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The increasing plead for the realization of ultra-fast, miniaturized, compact, and ultra-low
power consumption in electronic as well as spintronic devices has propelled the quest
for novel multiferroic materials that efficiently enable voltage control of magnetism.
The present work reports the phase stability, magnetic and dielectric responses of
polycrystalline Bi1−xLaxFe1−yNiyO3 (0 ≤ x ≥ 0.2 and 0 ≤ y ≥ 0.2) multiferroic ceramics
synthesized through a simplistic sol–gel approach. The maneuver substitutions of La at
A− site of BiFeO3 multiferroic eliminate the secondary phases formed owing to impurities.
Rietveld refined XRD analysis reveals the structural transformation of the orthorhombic
(Pbnm) phase as La substitution increases. However, an additional lattice distortion is
induced as a result of the substitutions of Ni atoms at B− site. A substantial enhancement
in magnetic and dielectric responses has been found in the co-doped (Ni and La)
sample at both A and B− sites as a result of the size confinement of nano-crystallites,
the exchange interaction between Fe3+ and Ni2+ ions, and corresponding variation
in Fe–O–Fe bond angles. The dielectric constant has increased substantially in the
low-frequency region with simultaneous substitutions of La and Ni at the sites of Bi and
Fe, respectively. A careful observation of temperature-dependent magnetization curves
(FC and ZFC) indicates a spin glass response with entangled ferromagnetic components.
The experimental findings infer that the co-substitutions of La and Ni at their respective
sites in Bi1−xLaxFe1−yNiyO3 (0 ≤ x ≥ 0.2 and 0 ≤ y ≥ 0.2) may significantly improve the
ferromagnetic and dielectric responses of the studied nanoceramics.

Keywords: multiferroics, BFO, magnetization, dielectric constant and loss, nanoceramics

INTRODUCTION

Multiferroics are among the special class of materials having ferroelectric and ferromagnetic phases
simultaneously and being studied extensively in the recent past as they offer some of the most
promising applications of technological importance [1–5]. Among various multiferroic materials,
BiFeO3 (BFO) has emerged as a potential material offering a wide range of viable applications in
next-generation actuators, sensors, non-volatile memory devices (FeRAMs), and photovoltaics as it
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has many intriguing properties such as robust ferroelectricity,
magnetism, and photovoltaic effects [6–10]. Furthermore,
BFO allows the tuning of magnetic properties by applying
an electric field, i.e., EM coupling (converse ME coupling),
and leads to controlled permeability with minimum power
consumption. Energy harvesting applications of multiferroics
through photovoltaic has been a pioneering area of study by
its own and the combination of other ferroic properties leads
it to a new track [11–14]. BFO shows multiferroic responses at
room temperature, with Curie temperature (1,103K) and Neel
temperature (647K) [15]. BFO crystal exhibits rhombohedral
distorted perovskite structure with R3c space group (ar = 3.96
Å and αr = 0.6◦) [16]. Nevertheless, pure and bulk BFO has
shown poor performance in various technological applications
because of low saturation magnetization, high current leakage,
and poor magnetoelectric response at room temperature [17].
Therefore, there has been a continuous effort to improve the
multiferroic properties of BFO through controlling their size (in
the realm of nanoscale) and thus results in the origin of size-
dependent magnetic and electric properties [18, 19]. On the other
hand, the substitution of other atoms on either of A/B or A and
B sites has proved to be another successful approach to alter
the aforementioned properties. Despite tremendous advanced
researches in the area of BFO, it is still difficult to develop
a low-temperature synthesis protocol, which does not involve
the formation of intermediate impurity phases [20, 21]. These
impurity phases have a great influence on magnetic, electrical,
and other properties of the multiferroic materials. At the same
time, these impurity phases have also been responsible for the
large leakage current discussed earlier, owing to the hopping of
electrons, weak magnetoelectric coupling, and low resistivity. In
recent demonstrations, it was found that chemical substitution
or doping has been an effective way to remove the impurities
and thus enhancing its multiferroic properties. Aliovalent and
isovalent substitutions at Bi and Fe sites have been attempted to
overcome this drawback and to enhance the magnetic, electric,
and magnetoelectric properties [20–22]. Some earlier studies
report that doping of isovalent elements at Bi− sites eliminates
or at least minimizes the formation of secondary phases [23]. It
is also reported that it leads to a structural change as a result
of imbalanced 6s2 lone pair and further affects the intrinsic
properties like ferroelectric and magnetic responses. However,
isovalent substitution at Fe− site affects its magnetic properties
without (or negligibly small) altering its ferroelectric behavior
[24–28]. On the other hand, aliovalent doping at Bi or Fe site
results to either fill or create oxygen vacancies [17, 29–32] and
finally enhances the multiferroic properties of BFO. Doping
of rare earth elements in BFO has been a subject of utmost
importance as it leads to structural phase stability through the
internal chemical pressure [33]. The small difference in atomic
radii of rare earth dopant and Bi causes strong chemical pressure
and thus affects the phase stability of the rhombohedral phase
of doped BFO. In this context, La doping at Bi− site has been
of particular interest because of (1) the large difference in ionic
radii of Bi3+ and La3+ and (2) the increase in dielectric constant
and decrease in leakage current [34]. Similarly, the aliovalent
doping of various divalent at the Fe− site significantly improves

