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Type 1 diabetes (T1D) is an incurable disease that affects 1. 25million Americans. Diabetic

patients typically rely on subcutaneous insulin infusions to regulate their glucose levels.

A major contributor to their blood glucose levels is the amount of sugar intake, which

cannot be easily tracked. While ultrasound imaging has been used to investigate the

relationship between food characteristics and tongue movement, the technique utilized

a bulky transducer array that cannot be translated into daily monitoring. Capitalizing

on advanced electronics and data processing technologies, we developed a portable

system that utilizes only a single ceramic disk to quantify the tongue movement in

response to various levels of sweetness. After acquiring 32 subject datasets, we found a

significant correlation between food sweetness and tongue movement. Our system can

potentially be miniaturized into a wearable device for monitoring sugar intake, which will

ultimately help T1D patients to better monitor and control their blood glucose levels and

balance their diets accordingly.

Keywords: ultrasound system, food sweetness, tongue movements, wearable sensor, portable device

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease that currently has no cure [1]. People with
T1D typically rely on insulin pump therapy (subcutaneous insulin infusion) to control their
blood glucose level. Before each meal, T1D patients are recommended to conduct a pre-bolus
insulin injection, the amount of which is determined by the projected carbohydrates intake
and the personal insulin-to-carb ratio. The pre-bolus approach can effectively avoid a sudden
increase in blood glucose level after a meal [2]. However, because it is difficult to quantify the
number of carbohydrates in the food, there are uncertainties resulting from this approach. If the
dose of injected insulin is largely different from the actual need, the patient may be at risk of
hyperglycemia or hypoglycemia. Therefore, there is an unmet clinical need for a portable device
that can continuously monitor sugar intake.

The physical and chemical compositions determine the flavor of the food [3, 4], which is also
reflected in the chewing behavior. In addition, the biomechanical properties determine the duration
and the amount of oral processing before swallowing. For example, solid food is mixed with saliva
and fragmented by teeth to form soft, coherent clumps [5]. Low viscosity liquids can be swallowed
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withminimal processing. But intense flavors, acidic, or icy liquids
will remain in the mouth for a longer period of time to increase
the pH of the buffer in the saliva and to equilibrate the product
to body temperature for further dilution with saliva. Generally,
after the start of oral processing, the swallowing process is divided
into three-phase, oral transit phase, swallow phase, and clearance
phase. Previous experimental results show that during oral transit
time, there was a relatively significant movement of the tongue
and food characteristics and tongue movement features are
closely related [6–8]. Therefore, the texture and flavor of the food
may both influence people’s chewing behavior. In this research,
we will focus on the same food consistency and investigate how
different levels of sweetness affect oral processing.

Ultrasonic imaging is a powerful technique used to quantify
oral processing [1]. This technique was demonstrated by de Wijk
et al. [9] using a linear transducer array, which contained a row
of piezoelectric crystals. The ultrasonic probe was placed under
the subject’s chin to receive the sagittal-view image of the tongue.
The ultrasound probe can generate a video of tongue images
through internal computer analysis. By processing temporal B-
scan images, with the tongue as the region of interest, the
magnitude of tongue movements can be quantified [10]. René’s
research investigated the taste attributes, specifically sweetness
and bitterness [9]. However, this technique can be relatively
bulky because a transducer array is required to capture the
B-scan image.

To address this issue, we replaced the transducer array with
a single ceramic disk and developed an algorithm to quantify
the tongue movement based on A-line ultrasound data, which
is also widely used in the medical field [11]. In terms of data
acquisition, we used a smartphone-based recording system that
is portable and more energy-efficient than the transducer arrays

FIGURE 1 | A schematic drawing of the experimental set-up.

used in the previous study [12]. Our study indicates that there is
a correlation between the tongue movement and food sweetness,
and our design could potentially be translated into a wearable
device for daily monitoring of sugar intake.

