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A variety of superconducting materials exhibit multi-band behavior in a form of

multicomponent Fermi surfaces. By using a two-band model with a pair hopping,

we explain how the interband coupling affects the physical properties of multi-band

superconductors. We determine the temperature dependence of the superconducting

gap and the specific heat, which strongly diverge from the BCS-type behavior. The

anisotropic gap for the system with the mixed gap symmetry is found. Additionally,

the spectral function and density of states are significantly modified by the inter-orbital

interactions. The results obtained for different symmetries of the order parameter are in a

good agreement with the experimental findings for the iron-based superconductors and

other multi-band systems.
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1. INTRODUCTION

The discovery of superconductivity in multi-band materials opened a period of intensive studies of
these systems [1, 2]. Superconductivity in such multi-band systems was first considered within the
BCS-type formulation by Moskalenko [3] and by Suhl et al. [4]. As a consequence of multi-band
properties one can observe several order parameters of different magnitude [5, 6]. The multi-band
nature of superconductivity was experimentally observed in many compounds such as NbSe2 [7],
YNi2B2C [8], fullerities A3C60 [9], MgB2 [10], and high-temperature iron-based systems [11, 12].
In spite of numerous experimental and theoretical studies, the role of the interplay between order
parameters in different bands is not well-understood and requires further studies.

Theoretical description of iron-based materials remains a challenge and the nature of pairing
interactions in these compounds is still under debate [13–16]. In a standard formulation, the
general two-particle on-site interaction is given by intra- and inter-orbital Hubbard repulsion,
Hund’s exchange, and pair hopping [17]. These interactions are generated automatically in
the multiorbital models with two-body interactions using a Hubbard-type approach restricted
to intrasite processes [18–20]. The pairing interaction responsible for the occurrence of
superconductivity arises probably from an exchange of spin, orbital, or charge fluctuations. In
a case of spin fluctuations the pairing vertex can be calculated using the fluctuation exchange
approximation (FLEX) [21].

The difficulties with a correct description of iron-based superconductors are connected with a
relatively large number of bands emerging at the Fermi surface [5]. Generally, the Fermi surfaces
and characteristic band structure of the iron-based superconductors are the consequences of the
layered structure of these compounds. In many cases the Fermi surface consists of hole- and
electron-like pockets near theŴ andM points of the first Brillouin zone, respectively. Moreover, the

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00284
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00284&domain=pdf&date_stamp=2020-08-19
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aptok@mmj.pl
https://orcid.org/0000-0002-5566-2656
https://orcid.org/0000-0002-5566-2656
https://orcid.org/0000-0001-8842-1886
https://orcid.org/0000-0001-8842-1886
https://orcid.org/0000-0001-6339-2986
https://orcid.org/0000-0001-6339-2986
https://doi.org/10.3389/fphy.2020.00284
https://www.frontiersin.org/articles/10.3389/fphy.2020.00284/full
http://loop.frontiersin.org/people/791012/overview
http://loop.frontiersin.org/people/849791/overview


Ptok et al. Effects of Pair-Hopping Coupling

Fermi surface strongly depends on doping [22, 23]. It can
lead to the Lifshitz transitions induced by doping [24, 25],
pressure [26], or external magnetic field [27]. It also modifies
the physical properties of supeconductors [28], such as the
pairing symmetry. Therefore, the development and investigation
of various microscopic models is essential to explain the normal-
state and superconducting properties, which can capture the
main features of electronic structure near the Fermi level [29].

The conventional multi-band BCS-type and iron-based
superconductors differ also in their symmetry of the order
parameter. In conventional systems, the order parameter has
the same sign on the Fermi pockets, what is observed e.g.,
in MgB2 [6]. However, in nearly magnetic Fe-based layered
systems mediated by antiferromagnetic spin fluctuations, the
s± symmetry with a sign reversal of the order parameter
between different Fermi surface sheets can be favored [13, 30].
As a consequence, the unconventional properties are observed
experimentally [31], e.g., in the measurements of energy gap or
specific heat. These observations can provide the information
about the effective interactions in each band and the symmetry
of the order parameter. Therefore, it is important to investigate
how different properties of the multi-band systems are affected
by these microscopic quantities.

