
·
σ (t) = 4t3−1. Also σ (0) = σ (1),

so it can written as:

γ (t) =
h

4

·
σ (t) ,

δ(t) =
d

4

·
σ (t) .

By theorem 3.1, the origin is a center with f (σ ) = 1
4h and

g (σ ) = 1
4d. So take g 6= 0. If (50) holds, then η7 is:

η7 = −
491d4(−704698056497d2 + 61560932862h)

102299877970079928320
.

If η7 = 0, recalling that d 6= 0, then we take

h =
704698056497

61560932862
d2. (51)

If (51) holds, then we compute η8 as:

η8 =
466979144516058112634649177

23384478186490400805647418695680
d7.

where η8 is a constant multiple of d7 and d 6= 0
(
taken above

)
.

Thus, we conclude that the multiplicity of class C4,3 is 8, i.e.,
µmax

(
C4,3

)
≥ 8.

Theorem 4.9. Let C3,8 be a class of equation of the form (9) with

γ (t) = bt + dt3,

δ(t) = ft + ht3 + jt5 + lt7 +mt8.

Then µmax

(
C3,8

)
≥ 8 when j = 1.

Proof. First we suppose that j 6= 1. From theorem 2.2, we see:

η2 =
1

2
f +

1

4
h+

1

6
j+

1

8
l+

1

9
m. (52)

η3 =
1

2
b+

1

4
d. (53)

Thus the multiplicity of z = 0 isµ = 2 if η2 6= 0, and multiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then from (52) and

(53) we take:

f = −
1

2
h−

1

3
j−

1

4
l−

2

9
m, (54)

and

b = −
1

2
d. (55)
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Now by using (54) and (55), we calculate η4 as:

η4 = −
d(1400m+ 1287l+ 858j)

1235520
.

If η4 = 0 then either d = 0 or

m = −
1287

1400
l−

858

1400
j. (56)

If d = 0, then from (55), γ (t) = 0 and η3 = 0 gives that the mean
value of δ(t) is zero. So by corollary 3.2, the origin is a center.
Thus, suppose d 6= 0. If (56) holds, then η5 is:

η5 = −
d(2j+ 3l)(30744j+ 59850h+ 8041l)

683726400000
.

If η5 = 0 then either

2j+ 3l = 0, (57)

or

h = −
30744

59850
j−

8041

59850
l, (58)

because we already take d 6= 0. If (57) holds, then γ (t) and δ(t)
are of the form:

γ (t) = d

(
t3 −

t

2

)
,

δ(t) =

(
t3 −

t

2

)

h+ j




3

5600
t2 +

88

525
t

3

700
t5 +

2

3
t4 +

3

1400
t3 +

4

3
t2 −

3

2800
t +

2

5





 .

Let σ (t) = t4

4 − t2

4 , then
·
σ (t) = t3− t

2 . Also σ (0) = σ (1) . γ (t)
and δ(t) are thus written as:

γ (t) = d
·

σ (t),

δ(t) =


h+ j




3

5600
t2 +

88

525
t

3

700
t5 +

2

3
t4 +

3

1400
t3 +

4

3
t2 − d32800t +

2

5





 ·
σ (t) .

So by theorem 3.1, the origin is a center with f (σ ) = d and

g (σ ) =


h+ j




3

5600
t2 +

88

525
t

3

700
t5 +

2

3
t4 +

3

1400
t3 +

4

3
t2 −

3

2800
t +

2

5





 .

Therefore, we suppose that 3l+2j 6= 0. Holding (58), we compute
η6, which is a constant multiple of ξ , as:

η6 = −d(3l+ 2j)ξ .

where

ξ = 1532329720524j2 + 1273229285332jl

+1690381942750100d+ 25542706569l2.

Now η6 = 0 only if ξ = 0, because we have already discussed the
possibility of d = 0, (3l + 2j) = 0; in each case, the origin is a
center. For ξ = 0, we substitute

d = −
153232639720524

169038161950100
j2 −

127322239285332

169038942750100
jl

−
25542700956569

169038161942750100
l2.

and obtain

η7 = d
(
3l+ 2j

) (
homogeneous cubic in j and l

)
.

and

η8 = −d
(
3l+ 2j

) (
homogeneous quartic in j and l

)
.