MATERIALS

Figure 1 shows a schematic drawing of our system. A 4.25 MHz
ceramic disk with a diameter of 7mm and thickness of 0.5mm
(Steminc) was used for ultrasound transmission and receiving.
Ultrasound pulses were provided by an ultrasound pulse-receiver
(Panasonic,Model 5070PR), which outputs 50 ns pulses at 100Hz
(repetition rate). Before the experiment, we applied ultrasound
gel to the ceramic disk. We then attached it under the chin
of the subject (about two fingers away from the tip of the
chin) using adhesive tape. Since we used a planar transducer
element with 7mm diameter field of view, a slight shift in the
transducer placement will not impact the result. The reflected
ultrasound echo signal was detected by a portable oscilloscope
(SmartScope) with a sampling frequency of 50 MHz. For each A-
line, we acquired 2,048 points, which corresponds to 40µs of data
acquisition time. This time period corresponds to a 6 cm travel
distance in tissue and is sufficient for the collection of reflected
signals from the tongue. The SmartScope was connected to the
smartphone through a USB cable and all acquisition parameters
were controlled from the smartphone app. The received signals
were displayed in real-time on the smartphone and saved in its
memory for future analysis.

For phantom experiments, we placed the ceramic transducer
inside a 10-mm-wide water tank. A metal plate was placed at
the other side of the tank to serve as an acoustic reflector. The
echo arrival time reveals the distance between the transducer
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and the metal plate. To simulate the tongue motion, we used a
voice-coil motor tomove the reflector at different amplitudes and
frequencies. The phantom experimental results will be used to
verify whether our data processing method can reflect different
motion states (vibration amplitudes and frequencies).

For human trials, our subjects’ ages range between 19 and 30
years old, and the ratio of male to female was about 1:1. Based on
visual assessment, all subjects are within the healthy body mass
index (BMI) range (20–25). All experiments were conducted at
room temperature (25◦C). During the experiment, the ceramic
transducer was placed under the chin, while the surface of the
tongue acted as the reflector. To test the relationship between
food sweetness and tongue movement, food with three different
sweetness levels (high, middle, and low) were prepared based
on a mixture of 300ml skim milk and 15 g gelatin (Kraft Heinz
Foods Company). Low-sweetness samples were prepared without
sweetener, middle-sweetness samples were prepared by adding
10 g of sweetener (Truvia, Cargill, Inc.), and high-sweetness
samples were prepared by adding 20 g of sweetener. Samples
were then distributed into an ice cube maker (5 g/cube) and
solidified in a freezer for 4 h. After solidification, the samples
sat at room temperature for 20min before the experiment [9].
To avoid influence from food attribute, each sample cube is
identical in size, hardness, and smell. The subjects were given
the samples (around 15 × 15 × 15mm), and the process of
chewing in the bulk phase was recorded for 7 s using the
SmartScope. Recording started immediately at the beginning of
chewing and ended 7 s later. This period covered the bulk phase
(the first 5s of oral processing), where oral movement is highly
correlated with food characteristics [9]. During the experiment,
the subjects were told to avoid speaking. No special instructions
regarding oral movement and swallowing were provided. To

avoid any interference between the contiguous measurements,
subjects were asked to rinse their mouths with water before and
after each experiment and between each trial. The procedure
was repeated two times for each subject. Three food samples at
three different sweetness levels were tested twice for each subject,
generating 192 datasets (3 sweetness level× 2 tests× 32 subjects).
These datasets will be processed and compared with the different
sweetness levels of the food sample to evaluate their correlation.

DATA PROCESSING METHODS

Figure 2 shows an acoustic A-line acquired in the phantom
experiment. The oscillation at time zero corresponds to acoustic
firing. The reflected echo signal is shown at around 25 µs, which
corresponds to the total travel time for the acoustic pulse. As we
moved the reflector closer to the transducer, the peak (red) also
shifted to the left accordingly. This result clearly indicates that
the movement of the flat reflector can be precisely monitored by
pulse-echo ultrasound. The same principle was used to capture
tongue movement.