For the reasons mentioned above, in the present paper we
investigate a two-band model of iron-based superconductors.
We assume the coupling between bands in a form of the pair
hopping interaction. The main objective of these studies is to
explain how the inter-band coupling and the symmetry of order
parameters influence the basic superconducting properties. For
different values of the model parameters we predict and discuss
the behavior of energy gap, specific heat, electron density of
states and spectral function. The rest of the paper is organized as
follows. In section 2, we present the model under consideration
and the method of calculation. Section 3 is devoted to the
numerical results and their discussion. Finally, a summary is
included in section 4.

2. MODEL AND METHOD

For a description of iron-based materials (in the absence of
superconductivity) we choose a minimal two-orbital model [32],
taking into account only two degenerated dxz and dyz orbitals in
a case of the unit cell with one Fe atom. This choice is sufficient
to describe the low-energy states near the Fermi level [29]. In
practice, due to two Fe atoms in the unit cell, the model describes
four bands in the case of the folded first Brillouin zone. The
model Hamiltonian is given in a general form:

H0 =
∑

kσ

∑

αβ

T
αβ

kσ
c†
αkσ

cβkσ , (1)

where c†
αkσ

(cαkσ ) is creation (annihilation) operator of an
electron in orbital α with momentum k and spin σ , whereas

T
αβ

kσ
= T

αβ

k
− µδαβ describes the kinetic energy of a particle

changing the orbital from β to α and they are explicitly given by

T11
k

= −2
(

t1 cos kx + t2 cos ky
)

− 4t3 cos kx cos ky,

T12
k

= T21
k

= −4t4 sin kx sin ky,

T22
k

= −2
(

t2 cos kx + t1 cos ky
)

− 4t3 cos kx cos ky.

The hopping integrals (t1, t2, t3, t4) = (−1.0, 1.3,−0.85,−0.85)
are given in energy units of |t1|. The chemical potential is set as
µ = 1.54|t1|. The band structure is given by diagonalization of
the above Hamiltonian. Thus, one gets

H′
0 =

∑

εkσ

(Eεkσ − µ)d†
εkσ

dεkσ , (2)

where Eεkσ are eigenvalues of the Hamiltonian [Equation (1)]
given as

E±kσ =
T11
k

+ T22
k

2
±

√

√

√

√

(

T11
k

− T22
k

2

)2

+
(

T12
k

)2
,

where bands are labelled by index ±. This model reproduces
the characteristic Fermi surfaces of iron-based superconductors
[5, 22, 23] in a case of two Fe-ions in the unit cell – for the
folded first Brillouin zone, shown in Figure 1B, it contains two
hole-like and two electron-like pockets around the Ŵ’ and M’
points, respectively.

We should notice, that the minimal two-band model used by
Raghu et al. [32] concerns only dxz and dyz orbitals. In some
situations, additional dxy orbital should be also included, what
leads in natural way to three-orbital models [33, 34]. Inclusion
of additional orbitlals can be reasonable due to some particular
lattice symmetries [35, 36]. Moreover, in some crucial cases, the
tight binding models based on exact DFT calculations should
also be used [37–39]. More detailed description, discussion and
comparison of different types of tight binding models can be
found in the review by Fernandes and Chubukov [29].