the ferroelectric behavior of BFO [34]. Ni has been an effective
candidate among various B− site substituents in BFO with better
multiferroic response [35–39].

Herein, keeping the aforementioned considerations, we
have successfully synthesized La and Ni co-substituted BFO
multiferroic ceramics, at A and B Fe site lattices, respectively,
through a facile sol–gel approach. These substitutions lead to a
structural transformation from rhombohedral to orthorhombic
phase. The evolution of the new phase opens a new avenue
of manipulating the ferromagnetic and ferroelectric properties
of BFO. Therefore, a systematic study of the magnetic and
ferroelectric properties of La and Ni co-substituted BFO vis-a-vis
the structural modifications has been conducted.

MATERIALS AND METHODS

Chemicals
All the chemicals used in the present work were of analytical
reagent grade and used as received without any further
purification. Bismuth nitrate pentahydrate Bi (NO3)3·5H2O,
iron nitrate nonahydrate Fe (NO3)3·9H2O, lanthanum
nitrate hexahydrate La (NO3)3·6H2O, and nickel nitrate
hexahydrate Ni (NO3)2·6H2O were purchased from Sigma
Aldrich whereas ethylene glycol and concentrated HNO3

were procured from Fisher Scientific. Aqueous solutions used
throughout the experiments were prepared by using ultrapure
double-distilled water.

Synthesis
In a typical synthesis, a facile sol–gel method has been used
to prepare Bi1−xLaxFe1−yNiyO3 (0 ≤ x ≥ 0.2 and 0 ≤ y ≥
0.2) (BLFNO) powders. Briefly, stoichiometric amounts of the
starting materials were dispersed in deionized water (100ml),
followed by a constant magnetic stirring at 200 rpm and 80◦C.
An additional quantity of bismuth nitrate (∼7.5 wt.%) was added
to indemnify Bi owing to its volatile nature. A few drops of
concentrated HNO3 were also added to avoid the precipitation
of bismuth hydroxide. Furthermore, ethylene glycol (50ml) was
added in the solution which forms an organic 3D tangled network
and resulted in a transparent blackish-red solution. The as-
obtained solution was further kept in an oven held at 150◦C,
and a xerogel powder was thus obtained. The xerogel powder
was ground gently and calcined at 300◦C for 4 h. The as-
obtained powder was pelletized in the rectangular form through
a hydraulic press at a pressure of 3.5 tons per square inch. The
pellets were sintered at 550◦C for 2.5 h and allowed to quench
normally in the air.

Characterizations
The structural features and crystalline properties of the as-
synthesized powder samples were accessed through a powder X-
ray diffraction carried out by PANalytical X-ray diffractometer
using CuKα radiation (λ = 1.5406 Å at 40 kV and 30mA),
with scanning in the range 2θ of 15◦ to 80◦. The as-obtained
XRD data were further analyzed by Rietveld refinement using
FullProf Programme. The microstructures and morphologies
of the as-synthesized materials were studied by transmission
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FIGURE 1 | (A) XRD patterns obtained for Bi1−xLaxFe1−yNiyO3 (x = 0.0, 0.05, 0.10, 0.15, 0.20, and y = 0.0) samples at room temperature. (B) XRD patterns
obtained for Bi1−xLaxFe1−yNiyO3 (x = 0.20 and y = 0.0, 0.05, 0.07, 0.1, 0.15, 0.20) samples at room temperature.

electron microscope (TEM; TECNAI 20G2, operated at an
accelerating voltage of 200 kV) and scanning electronmicroscope
(SEM-Quanta 200). Samples for TEM analysis were prepared
by ultrasonically suspending the powder in double-distilled
water and placing a drop of the suspension on a coated
copper grid. Magnetization measurements of the as-synthesized
samples were performed on a 7-T Quantum Design PPMS
(VSM). The frequency dependence dielectric measurements
were accessed through the HP4192A impedance analyzer at
ambient conditions.