To quantify the movement of the reflector, we developed two
algorithms: one was based on cross-correlation (CC), while the
other was based on standard deviation (STD). The CC method
has been widely used to quantify the shift between two plots
by computing their cross-correlation coefficient [9]. In our case,
each A-line signal records the instantaneous position of the
tongue. The magnitude and frequency of the reflector movement
can be calculated by cross-correlating the two neighboring A-
lines [7]. If there was no movement, the correlation coefficient
would be 1.00. Otherwise, the correlation coefficient would be
<1.00. The larger the movement, the smaller the correlation
coefficient. However, breathing and heartbeat can cause slight

FIGURE 2 | Pulse-echo ultrasound signal acquired in the phantom experiment. The blue plot represents the original echo signal, while the red one represents signals

acquired after the flat reflector was placed closer to the transducer.
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fluctuations, which can influence the result of the correlation
coefficient method. The STD approach may address this issue
because it represents the volatility of tongue movements. STD
focuses on the signal fluctuation within a specific window in
the A-line (oral processing). The intense tongue movement
creates a larger signal fluctuation, leading to a higher variation.
Movements caused by respiration or heartbeat are much milder
than that of the tongue, and therefore they have limited influence
on the STD values. In contrast, any small shifts in the A-line may
lead to a change in the CC value. Because all subjects are within
the healthy BMI range, variations in the amount of adipose tissue
in the chin are not significant. Nevertheless, for each subject, we
manually verified the data processing window to ensure that it
covers the tongue surface.

A quantitative score, named the fractal index (FI), is used

to quantify the movement based on A-lines or STD values.
FI reflects the sum of the first derivative of the CC or STD

processed data. René’s work [9] verified that the FI factor of the
CC-processed data is positively correlated with the movement

amplitude and intensity of the echo. In this study, we verified
whether the STD-derived FI would offer similar or better results.

RESULTS

The algorithms were first validated in the phantom. The
movement was created by a voice coil actuator, which oscillates
the reflecting metal plate. To mimic different magnitudes of
tongue movement at the same frequency, we fixed the driving
frequency at 10Hz and increased the driving voltage from 3 to
9V. Results from the correlation coefficientmethod are presented
in Figure 3A, and the results from the STDmethod are presented
in Figure 3B. The results show that the FI factor is positively
correlated with the movement magnitude.

To mimic different tongue movement frequencies, we fixed
the driving voltage at 5V and increased the driving frequency
from 10 to 100Hz. Results from the correlation coefficient
method are presented in Figure 4A, and the results from the STD
method are presented in Figure 4B. These experiments show that

FIGURE 3 | Input voltage (Amplitude) corresponding to the FI factor based on different methods: (A) the correlation coefficient method and (B) the STD method.

FIGURE 4 | The oscillating frequency corresponding to the FI factor base on different methods: (A) correlation coefficient method and (B) the STD method.
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the FI factor is positively correlated with movement frequency. It
should be noted that during the experiment, we observed a non-
linearity correlation between voltage and oscillation magnitude,
which might have caused the non-linearity in Figures 3A, 4A.
However, that won’t affect our in vivo experiment result.

FIGURE 5 | A single A-line of human data acquired by a transducer placed

under the chin.

Figure 5 represents a single A-line acquired in the human
trials. In this figure, ultrasound reflection can be seen at time 28
µs, which corresponds to a 42-mm round-trip distance. Based on
human anatomy [13], this echo was generated by reflection from
the bottom surface of the tongue. When the tongue moves, both
the amplitude and delay time of the ultrasound echo will vary,
and these parameters can be used to quantify oral movement.
Because ultrasound echo from the tongue surface looks quite
different from background signals, this feature was used to verify
the location of tongue surface.