2.1. Superconducting State
A realistic description of the interactions in iron–based
superconductors contains all possible two-body on-site
interactions between electrons in Fe(3d) orbitals (description
in the real space) [19, 40]. In a general case, we can distinguish
the intra- and interorbital Coulomb repulsions as well as the
Hund’s rule exchange and the pair hopping term [14, 29].
However, due to the spin fluctuations an interplay between
these interaction terms can lead to an effective paring as a
source of superconductivity [13]. For a sake of simplicity,
in our calculation, we assume a phenomenological form of
the interaction in the momentum space [41, 42], where the
superconductivity is introduced by a BCS-like term of the
following form:

HBCS =
∑

εk

Uεdε,−k↓dεk↑d
†
εk↑d

†
ε,−k↓ (3)

+
∑

ε 6=ϑ ,k

Jdε,−k↓dεk↑d
†
ϑ ,k↑d

†
ϑ ,−k↓,
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FIGURE 1 | The Fermi surface given by the model used for a case of one (A) and two (B) Fe atoms in unit cell. Blue (red) line corresponds to the Fermi surface

associated with the band ε labelled by 1 (2). In both panels the gray area shows parts of the unfolded and folded first Brouillon zone (FBZ), respectively. We also

indicate the high-symmetry points of the FBZ: Ŵ = (0, 0) and M=(π ,π ) (or Ŵ’ and M’ for a case of folded FBZ).

FIGURE 2 | The comparison of different symmetries of the superconducting

order parameter (in the momentum space kx × ky ): (A) sx2+y2 -wave, (B) sx2y2 -

(s±)-wave, (C) dx2−y2 -wave, (D) dx2y2 -wave. Blue and red regions denote

negative and positive values of the form factor η(k) for a given symmetry,

whereas nodal lines are white. The Fermi surfaces of the iron-based

superconductors in the model used are also shown - cyan and green lines

correspond to the electron-like and hole-like pockets, respectively.

where Uε < 0 denotes an effective pairing potential in the band
ε (intra-band pairing), and in a general case it can be different
in both bands. The pair hopping J couples both the bands

(inter-band interaction). Values of Uε and J can be associated
with the coupling constants in the Ginzburg-Landau theory [43,
44]. In the mean-field approximation one gets:

HMF
BCS =

∑

εk

Uε

(

χεkd
†
εk↑d

†
ε,−k↓ +H.c.− |χεk|2

)

(4)

+
∑

ε 6=ϑ ,k

J
(

χεkd
†
ϑ ,k↑d

†
ϑ ,−k↓ +H.c.− 2Re[χ1kχ

∗
2k]
)

,

where χεk = χεηε(k) is the superconducting order parameter
(SOP) in the band ε. Here, χε denotes the amplitude of the SOP
in a given band, whereas ηε(k) are form factors describing the gap
symmetry, i.e., dependence of the SOP on the momentum [42].

The relation describing the symmetry of the superconducting
order parameter in the momentum space is a consequence of the
paring interactions in the real space existing in the system [14]. By
Fourier transforming of these interactions one can find the form
factor η(k) corresponding to a given symmetry. In the standard
situations the form factors are given as:

η(k) =























1 for s-wave,
2
(

cos(kx)+ cos(ky)
)

for sx2+y2 -wave,
4 cos(kx) cos(ky) for sx2y2 - (s±) -wave,
2
(

cos(kx)− cos(ky)
)

for dx2−y2 -wave,
4 sin(kx) sin(ky) for dx2y2 -wave.

The sx2y2 -wave symmetry for the iron-based superconductors
is denoted by s± [13]. The form factors η(k) for different
symmetries and for two dimensional momentum space are
schematically shown in Figure 2. For symmetries other than s-
wave, one can notice a change of a sign of η (blue and red
shadows in the figure correspond to negative and positive values
of η, respectively). Moreover, one can find momenta, where
η = 0, which are called the nodal lines. The mutual relation
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between η and the shape of the Fermi surface (given in our case
by the model) leads to an occurrence of the nodal lines in the
superconducting gap at the Fermi surface [e.g., Figures 2A,C,D].