RESULTS AND DISCUSSION

Figure 1 describes X-ray diffraction patterns of all the
as-synthesized materials Bi1−xLaxFe1−yNiyO3 and reveals
the polycrystalline behavior with good crystallinity of the
samples. Diffraction peaks originated from (012), (104), (110),
(006), (202), (024), (116), (112), (018), and (300) reflection planes
have been the characteristic peaks of BiFeO3 and indexed well
with the known rhombohedral distorted perovskite structure
having space group R3c (JCPDS No. 86-1518). The diffraction
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pattern also exhibits some peaks owing to secondary phases,
i.e., Bi2Fe4O9 and Bi24Fe4O39 [29, 40–42]. The formation of
these impurity oxides and thereby substantial suppression with

La doping at A site may be described by the fact that Bi3+ and
Fe3+ ions have not been very stable in aqueous solution and
get hydrolyzed in water rapidly. Oxide formation occurs fast

TABLE 1 | Refined structural parameters and tolerance factors of Bi1−xLaxFe1−yNiyO3 nanoceramics.

Bi1-xLaxFe1-yNiyO3 x = 0.0,

y = 0.0

x = 0.2,

y = 0.0

R3c phase

x = 0.2,

y = 0.0

Pbnm phase

x = 0.2,

y = 0.05

x = 0.2,

y = 0.07

x = 0.2,

y = 0.10

x = 0.2,

y = 0.15

x = 0.2,

y = 0.2

a (Å) 5.5815 5.5743 5.6000 5.6030 5.6040 5.6078 5.6102 5.6070

b (Å) 5.5815 5.5743 5.5898 5.5920 5.5930 5.6010 5.5986 5.5960

c (Å) 13.8740 13.7602 7.8421 7.8520 7.8540 7.8549 7.8560 7.8530

V (Å3) 374.3089 370.2816 245.4803 246.0187 246.1692 246.7168 246.7511 246.4018

T 0.89089 0.88942 0.88942 088834 0.88791 0.88725 0.88617 0.88509

Fe–O(1) 2.19453 2.10184 2.0213 2.0228 (5) 2.0387 (7) 2.0479 (7) 2.0056 (7) 1.9723 (5)

Fe–O(2) 1.89068 1.94454 1.971 (8) 1.5151 (8) 1.5335 (9) 1.5673 (10) 1.5335 (6) 1.4940 (7)

Fe–O(2) – – 2.4798 (13) 2.4892 (13) 2.4939 (16) 2.6588 (20) 2.6559 (10) 2.6641 (13)

Fe–O–Fe 152.1987 155.1669 156.14 (13) 157.01 (13) 157.43 (14) 157.46 (20) 156.16 (9) 155.62 (13)

χ
2 2.54 1.83 1.91 1.499 1.846 2.099 1.709 1.566

FIGURE 2 | Observed, calculated, and difference Rietveld refined XRD patterns of Bi1−xLaxFe1−yNiyO3 samples: (A) x = 0.20 and y = 0.0, (B) x = 0.20 and y = 0.10,
(C) x = 0.20 and y = 0.20.
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FIGURE 3 | SEM images of Bi1−xLaxFe1−yNiyO3: (a) x = 0, y = 0; (b) x = 0.20, y = 0; (c) x = 0.2, y = 0.05; (d) x = 0.2, y = 0.2.

from the respective hydrolyzed contents in a binary solution
of water–ethylene glycol. Because ethylene glycol molecule
contains two hydroxyl groups and forms a 3D network, the
oxide formation reaction gets increased in water–ethylene glycol
solution. Oxide formation usually occurs following the reaction,
in the present case:

27Bi(OH)3 +7Fe(OH)3 −→ BiFeO3 + Bi24Fe2O39

+Bi2Fe4O9 + 51 H2O

The incorporation of La significantly reduces the probability
of formation of hydroxides and volatilization of Bi leading to
the oxygen ion vacancies in the lattice, in turn restricting the
formation of the undesired oxides.