The CC and STD algorithms were also used to process
human data, and the results are shown in Figures 6, 7,
respectively. Figure 6A shows the temporal correlation
coefficient of 1,000 frames (acquired in 10 s). Figure 6B

indicates correlation coefficient data after being smoothed
by a moving-average filter with a 3-pixel window size
[9]. The first deviation for the smoothed data is shown
in Figure 6C. For better illustration, Figure 6D is a
magnified image of Figure 6C, where every chewing cycle is
clearly displayed.

Figure 7A shows the original STD data as a function of
the frame number. Figure 7B indicates STD data after being
smoothed by a 3-pixel window size moving-average filter. The
first deviation for the smoothing data is demonstrated in
Figure 7C. Figure 7D is a magnified image of Figure 7C, where
each chewing cycle can be clearly seen. Based on the result in
Figure 7C, we calculated the FI factor and compare it with the
different levels of food sweetness.

FIGURE 6 | Data processing steps based on the CC method. (A) The original CC-processed data as a function of the frame number. (B) The smoothing-processed

plot of (A). (C) The first deviation of the smoothed data in (B). (D) A magnified plot of a section in (C), where multiple chewing cycles can be clearly seen. A red solid

line box is used to indicate one of the chewing cycles.
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FIGURE 7 | Data processing steps based on the STD method. (A) The original STD-processed data as a function of the frame number. (B) The smoothing-processed

plot of (A). (C) The first deviation of the smoothed data in (B). (D) A magnified plot of a section in (C), where multiple chewing cycle can be clearly seen. A red solid

line box is used to indicate one of the chewing cycles.

Analysis of variance (ANOVA) was used to verify whether
there are significant differences in tongue movement among
different food sweetnesses. The test was conducted with
32 subjects, each of whom was tested with three different
sweetnesses and repeated three times for each sweetness. The
results were presented in Table 1. ANOVA was then applied to
the FIs to compare tongue movement for foods with different
sweetnesses. ANOVA verified the significant differences among
FIs of three different sweetnesses during the bulk phase (Table 2)
[14]. The results showed an increased tongue activity for higher
sweetness samples. We used a single sample t-test [15] to analyze
the difference between the two conditions. Equation (1) is used
in the t-test, where d̄ is the mean of the differences between
the FI of two different sweetness tests, n represents the sample
size, u0 is population mean, and s is the standard deviation of
the difference. The FIs were multiplied by 1,000 in the t-test to
avoid leading zeros in the sums of squares when ANOVA was
applied [9].

t = (d̄ − u0)/(s/
√
n) (1)

For the high and middle sweetness (H-M) comparison, we found
that the P-value was 7.19% in the CC method and 0.44% in
the STD method. For the middle and low sweetness (M-L)
comparison, the P-value was 7.19% in the CC method and 1.44%
in the STD method. For the high and low (H-L) sweetness

comparison, the P-value was <0.01% in both methods. These

results indicate that the tongue movement varied significantly at
different food sweetness levels. Also, the STD method performed
better than the CC method in differentiating food sweetness.
This occurred because the CC method is more susceptible to

small changes, such as respiration and heartbeat, while the

STD method is more sensitive to relatively large variations, like
chewing and swallowing. Therefore, in this experiment, the STD

method obtained relatively better results. Plots of FI distribution
(Figures 8, 9) further confirm the decreasing tendency of the FI
with the reduction in sweetness.

Due to variations in different individual’s chewing behavior,

a direct comparison of the FI among subjects would render

inaccurate results. To address this issue, we developed a
self-calibration procedure, where each subject’s FI factors

are self-normalized by the mean FI of the same subject
at three different sweetness levels. After normalization, the

FI factors of different subjects would fall within a similar
range for easy comparison. The results from 32 subjects
using the data processing method described above are shown
in Figures 8, 9. Our conclusion was further validated by
calculating the effect size [16], which is the ratio of the
difference between two FI index means and their standard
deviation. The result is shown in Table 3. Here, effect size
>0.8, and 1.2 indicates a large difference between the two
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TABLE 1 | Fractal index data for every experimental subject.