The basic possible symmetries of the SOP are mentioned
above, while the mixed symmetries of the gap are discussed in
section 3.5 (cf. also section 3.4). We should also notice, that in
cases investigated in the present work, values of Uε and J, as
well as the ratio between them, are chosen in such a way to have
different ratios between amplitudes of the order parameter χε in
different bands ε (cf. Table 1 or Figures 3, 4).

The full Hamiltonian H = H′
0 +HMF

BCS in the Nambu notation
is rewritten in the form:

H =
∑

εk

8
†
εk
Hεk8εk + const., (5)

with

Hεk =
(

Eεk↑ − µ Uεχεk

Uεχ
∗
εk

−Eε,−k↓ + µ

)

, (6)

TABLE 1 | Values of the pairing interaction Uε for chosen gaps 1ε at T = 0 and

fitted values of α in Equation (13), describing temperature dependence of the

superconducting gap in the absence of the pair hopping coupling (J = 0).

11/|t1| U1/|t1| α 12/|t1| U2/|t1| α

0.2 −0.96 1.7356 0.2 −2.48 1.7855

0.8 −2.20 1.6182 0.8 −4.18 1.7940

0.5 −1.64 1.7010 0.5 −3.40 1.7437

2.0 −4.16 1.5600 2.0 −6.80 1.7500

Results for s±-wave symmetries of the gaps in both bands.

where 8
†
εk

=
(

d†
εk↑ dε,−k↑

)

are the Nambu spinors. The

Hamiltonian (Equation 5) can be diagonalized by the unitary
Bogoliubov transformation:

(

γ
†
εk,+

γ
†
εk,−

)

=
(

uεk vεk

−v∗
εk

uεk

)

(

d†
εk↑

dεk↓

)

. (7)

Then, the full Hamitonian H can be rewritten in a diagonal

form: H =
∑

εkα Eεkαγ
†
εkα

γεkα + const., where the quasiparticle
spectrum in the superconducting state takes a BCS-like form:

Eεk± = ±
√

(Eεkσ − µ)2 + |χ eff
εk
|2, (8)

with the transformation’s coefficients:

u2εk = 1− v2εk =
1

2

(

1+ Eεk↑ − µ

Eεk+

)

. (9)

One needs to be aware that the non-zero pair hopping coupling

J between both bands leads to an effective SOP χ
eff
εk

in a band
ε = 1, 2 (last term in Equation 8) given by:

χ
eff

1(2)k = U1(2)χ1(2)k + Jχ2(1)k. (10)

Theoretical description of the interaction in the momentum
space is formally given by the form factor ηε(k). As we know,
one of the most important experimental manifestation of the
superconductivity is the energy gap in the density of state (DOS),
typically defined as a distance between two coherence peaks.

Because only the effective SOPs χ
eff
εk

at the Fermi surface (FS)
have a real impact on the gap in the DOS, the superconducting

FIGURE 3 | Superconducting energy gap as a function of temperature T for different values of the pair hopping J (scale on the left, J = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

respectively). Solid (dashed) lines denote the gaps in 1st (2nd) band. Results for (11;12) equal (0.2;0.8) and (0.8; 0.2) are presented in (A,B), respectively (cf. Table 1).
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FIGURE 4 | The same as in Figure 3, but for (11;12) equal (A) (0.5; 2.0) and (B) (2.0; 0.5) (cf. Table 1).

gap 21ε depends on a maximal value of χ
eff
εk

for the momentum
k at the FS of the ε band:

1ε = ∀k∈FSε max
∣

∣

∣
χ
eff
εk

∣

∣

∣
. (11)

We will show numerically that this definition is in a good
agreement with the DOS properties (cf. sections 3.3, 3.4).

Finally, the grand canonical potential is given by � ≡
−kBT ln(Tr[exp(−H/kBT)]) and

� = −kBT
∑

εkα

log

(

1+ exp
−Eεkα

kBT

)

(12)

+
∑

k

(

−
∑

ε

Uε|χεk|2 − 2JRe
[

χ1kχ
∗
2k

]

)

,

whereas the equilibrium values of the variational parameters χε

at a given temperature T are defined by the global minimum of�.