We cannot draw any conclusion looking at η7 and η8. Thus, for
simplification, we substitute j = 1. Then, η7 and η8 becomes

η7 =





d
(
3l+ 2

)
(−

20052663449157741455869750

437

+
525461424420752097957709100

4807
l−

26054076800585569433880148475

302841
l2

+
248636375396821626044300

11
l3).

and

η8 =





−d
(
3l+ 2

)
(−60491257464742335697522

71066018358646532627l+
704985851569387782175507850879295207088l2

−367735177988424214344
94904030251207123117l3 + 72607900452360540

07143552578113438l4).

For multiplicity >6, we have to prove that the cubic in η7 and
quartic in η8 have no common zero. For this, we suppose that
both have a common zero. Then we get a linear relation in j and
l, j+ kl = 0(say), and for this value of j, η8 is a constant multiple
of dl5 6= 0. Thus, we conclude that the multiplicity of class C3,8 is
8, i.e., µmax

(
C3,8

)
≥ 8 with j = 1.

Theorem 4.10. Suppose l = α be a real root of the equation





−
20052663449157741455869750

437

+
525461424420752097957709100

4807
l−

26054076800585569433880148475

302841
l2

+
248636375396821626044300

11
l3 = 0.

Choose

l = α + ǫ1,

d = −
5197145561

573321672577500
j2 −

38865152407

5159895053197500
j(α + ǫ1)−

1110552215503

734948530185870000
(α + ǫ1)

2 + ǫ2,
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h = −
244

475
j−

8041

59850
l+ ǫ3,

m = −
1287

1400
α −

1287

1400
ǫ1 −

429

700
j+ ǫ4,

f =
397

6650
j+

8041

119700
−

1

2
ǫ3 −

8

175
α −

8

175
ǫ1 −

2

9
ǫ4 + ǫ6,

b =
5195561

11461500
j2 +

3886407

1035000
j(α + ǫ1)+

11103

14600
(α + ǫ1)

2

−
1

2
ǫ2 + ǫ5,

Such that |ǫ6| ≪ |ǫ5| ≪ |ǫ4| ≪ |ǫ3| ≪ |ǫ2| ≪ |ǫ1| . Then equation
·
z = γ (t)z3 + δ(t)z2, has six real periodic non-trivial solutions.
Where

γ (t) = bt + dt3.

δ(t) = ft + ht3 + jt5 + lt7 +mt8.

with j = 1.

Proof. If we put ǫj for j as; 1 ≤ j ≤ 6, instead of 1 ≤ j ≤ 8 then
the proof is similar to that for theorem (4.2), so it is omitted.

5. EXAMPLES

The following examples demonstrate the applicability of our
main results.

Example: Consider the differential equation:

dz

dt
=

(
et

)
z3 + (cos t) z2. (59)

Here γ (t) , δ (t) are transcendental functions, but we use the
power series representations by neglecting the terms ‘tn’ for n >
4. Like γ (t) = et = a + bt + ct2 + dt3 + et4, δ (t) = cos t =

j− kt2 + lt4, with a = b = j = 1, c = k = 1
2! , d = 1

3! , e =
1
4! , and

then calculate the periodic solutions.
SOLUTION: We substitute k = 0, and by using theorem 2.2,

we calculate:

η2 = j+
1

120
l, (60)

η3 = a+
1

2
b+

1

6
c+

1

24
d +

1

120
e. (61)

Thus, themultiplicity of z = 0 isµ = 2 if η2 6= 0, andmultiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then we take
j = − 1

120 l, and a = − 1
2b − 1

6 c −
1
24d − 1

120 e. By using these
values, η4 is calculated as:

η4 = −
l(14d + 105c+ 360b)

1814400
.