Subject High Middle Low

Fractal index of correlation coefficient

1 0.0231 0.0202 0.0208

2 0.0106 0.0093 0.0092

3 0.0273 0.0271 0.0152

4 0.0208 0.0145 0.0139

5 0.0204 0.0197 0.0237

6 0.052645 0.074657 0.067792

7 0.00739 0.00657 0.00847

8 0.00938 0.00388 0.00418

9 0.036633 0.036 0.019673

10 0.031488 0.031945 0.029863

11 0.007282 0.005438 0.005271

12 0.005156 0.00731 0.004778

13 0.065804 0.068976 0.065251

14 0.06473 0.052953 0.050516

15 0.052596 0.060794 0.051153

16 0.08435 0.07483 0.06492

17 0.05766 0.03768 0.04866

18 0.04604 0.04672 0.0429

19 0.06625 0.06705 0.06732

20 0.03465 0.02827 0.03008

21 0.03915 0.03999 0.03457

22 0.03842 0.03648 0.03753

23 0.04651 0.04385 0.0489

24 0.04279 0.0404 0.04101

25 0.029626 0.029118 0.026348

26 0.034175 0.026216 0.033972

27 0.052024 0.059062 0.059707

28 0.045822 0.033092 0.031527

29 0.024375 0.02126 0.023749

30 0.020734 0.016485 0.017439

31 0.019579 0.017653 0.015969

32 0.015595 0.017229 0.013636

Fractal index of standard deviation

1 2.46E-05 2.37E-05 2.38E-05

2 2.2E-05 2.16E-05 1.93E-05

3 3.22E-05 3E-05 1.83E-05

4 1.92E-05 1.51E-05 1.48E-05

5 7.85E-05 7.82E-05 5.48E-05

6 8.44E-05 6.26E-05 5.92E-05

7 4.37E-05 4.61E-05 3.78E-05

8 7.37E-05 3.73E-05 3.44E-05

9 0.00016 0.000159 0.000127

10 0.000463 0.000476 0.000486

11 0.000644 0.000643 0.000639

12 0.000488 0.000487 0.000486

13 5.93E-05 6.28E-05 6.25E-05

14 0.000104 0.000104 9.65E-05

15 0.0001 8.91E-05 8.14E-05

16 0.000428 0.000385 0.000384

17 0.000489 0.000419 0.000475

(Continued)

TABLE 1 | Continued

Subject High Middle Low

18 0.000537 0.000518 0.000491

19 0.000172 0.000172 0.000177

20 0.000187 0.000159 0.000158

21 0.000168 0.000175 0.00014

22 0.000264 0.000222 0.000226

23 0.000254 0.000259 0.000201

24 0.000195 0.000205 0.00018

25 0.00013 0.000115 0.000103

26 0.00015 0.00011 0.000138

27 0.000173 0.000147 0.000134

28 0.000155 0.000129 9.36E-05

29 0.000152 0.000143 0.00013

30 0.000132 0.000124 0.000118

31 0.000135 0.000125 0.000128

32 0.000228 0.00027 0.000229

TABLE 2 | P-value of different comparison pairs.

P-value

H-M M-L H-L ANOVA

Correlation coefficient 0.071866 0.071866 <0.0001 0.020831

Standard deviation 0.004412 0.014454 <0.0001 0.000011

FIGURE 8 | Plots from the fractal index of correlation coefficient method. Each

set of subject data was normalized by its mean value to eliminate fluctuations

caused by different transducer positions.
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FIGURE 9 | Plots from the fractal index of standard deviation method. Each

set of subject data was normalized by its mean value to eliminate fluctuations

caused by different transducer positions.

TABLE 3 | Effect size of different comparison pairs.

Effect Size

H-M M-L H-L

Correlation coefficient 0.7325 0.3844 1.0933

Standard deviation 0.9410 0.9574 1.7012

groups. Based on the Table 3, the STD method is generally
better than the CC method, and for both CC and STD
methods, apparent differences can be seen between high and low
sweetness levels.