3. NUMERICAL RESULTS AND
DISCUSSION

The ground state of the system can be obtained from a
minimization of the grand canonical potential � (Equation 12)
with respect to the SOP amplitude χε in both bands ε,
at fixed values of other parameters. The calculations have
been performed in the momentum space using a square
lattice grid kx × ky = 300 × 300 and periodic boundary
conditions, with the help of the graphic processor unit (GPU)
acceleration described in [45]. Such a dense k-point grid strongly
reduces the finite-size effects [46]. In the next sections, we
present and discuss the temperature dependence of the gaps

(section 3.1) and specific heat (section 3.2). In these sections
we chose the s±-wave gap symmetry in both bands, what
corresponds to the standard assumption for the iron-based
superconductors. Additionally, for the chosen model parameters
we study the gap anisotropy and spectral functions for the
cases of the same and different gap symmetry in each band
(sections 3.3, 3.4, respectively).

3.1. The Temperature Dependence of the
Effective Superconducting Gaps
We start from the description of the temperature dependence
of the effective superconducting gap in two cases of different
values of gaps in each band (the specific values of model
parameters are given in Table 1). We compare results for the
fixed ratio between gaps in both bands obtained in two cases:
(i) of the relatively small gaps (weak coupling) and (ii) large
gaps (strong coupling). The chosen ratio corresponds to the
typical relation between gaps in iron-based superconductors
(examples of those materials will be described in the subsequent
paragraphs). Numerical results for these cases are shown
in Figures 3, 4, respectively. Here, we assume the s±-wave
symmetry of the superconducting gap in both bands. This
assumption corresponds to a typical situation considered in the
iron-based materials.

In the absence of coupling between the bands (J = 0) we can
find two independent transition temperatures. The temperature
dependencies of the superconducting gap 1ε(T) in each band
show a standard BCS behavior as expected from the mean-field
theory (cf. the curves for J = 0 in Figures 3, 4). In this case,
the gap value as a function of temperature can be interpolated
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FIGURE 5 | Temperature dependence of the superconducting gap 1ε (blue lines) and the specific heat C (red lines). Solid (dashed) blue lines show superconducting

gap 1ε in the first (second) band. For a comparison also C for J = 0 is shown (dashed black line). Results for different values of pair hopping coupling |J| = 0.01, 0.1

(as labeled) in two cases of (11;12): (0.2; 0.8) and (0.8; 0.2) (A–D, respectively; cf. Table 1).

as [47]:

1(T)

1(T = 0)
≃ tanh

(

α

√

1− T

Tc

)

, (13)

where α is a constant (α = 1.74 in the weak coupling limit,
i.e., in the BCS theory) [48]. The fitted values of α for the cases
considered in this work are also collected in Table 1. For the
first band one observes an increasing deviation from the BCS
value with increasing U1, while in the second band the value
of α does change only slightly, even for large U2. We should
have in mind that the BCS formula (13) has been defined for the
isotropic s-wave superconductivity, while presented numerical
results correspond to the s±-wave gap symmetry in both bands,
what can be the source of the disagreement with the BCS value
of α. 1ε(T) and Tc are associated not only with the pairing

interaction Uε and symmetry of the SOP [given a priori by the
form factor ηε(k)] but also with the band filling nε . It should be
noted that the bands of considered model have different widths
(half-widths: D1 ≃ 1.5|t1|, D2 ≃ 6|t1|, D2/D1 ≃ 4 [32, 49]).
Different filling in both bands and band widths can also influence
the value of α.

