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A Commentary on

On helicon thrusters: Will they ever fly?

by Godyak, V. (2020). J. Appl. Phys. 127:103301. doi: 10.1063/1.5139998

A recent paper [1] has discussed and questioned the suitability of the helicon thruster (HT) for
space use, concluding that “It seems unlikely that a spacecraft based on an HP thruster will ever
fly (Sic),” by comparing the Helicon Plasma (HP) source with an inductively coupled plasma
(ICP) source, in terms of radiofrequency (RF) power coupling, controllability, and disadvantage
of magnetic field requirement. [1] presents no original data and instead uses a narrow set of data
selectively drawn from the literature to derive inaccurate and biased comments such that appear in
the abstract “It is shown that helicon thrusters should be inferior to those based on inductively coupled
plasmas (Sic)” and “we have shown that several key features of the HP thrusters make them inferior
to thrusters based on ICP or FMICP (Sic).”

Themain discussion in [1] focuses on the plasma production, the presence of capacitive coupling
and its effect on the power coupling. There is, however, no scientific discussion on thrust generation
and thruster performance yielding a disconnect between the manuscript’s content and its title,
abstract, and conclusion: as a clear example, Sec. VI in [1] concludes that the magnetic field
does not provide any advantage to the HT despite citing [2, 3], which provide evidence of thrust
generation by applying the magnetic field. Although power coupling is one of many important
issues in improving any electric thruster performance, the thrust is given by the momentum flux
(i.e., density and velocity) exhausted from the propulsion system. Godyak [1] entirely neglects the
processes involved in the exhaust of the plasma from the source, the momentum conversion/loss,
and the energy loss in the source: this commentary addresses these processes and how they can be
affected by the magnetic field.

1) B-field effect on the HT performance: Previous thrust measurement has shown an increase
in the thrust of the HT when applying a magnetic field while maintaining a constant plasma density
in the source [4]. For constant plasma density in the source, the thrust increases with an increase
in the magnetic field. For a RF power of ∼1 kW, the thrust with no magnetic field is ∼3–4 mN,
whereas the total thrust is larger than 10 mN for a magnetic field strength of∼700G corresponding
to an electric power of less than 1 kW consumed by the solenoid. The thrust increase is caused by
momentum conversion which results from the Lorentz force in the magnetic nozzle, as previously
investigated in analytical [5], numerical [6, 7], and experimental studies [8–10]. Therefore, applying
the magnetic field is more effective than increasing the RF power. Although the magnetic field
sometimes degrades the RF power coupling as discussed from Figure 4 in [1], the thruster
performance would be the result of the balance between the advantage of applying a magnetic field
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and the plasma production efficiency. Furthermore, a high
plasma potential in the source can be obtained by applying the
magnetic nozzle, resulting in a high exhaust velocity of the ions
and an increase in specific impulse [11, 12].

2) B-field effect on the loss in the HP source: [1] claims
that the effect of the magnetic field on the energy balance owing
to the radial confinement is little for such an open system
(Sec. V). However, a recent experiment providing the energy
and momentum fluxes lost to the radial wall has clearly shown
that the energy and momentum losses can be inhibited by the
magnetic field [13]. In electric propulsion devices, it is important
to increase the plasma flux exhausted from the source. An
experiment performed by Little and Choueiri [14] has clearly
shown the significant role of the magnetic field on the plasma
exhaust from the source exit.

3) Power absorption profile: [1] claims in Sec. V that
“the plasma density, its spatial profile, and electron temperature
are the same for MWP, ICP, and HP (Sic).” However, a
fundamental experiment performed by Lafleur et al. [15] has
clearly shown modification of the plasma density profile owing
to the presence of the Helicon wave. Moreover, HT performance
depends not only on the density profile but also on the
electron temperature and the RF power deposition maps. A
numerical model has shown that the latter is controlled by the
magnetic field [16]. The effect of the density profile on the
thrust has been experimentally and analytically demonstrated by
combining thrust measurements and plasma parameters profile
measurements [6, 17, 18].

4) Power requirement for the magnetic field: The power
consumed by the solenoid is an important issue as pointed out
in [1], of course, for designing a HT system. For high RF power
operation of the thruster, the fraction of electricity required for

the solenoid would become small, e.g., less than 20% for 5 kW
RF power and 1 kG magnetic field requiring ∼900W of power
for Figure 22 in [3]. Furthermore, solenoids might be replaced
by permanent magnets, as previously demonstrated [19, 20]; this
requires additional design optimization to produce the desired
magnetic field.

Based on points 1 to 4 and current literature status, the HT
operating with a magnetic field has shown better performance
when compared with the ICP: Takahashi [3] reports a thruster
efficiency increased to about 20% when using an applied
magnetic field, which is higher than the typical ICP thruster [21].
Because the HT research and development is in its early stages
with respect to other mature electric propulsion technologies
(gridded ion and Hall effect thrusters), it is premature to
conclude that the HT “should be inferior (Sic)” to the ICP
thruster only from the viewpoint of power coupling as in [1].
The suitability criteria also include issues such as the allowed
development timeframe and cost, the system’s expected lifetime,
and potential competitive advantages if successfully developed.
There is on-going development work on RF thrusters of different
types including the HT and the ICP, which aims at increasing
performance and design based on space mission requirements;
this includes improved designs of RF antenna, matching network,
and RF power control, as shown in recent studies [22–24]
including Godyak [1].
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