If η4 = 0 then either l = 0 or

d = −
105

14
c−

360

14
b. (62)

If l = 0, then δ(t) = 0 and η3 = 0 shows that the mean value
of γ (t) is zero. So by corollary 3.2, the origin is a center. Suppose
l 6= 0. If (62) holds, we have

η5 = −
l2(28c+ 325b)

6054048000
.

If η5 = 0, then l 6= 0
(
taken above

)
, and we substitute c = − 325

28 b,
and calculate η6 as:

η6 =
bl(−21078407l2 + 10315069600b)

1261504744980480000
.

If η6 = 0, then either b = 0 or

b =
21078407

10315069600
l2, (63)

because l 6= 0. If b = 0 then d = c = 0, by using these values,
γ (t) and δ(t) takes the following form:

γ (t) = e

(
t4 −

1

5

)
,

δ(t) = l

(
t4 −

1

5

)
.

Let σ (t) = t5 − t, then
·
σ (t) = 5t4 − 1. Also, σ (0) = σ (1) .

Therefore, we can write γ (t) = 1
5 e

·
σ and δ(t) = 1

5 l
·
σ . From

theorem 3.1, The origin is a center having f (σ ) = 1
5 e and g (σ ) =

1
5 l. Thus, suppose that b 6= 0. By using (63), we have η7 as follows:

η7 = −
3011201l4(4904530106070545l2 + 18047929302961536e)

1193751333049572276388321296384000000
.

Recalling that l 6= 0 (considered above), if η7 = 0 then

e = −
4904530106070545

18047929302961536
l2. (64)

If (64) holds, then we find

η8 =
37395284143096731929725996189267

86014498207710495466937428606344400899932160000000
l7.

which is constant multiple of l7, and l 6= 0. Thus we conclude that

(59) have eight periodic solutions.
Example: Consider the differential equation:

dz

dt
= γ (t) z3 + δ (t) z2. (65)

With γ (t) =equation of circle = ax2 + by2 + cx + dy +

f , δ (t) =quadratic equation= gx2 − h, we calculate the
periodic solutions.

SOLUTION: By using theorem 2.2, we calculate:

η2 =
g

3
− h,
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η3 =
1

3
a+

1

3
b+

1

2
c+

1

2
d + f .

Thus, themultiplicity of z = 0 isµ = 2 if η2 6= 0, andmultiplicity
µ = 3 if η2 = 0 but η3 6= 0. If η2 = η3 = 0, then we put h =

g
3 ,

and f = − 1
3a−

1
3b−

1
2 c−

1
2d. By using these values, we get

η4 = −
1

360
cg.

If η4 = 0 then c = g = 0. If g = 0, then δ(t) = 0 and η3 = 0
shows the mean value of γ (t) is zero. So by corollary 3.2, the
origin is a center. Suppose that g 6= 0. Now by using the value
of c = 0, we calculate η5 = 0. Thus we conclude that (65) have
four periodic solutions.

6. CONCLUSION AND DISCUSSION

In this article, periodic solutions are calculated. The solutions

satisfying z (β) = z (0) , are called periodic orbits of the

Equation (1). The periodic orbits that are isolated in the
set of all periodic orbits are usually called the limit cycle.
Periodic solutions are found for algebraic coefficients for various
classes by using bifurcation analysis. We examined classes
C3,8,C4,3,C7,3,C7,5,C7,6,C9,1. We could only get a maximum
multiplicity of 10 by using the classical formulas existing in the
literature. We succeeded in developing the formula η10 by which

classes C7,3, and C9,1 have maximummultiplicity 10, which is the
highest known until this time. We also improved some already
calculated results of Yasmin and Ashraf [20] for class C4,3, where
µmax is improved from 5 to 8. A systematic procedure has been
established in defining coefficients of higher-order polynomial
functions. A perturbation method has been properly established
for making the maximal number of limit cycles in section 3,
which was used numerically to calculate all the classes mentioned
in the article. Some examples are also presented to show the
applicability of the method. Since the journey toward solving
Hilbert’s 16th problem is still far at an end, searching for more
limit cycles and raising the general lower bound form could be
an effective choice for approaching the problem.
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