From all these results, we can conclude that the sweetness of
food has a significant correlation with oral processing behavior:
the sweeter the food, the more intense the tongue moves. It
should be noted that our device was designed to be used by the
same subject and cross-subject comparison will not be needed for
future applications.

DISCUSSION AND CONCLUSION

In this study, we developed a portable ultrasound system
that consists of a ceramic disk, an ultrasound pulser, and
a smartphone-controlled smartscope. After each ultrasound

pulse, the ceramic disk collects temporal data, which represents
the position of the tongue. Multiple ultrasound pulses are
associated with multiple sets of temporal data to track the
oral process and tongue movement. Our results indicate
that there is a positive correlation between the sweetness of
food and tongue movement. We hope this approach could
be used in the future to track sugar intake in patients
with diabetes.

While we have demonstrated encouraging results, future
improvements are still needed. First, although the size of the
transducer and the oscilloscope have been significantly reduced,
the ultrasound pulse generator is still relatively large. This issue
can potentially be addressed by using a mobile ultrasound pulser
chip, such as the ultrasonic signal processor and transducer driver
produced by Texas Instruments with a size of 6 × 5 mm2 [17].
Recent advances in smartphones also enabled mobile ultrasound
systems [18], whose techniques might be implemented in our
future design to make the system even more portable. Second,
the position of transducer placement is not ideal. A potential
solution is to integrate the sensor with an earbud and place it
right under the ear to monitor jaw movement. This position
will be more convenient for daily usage and the device can
potentially also record the sound of chewing [19]. Third, the
user interface needs to be optimized. Ideally, the software should
be able to track patients’ sugar intake from day to day and
notify the patient if the intake is significantly higher than the
typical value.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were
reviewed and approved by the University at Buffalo
Institutional Review Board (UB-IRB). The participants
provided their written informed consent to participate
in this study.

AUTHOR CONTRIBUTIONS

YZ designed the experimental setup, processed the data, and
wrote the article. JL collected and analyzed experimental
data and participated in the manuscript writing. SN and TS
offered guidance in data processing and manuscript revision.
LW guided the experimental design and data processing.
JX supervised the project and revised the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This project was partially supported by the University at Buffalo’s
IMPACT award.

Frontiers in Physics | www.frontiersin.org 8 July 2020 | Volume 8 | Article 266

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Zhan et al. Ultrasound-Based Sweetness Detection

REFERENCES

1. Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives

on disease pathogenesis and treatment. Lancet. (2001) 358:221–

9. doi: 10.1016/S0140-6736(01)05415-0

2. Kim S. Calculating Insulin Dose. (2019) Available online at: https://dtc.ucsf.

edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/medications-

and-therapies/type-2-insulin-rx/calculating-insulin-dose/

3. Hutchings JB, Lillford P. The perception of food texture-the

philosophy of the breakdown path. J Texture Stud. (1988)

19:103–15. doi: 10.1111/j.1745-4603.1988.tb00928.x

4. Prinz J, Lucas P. Mastication and swallowing: an optimisation model. Proc R

Soc Lond B. (1997) 264:1715–21. doi: 10.1098/rspb.1997.0238

5. Liu L, Hammond EG. The role of particles in the perception of flavours. J Food

Qual. (2000) 23:521–8. doi: 10.1111/j.1745-4557.2000.tb00577.x

6. Chen J, Engelen L. Food Oral Processing: Fundamentals of

Eating and Sensory Perception. Summit, NJ: John Wiley & Sons

(2012). doi: 10.1002/9781444360943

7. Neyraud E, Peyron MA, Vieira C, Dransfield E. Influence of

bitter taste on mastication pattern. J Dent Res. (2005) 84:250–

4. doi: 10.1177/154405910508400308

8. Engelen, L, de Wijk RA. Oral processing and texture perception. In:

Chen J, Engelen L, editors. Food Oral Processing: Fundamentals of

Eating and Sensory Perception. Oxford: Wiley-Blackwell. (2012) p. 159–

76. doi: 10.1002/9781444360943.ch8

9. de Wijk RA, Wulfert F, Prinz JF.de Wijk RA, Wulfert F, Prinz JF. Oral

processing assessed byM-mode ultrasound imaging varies with food attribute.