The XRD patterns of the studied Bi1−xLaxFe1−yNiyO3

samples also reveal that the peak splitting behavior decreases
gradually with increasing x contents. Furthermore, the diffraction
peaks (104), (110) and (006), (202) get merged to the respective
single peaks, suggesting the distortion of the rhombohedral
structure by La substitutions [40]. It is known that with the
decrease in the average A− site ionic radius, rhombohedral to
orthorhombic phase transition occurs in BiFeO3 system because
of the chemical pressure exerted by a relatively small rare earth
(RE) substitution at Bi site [40]. Moreover, the co-substitutions
of La and Ni at their respective sites lead to a continuous shift
in 2θ values toward a higher angle as a result of a significant
decrease in the unit cell parameters and the volume as evident
from Table 1 also. Figure 2 depicts the Rietveld refined XRD
patterns of the selective samples. The pseudo-Voigt function was

used to fit the peak profile of pure BFO (space group R3c) and
for La and Ni co-substituted samples (space group Pbnm) [40].
The observed, calculated, and difference for XRD patterns of
Bi1−xLaxFe1−yNiyO3 have been found in fairly well-agreement.
The tolerance factor τ (τ = (rA + rO)/

√
2(rB + rO), where rA,

rB, and rO represent the ionic radii of the A, B, and O sites,
respectively) has been calculated and summarized in Table 1. Ni
substitution leads to a decrease in tolerance factor and thereby
the driving force for octahedral rotation increases.

The insight of the morphological aspects of
Bi1−xLaxFe1−yNiyO3 (x = 0.0, 0.2 with y = 0.0 and
0.2) nanoceramic samples has been studied by employing
scanning electron microscopy. Figure 3 represents the typical
SEM micrograph of as-synthesized samples. It depicts the
agglomeration of nanosized particles and, in turn, reveals
that the progressive doping of La and Ni contents affects the
morphologies of the sample. SEM micrograph of pristine BFO
indicates that the grains have been rather non-uniform and the
grain size varies in the range ∼100–150 nm. Moreover, the SEM
micrographs of La and Ni co-substituted BiFeO3 point that the
particle morphology slightly changes with reduced grain size. It
infers the effect on the crystallization habit of BFO particles by
doping contents.

TEM studies have been carried out to further investigate the
morphological aspects of Bi1−xLaxFe1−yNiyO3 (x = 0.0, 0.2 with
y = 0.0 and 0.2) nanoceramics and displayed in Figure 4. The
average particle size of the sample decreases from 100–150 nm
with x = 0.1; y = 0.0 to 50–60 nm with x = 0.2; y = 0.2 which
results because of the unit cell volume decrease. The inset shows
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FIGURE 4 | TEM images of Bi1−xLaxFe1−yNiyO3: (a) x = 0.0, y = 0; (b) x = 0.20, y = 0. Inset in (a,d) shows SAED pattern for rhombohedral (c,d) HRTEM images of
Bi1−xLaxFe1−yNiyO3 (y = 0.0 and 0.10 with x = 0.20, for both).

the selected area electron diffraction (SAED) patterns of pristine
BFO and Ni-doped BFO samples. It reveals the hexagonal
pattern (inset of Figure 4a) indexed with rhombohedral structure
whereas the diffraction pattern (inset of Figure 4b) of Ni-doped
BFO possesses the orthorhombic symmetry (Pbnm).

The temperature and field dependence magnetization of the
as-synthesized samples have been investigated for assessing the
magnetic behavior of the nanoceramics. Figures 5A,B traces the
room temperature magnetization hysteresis (M-H) loop of the
samples. The magnetization increases linearly with an increasing
magnetic field, suggesting the existence of weak ferromagnetism
arising as a result of canting of antiferromagnetic sublattices, for
pristine BFO. The magnetic moment gets enhanced substantially
with La doping at A− site in BiFeO3. Such enhancement
has already been reported elsewhere [41, 42]. Figures 5A,B

indicates that magnetization changes with Ni− doping in
Bi1−xLaxFe1−yNiyO3 (x = 0.2 and y = 0.05, 0.07, 0.10, 0.15,
and 0.20) even in the low field range, i.e., up to 1 T. It can also
be observed that the magnetization increases to a maximum
for y = 0.10 and further decreases with a higher content of
Ni. It is reported that the magnetization has been induced in
BiFeO3 by regulating the particle size smaller to the enduring
spin periodicity of 62 nm as well as by chemical substitution [29,
40, 43]. In the present study, the particle sizes have been found
close to the spin periodicity so the reduction in particle size plays

a vital role in the enhanced magnetization. The enhancement in
the magnetization of Bi1−xLaxFe1−yNiyO3 can also be attributed
to the substitution of a small amount of Ni2+ doping at B−

site which perturbs the Fe–O–Fe bond angles (Table 1). As the
superexchange interaction has been sensitive to bond angles, the
spiral structure may get destroyed completely by co-substitution
of La3+ and Ni2+, and thereby leads to the enhancement in
magnetization [39].

