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A dual-band microstrip patch antenna (MPA) based on a polarization conversion

metasurface structure was designed. By etching the complementary split ring resonator

(CSRR) on the ground plane, a new resonance frequency is generated. The proposed

antenna is obtained through optimizing the structural parameters of CSRR. Compared

with the antenna without CSRR, the return loss of the proposed antenna increases

by ∼40% at the original resonance frequency. The measured results are similar to the

simulated results, verifying the reliability of the antenna. This work introduces a new way

of designing multi-band antenna.

Keywords: microstrip antenna, dual-band, polarization conversion, metasurface structure, complementary split
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INTRODUCTION

An antenna plays an important role in modern wireless communication systems. In recent years,
theminiaturization andmulti-functionalization of communication devices require that the internal
antenna has strong integration capabilities [1, 2]. Meanwhile, owing to the lack of wireless spectrum
resources, the demand for multi-band antenna has increased [3–5]. Microstrip patch antenna
(MPA) are extensively used due to their advantages of small size, simple structure, low cost, and
ease of integration [6, 7]. Many methods have been studied to obtain multi-band antenna, such
as coupling feed technologies [8], slot-loaded technologies [9], and reconfigurable technologies
[10, 11]. Unfortunately, these methods require complex calculation, and the antenna structures
are difficult to manufacture. Thus, new designs should be explored to simplify the structure and
theoretical analysis.

Metasurface, due to its extraordinary electromagnetic properties, is widely used in antenna
design [12–14], namely in the realization of multi-band [15, 16], ultra-wide-band [17–19], and
high-gain antenna [20, 21]. In most cases, the metasurface structure is loaded on the antenna as a
radiating element. The capability of a multi-band operation is not currently apparent. Many efforts
have beenmade to solve this problem, such as etching a complementary split ring resonator (CSRR)
on the ground plane. The CSRR unit cell can resonate with an electromagnetic wave, resulting
in new resonance peaks. Ali et al. [22] created a triple-band antenna by etching rectangular and
circular CSRRs. Zhou et al. [23] fabricated a composite right/left-handed structure as the radiating
element and employed a square CSRR to get a dual-band antenna. Xu et al. [24] used a simple
square split ring resonator to design an ultra-broad-band linear polarization converter, which
provided a way to change the antenna polarization mode. We have recently obtained a broadband
microstrip patch antenna by using a complementary rhombus resonator [25].
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In this work, we designed a dual-band MPA loaded with
a CSRR structure. The CSRR serves as a resonator. From the
simulated results, it is found that the MPA exhibits excellent
performance within the dual-band resonance in the range of 3.0–
7.5 GHz. The measured results are similar to the simulated ones,
which proves that the proposed antenna can be well–applied to
physical devices.

ANTENNA DESIGN

C-band antenna have been widely used in satellite
communication and navigation [26]. Therefore, we designed
an antenna operating at 6.9 GHz. The top and back view of the
antenna are, respectively, shown in Figures 1A,B. The upper
layer of the antenna consists of a rectangular patch, and two
different-width feedlines. The middle layer is an FR4 substrate
with a relative dielectric constant of 2.65 and the lower layer
is a metal ground plane. In order to realize the design of the
dual-band antenna, the ground plane is modified. As shown
in Figure 1C, CSRR was etched on the ground plane which is
used to generating new resonance frequency. To further improve
the electromagnetic performance of the antenna, a series of
parameter optimization was carried out, and the ground plane of
the proposed antenna is shown in Figure 1D.

FIGURE 1 | (A) Top view and (B–D) design process for the ground plane of the proposed antenna.