Physiol Behav. (2006) 89:15–21. doi: 10.1016/j.physbeh.2006.05.021

10. Prinz JF, Ng KW.Prinz JF, Ng KW. Characterization of sounds emanating

from the human temporomandibular joints. Arch Oral Biol. (1996) 41:631–

9. doi: 10.1016/S0003-9969(96)00070-2

11. Erikson KR, Fry FJ, Jones JP. Ultrasound in medicine-a review. IEEE Trans

Sonics Ultrasonics. (1974) 21:144–70. doi: 10.1109/T-SU.1974.29810

12. Green JR, Wang YT.Green JR, Wang YT. Tongue-surface movement patterns

during speech and swallowing. J Acoustical Soc Am. (2003) 113:2820–

33. doi: 10.1121/1.1562646

13. Netter FH, Colacino S. Atlas of Human Anatomy. 6th ed. East Hanover,

NJ. (1989).

14. Stangroom J. One-Way Repeated Measures ANOVA Calculator (2019).

Available online at: https://www.socscistatistics.com/contact3/

15. Stangroom J. Single Sample T-Test Calculator (2019). Available online

at: https://www.socscistatistics.com/tests/tsinglesample/default.aspx

16. Cohen H. Statistical Bower Analysis for Behavioral sciences. Hillsdale, NJ:

Lawrence Erlbaum Associates (1988).

17. Bageshwar DV, Pawar A, Khanvilkar VV, Kadam VJ. Photoacoustic

spectroscopy and its applications–a tutorial review. Eur J Anal Chem.

(2010) 5:187–203.

18. Gummadi S, Eisenbrey JR, Li J, LI Z, Forsberg F, Lyschik A, et al. Advances

in modern clinical ultrasound. Adv Ultrasound Diagn Ther. (2018) 2:51–

63. doi: 10.37015/AUDT.2018.180801

19. Zhang H, Song C, Wang A, Xu C, Li D, Xu W. PDVocal: towards privacy-

preserving parkinson’s disease detection using non-speech body sounds.

In: The 25th Annual International Conference on Mobile Computing and

Networking. Los Cabos: ACM (2019). doi: 10.1145/3300061.3300125

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhan, Luo, Nandi, Wang, Singh and Xia. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 9 July 2020 | Volume 8 | Article 266

https://doi.org/10.1016/S0140-6736(01)05415-0
https://dtc.ucsf.edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/medications-and-therapies/type-2-insulin-rx/calculating-insulin-dose/
https://dtc.ucsf.edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/medications-and-therapies/type-2-insulin-rx/calculating-insulin-dose/
https://dtc.ucsf.edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/medications-and-therapies/type-2-insulin-rx/calculating-insulin-dose/
https://doi.org/10.1111/j.1745-4603.1988.tb00928.x
https://doi.org/10.1098/rspb.1997.0238
https://doi.org/10.1111/j.1745-4557.2000.tb00577.x
https://doi.org/10.1002/9781444360943
https://doi.org/10.1177/154405910508400308
https://doi.org/10.1002/9781444360943.ch8
https://doi.org/10.1016/j.physbeh.2006.05.021
https://doi.org/10.1016/S0003-9969(96)00070-2
https://doi.org/10.1109/T-SU.1974.29810
https://doi.org/10.1121/1.1562646
https://www.socscistatistics.com/contact3/
https://www.socscistatistics.com/tests/tsinglesample/default.aspx
https://doi.org/10.37015/AUDT.2018.180801
https://doi.org/10.1145/3300061.3300125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	A Portable Ultrasound System for Detecting Food Sweetness Based on Chewing Dynamics: A Preliminary Investigation
	Introduction
	Materials
	Data Processing Methods
	Results
	Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