The ZFC and FC curves of Bi1−xLaxFe1−yNiyO3 (x = 0.2
and y = 0.0, 0.05, 0.07, 0.10, 0.15, and 0.20) nanoceramics
under applied magnetic field of 500 Oe reveal a non-monotonic
temperature dependence and irreversibility. It also shows a
distinct separation of up to 300K between FC and ZFC
curves for pristine BFO owing to the relaxation process [44].
Figure 5C shows that the separation increases with lowering
the temperature, indicating the existence of some glass-like
component, and has been consistent with the assumption that
the magnetic properties of BFO ceramic get readily affected by
the nanostructured nature [45].

The dielectric constant and dielectric loss of the as-synthesized
Bi1−xLaxFe1−yNiyO3 nanoceramics have been investigated in the
frequency range 100Hz to 1 MHz at room temperature, for
evaluating the dielectric performance. The dielectric properties of
the samples in this frequency range are rarely available because
of the persistence of leakage current. Figure 6A demonstrates
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FIGURE 5 | Field dependences of the magnetization obtained for Bi1−xLaxFe1−yNiyO3 samples (A) x = 0.20 with y = 0.0, 0.05, 0.07, 0.1, 0.15, 0.20 at room
temperature and (B) x = 0.20 with y = 0.0, 0.05, 0.1, 0.15, 0.20 at 10K. (C) Temperature dependence magnetization obtained Bi1−xLaxFe1−yNiyO3 (x = 0.20 and y

= 0.0, 0.05, 0.07, 0.1, 0.15, 0.20) samples at constant field 500 Oe.

the decrease in the values of dielectric constant with increasing
frequency. This variation of dielectric constant points out the
dispersion that occurred led by Maxwell interfacial polarization
and has been in accord with the Koops phenomenological theory
[46]. The dispersion of dielectric constant may be caused by the
hopping of electrons between Fe2+ and Fe3+ ions. The large
values of the dielectric constant in Bi1−xLaxFe1−yNiyO3 can be
understood as the replacement of Fe3+ by Ni2+ that has been
expected to introduce a higher density of vacancies and increase
the probability of hopping conduction mechanism. The initial
slow decrease in the dielectric constant has been consistent with
the Koops model [46]. Moreover, the polycrystalline samples
have high grain boundary density and so the nature of the grains
and grain boundaries affects the electrical properties [47]. The
inhomogeneity occurred because of grains and grain boundaries
that lead to high dielectric value.

The room temperature frequency dependence of dielectric
loss for Bi1−xLaxFe1−yNiyO3 nanoceramics is presented in
Figure 6B. It shows that the dielectric loss decreases smoothly
with the increase in the frequency. The dielectric loss increases
for all the samples with decreasing frequency without having
any loss peak. It signifies that the synthesized material is
homogeneous and stoichiometric with uniform distribution of
the grain/particles.

CONCLUSION

Summarily, Bi1−xLaxFe1−yNiyO3 nanoceramics have
successfully been synthesized by ethylene glycol–based sol–
gel method. The XRD pattern of the pristine BiFeO3 reveals the
rhombohedral distorted perovskite structure having space group
R3c and substantial decrement in impurity phases has also been
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FIGURE 6 | (A) Variation of dielectric constant with frequency for Bi1−xLaxFe1−yNiyO3 (x = 0.20 with y = 0.0, 0.05, 0.07, 0.1, 0.15, 0.20) ceramics. (B) Variation of
dielectric loss, with frequency for Bi1−xLaxFe1−yNiyO3 (x = 0.20 with y = 0.0, 0.05, 0.07, 0.1, 0.15, 0.20) ceramics.

observed with La substitution at A− site in BiFeO3. Rietveld
refinement suggests the induced lattice distortion with La and Ni
co-substitution in Bi1−xLaxFeO3 nanoceramics. Enhancement in
the magnetic behavior has been observed with Ni contents in the
sample as a result of the suppression of cycloidal spin structure
arising from the size confinement effect, exchange interaction
between Fe3+ and Ni2+ ions, and distortion in Fe–O–Fe bond
angle. Notable enhancement in dielectric ordering and reduction
in loss tangent have also been observed in the samples by the
co-substitution of La and Ni in BiFeO3 nanoceramics.
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