The simulated results of the proposed antenna are shown in
Figure 2, with a series of side length r, split width d, rotation
angle θ , and distance h. It can be seen that the original resonance
frequency is affected by length r, split width d, and rotation
angle θ , while the new resonance frequency is mainly tuned by
distance h. According to Figure 2A, as r increases from 15.0 to
16.5mm, the original resonance frequency moves to the lower
frequency. When r = 16.0mm, the return loss at the original
resonance frequency is maximum. Figure 2B demonstrates that,
as d increases from 0 to 4.5mm, the original resonance frequency
moves to the higher frequency. When d = 0, which means
CSRR is a closed ring, the original resonance disappears. At
this time, the antenna only works in S-band. As displayed in
Figure 2C, when θ increases from 0 to 45◦, the original resonance
frequency moves to the lower frequency. Moreover, when θ =

30◦, the return loss at the original resonance frequency reaches
maximum. Figure 2D depicts that, as h increases from 24.0

to 25.5mm, the new resonance frequency moves to the lower

frequency. When h = 24.5mm, the return loss at new resonance

point is at its maximum, now the centers of CSRR and the

substrate coincide. Considering the performance of antenna
comprehensively, we designed the ground plane of the proposed
antenna as Figure 1D. The parameters of the proposed antenna
are listed in Table 1.

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 279

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Yao et al. Polarization Conversion Metasurface Antenna

FIGURE 2 | Return loss of the proposed antenna with a series of (A) side length r; (B) split width d; (C) rotation angle θ ; (D) distance h.

TABLE 1 | Parameters of the proposed antenna.

Parameter Value Parameter Value

a 40.0mm b 49.0 mm

t 1.5mm w 22.5 mm

wf1 1.5mm wf2 1.0 mm

t1 0.035mm l1 14.0 mm

l2 14.0mm l3 14.0 mm

r 16.0mm d 3.0 mm

s 1.0mm h 24.5 mm

θ 30◦

To intuitively illustrate the effect of CSRR on the antenna
frequency band, the return loss of the original antenna and the
proposed antenna are compared. As shown in Figure 3, it can
be inferred that the proposed antenna has a new resonance peak
centered at 3.54 GHz with a return loss of 21.4 dB. The original
resonance frequency shifts from 6.87 to 6.72 GHz, and its return
loss increases from 22.1 to 31.2 dB.

RESULTS AND DISCUSSION

In order to explain the work principle of CSRR, the surface
current distribution of the antenna is observed. Figure 4 shows
the surface current distribution of the antenna without CSRR
at 6.87 and 5.00 GHz. From Figures 4A,B, we can see that the
current density at 6.87 GHz is higher than 5.00 GHz. It can be

FIGURE 3 | Return loss of the original antenna and the proposed antenna.

deduced that the electromagnetic wave of a specific frequency is
excited by the rectangular patch and the feedlines, resulting in
resonance at 6.87 GHz.

Figure 5 shows the surface current distribution of the antenna
with CSRR at two resonance frequencies. It can be observed that
the current is no longer limited between the radiation patch and
feedlines. It also distributes around CSRR, which demonstrates
that the CSRR can act as a resonator to generate new resonance
peak. Obviously, etching CSRR damages the structure of the
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ground plane, so that the current distribution is changed.
Moreover, the current shocks back and forth in the CSRR,
radiating a specific frequency of electromagnetic wave. However,
there are some differences in the surface current distribution of
Figures 5A,B. At the frequency of 3.54GHz, the surface current

FIGURE 4 | Surface current distributions of the original antenna: (A) 5.00

GHz; (B) 6.87 GHz.

mainly distributes around the CSRR. Thus, the new generated
resonance peak is mainly affected by the parameters of the CSRR.
Similarly, the resonance peak centered at 6.72GHz is modulated
by the rectangle patch and CSRR.

In order to figure out why CSRR can be used as a resonator, a
few more details are exhibited. Comparing the results shown in
Figure 5, it can be observed that the surface current distributes
around the whole CSRR at 3.54 GHz, while only the lower half of
CSRR has a current distribution at 6.72 GHz. It can be inferred
that CSRR serves as a frequency-controlled switch which only
opens at specific frequencies. When the switch is closed, the
current in the CSRR shocks back and forth, resulting in new
resonance within the antenna at 3.54 GHz.When the switch is on,
the electromagnetic wave is only generated by the lower section
of CSRR and it couples with the antenna radiating element,
resulting in the original resonance point shifting by ∼0.15 GHz.
Combining with the return loss diagram in Figure 3, it can
be concluded that the return loss at the resonance frequency
increases by∼40%.

CSRR can not only produce resonance peaks as a resonator,
but also affect the radiation characteristics of the antenna.
To analyze the effect of CSRR on the polarization mode, the

FIGURE 5 | Surface current distributions of the proposed antenna: (A) 3.54 GHz; (B) 6.72 GHz.

FIGURE 6 | Polarization direction of the antenna: (A) 6.87 GHz (the original antenna); (B) 6.72 GHz (the proposed antenna).
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FIGURE 7 | Radiation patterns of the proposed antenna: (A) 3.54 GHz; (B) 6.72 GHz.

FIGURE 8 | Photographs of the fabricated antenna: (A) the original antenna; (B) the proposed antenna.

FIGURE 9 | Simulated and measured return loss of the antenna: (A) the original antenna; (B) the proposed antenna.

polarization direction of the antenna with and without CSRR
are shown in Figure 6. Figure 6A shows that the polarization
direction of the antenna without CSRR is symmetrical at 6.87

GHz, while Figure 6B indicates that the symmetry of the antenna
with CSRR is broken at 6.72 GHz. It can be interpreted
that the polarization mode of antenna is highly related to its
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TABLE 2 | Comparison of the antenna performances of this work and the

previous literatures.

References Antenna size

(mm2)

Number of

resonance

peaks

Operating

frequency

band

Resonance

frequencies (GHz)/

Peak gain (dBi)

[8] 50 × 58 4 S, C, X 2.1/1.30

3.3/1.59

5.3/2.12

7.5/3.73

[14] 5 × 5 1 C —

[22] 60 × 60 3 S, C 2.45/1.03

3.56/5.10

5.60/5.41

This work 40 × 49 2 S, C 3.54/4.78

6.72/4.65

structure and changes within the structure. In order to better
evaluate the antenna performance, the radiation patterns of the
proposed antenna at resonance points are investigated as shown
in Figure 7. It can be seen that the radiation patterns in H-
Plane are almost omnidirectional and the radiation patterns in
E-Plane are monopole-like. In addition, the distortion of the
radiation patterns is extremely slight, which proves that the
introduction of CSRR has almost no effect on the performance of
the antenna.

To verify the simulated results, the original antenna and
the proposed antenna are fabricated, measured, and compared.
A circuit board engraving machine is used to fabricate the
antenna and a vector network analyzer (VNA) is used to
measure the electromagnetic properties of the antenna. The
fabricated antenna are shown in Figure 8. The simulated and
measured return loss of the original antenna and the proposed
antenna are shown in Figure 9. From Figure 9A, the two
curves have a nearly consistent trend and the resonance peaks
almost coincide. As depicted in Figure 9B, the two measured
resonance frequencies move from 3.54 and 6.72 GHz to 3.62
and 6.58 GHz, respectively. Compared with the simulated
curves, the return loss decreases by 3–4 dB. Considering the
inevitable errors in the process of antenna manufacturing,
welding, and measuring, the above deviation can be ignored.
Similarly, the fact that the bandwidth of measured curves is
broader than the simulated curves is also due to fabrication
and measurement errors. Therefore, the measured results
correlate with the simulated ones, which proves the reliability of
the antenna.

Based on the above analysis, it can be summarized that an
antenna etched with CSRR performs excellently despite being
small in size and containing a simple structure. Furthermore,
we compared the dual-band antenna designed in this work with
other literature [8, 14, 22] in terms of size, number of resonance
peaks, operating frequency bands, and peak gain, as listed in
Table 2. It is observed that, in other works, multi-band antenna
are larger, while small size antenna operate at single-band. The
design of our work realizes both miniaturization and multi-band
in an antenna, which widens the possibilities for multi-band
antenna design.

CONCLUSION

In conclusion, a dual-bandMPA etched with CSRR was designed.
The proposed antenna with high performance was obtained
by optimizing the structural parameters of CSRR. Based on
the simulated results of surface current distribution, it was
found that the current shocks back and forth in the CSRR,
generating a new resonance peak. By adjusting the rotation
angle of the CSRR, an obvious resonance frequency appears.
Moreover, the consistency between the simulation and the
recorded measurement demonstrates the validity of the design.
This work provides a new way to design multi-band antenna.
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