For a non-zero inter-band coupling (J 6= 0) only a single
transition from the superconducting to normal phase occurs in
the system. At the transition temperatureTc both gaps11 and12

as well as the SOP amplitudes χ1 and χ2 go to zero continuously.
Tc is rather close to the value of the transition temperature for
the band with the larger gap. The lower transition temperature
(connected with the band with the smaller gap) disappears. In
the case of J 6= 0, a deflection of 1ε(T) from its typical BCS-like
temperature dependence (13) is clearly visible (cf. also [4, 50]).
The deflection is larger in the band with the smaller gap, while
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FIGURE 6 | The density of states ρ(ω) (A) and spectral function Ak (ω) (B) along high symmetry directions (show in inset) in the absence of superconductivity.

in the band with the larger gap it is almost not noticeable (apart
from the fact that it is increased by J 6= 0)—compare Figures 3, 4.
Notice also that 1ε(T) (in the band with the small gap) changes
its curvature at the intermediate temperatures (if J is relatively
small—cf. Figures 3A,B), whereas in the other band1ε(T) shows
its typical BCS behavior. Additionally, we notice a relatively small
increase of the critical temperature with increasing J. This change
is more pronounced when J is strongly enlarged.

Similar deflection of the gap from the BCS-like shape has
been observed experimentally for, e.g., 111 [51], 122 [52], and
1111 [53] families of the iron-based superconductors (in a more
realistic three band model, there is the pair of leading bands
with similar but unresolved gaps coupled by spin fluctuations
and the weakly coupled third band [54, 55]) as well as
in other multi-band superconductors such as PuCoGa5 [56],
(Li1−xFex)OHFeSe [57], LnOFeAs [58], Sn(Pb)Mo6S8 [59], or
classical two-band MgB2 [60–63]. In a case of MgB2 one
has detected also a similar character of the interplay between
intra- and inter-band quantities, which has been observed in
a temperature dependence of the critical Josephson currents
from one band to the other of the MgB2–insulator–MgB2 tunnel
junctions [61, 64], or in a more general case of the two–band
Josephson junction [65].

3.2. Specific Heat
Expanding the approach described in [66], we find numerically
the specific heat for the multi-band system with the equilibrium
values of the variational parameters χε [67]. From the grand
canonical potential �(χε) (Equation 12), we determine the
entropy as S = −d�/dT and the specific heat as C =
−T∂2�/∂T2 (at fixed temperature T). Thus, the entropy can be
formally rewritten as:

S = −
[

(

∂�

∂T

)

e

+
∑

ε

(

∂�

∂χε

)

e

∂χε

∂T

]

, (14)

where the subscript e labels the equilibrium values of the SOP
amplitudes χε . Because the system is in the state corresponding
to the global minimum of�, we have ∂�/∂χε|e = 0 for any band
ε. As a consequence, we obtain:

S =
∑

εkα

[

Eεkα

T
f (Eεkα)+ kB ln

(

1+ exp

(−Eεkα

kBT

))]

e

, (15)

where f (ω) = 1/(1 + exp(ω/kBT)) is the Fermi-Dirac
distribution. In a similar way one can find the specific heat as
C = −T∂2�/∂T2|e. However, one needs to remember that the
SOP depends on temperature in a non-trivial way, as it has been
described in the previous section.

The numerical results of the specific heat C are shown
in Figure 5 (similarly as previously we assume the s±-wave
symmetry of the superconducting gap in both bands). In each
of the presented cases, in the absence of pair hopping coupling
J = 0 (dashed thin black lines) one gets two finite jumps of C,
what is a consequence of the existence of two phase transitions
from the superconducting to normal phase in each band at two
different Tc, separately.

Non-zero J leads to a deflection with respect to the non-
coupled case, which is relatively well visible near the first phase
transition, i.e., that at lower temperature in the non-coupled case.
Moreover, this deflection is greater for J larger than the average
pairing in the system, what is well visible in Figures 5B,D. For
J ≪

√
U1U2 (Figures 5A,C), the deflection is well visible only

near the first phase transition in the non-coupled case (at lower
temperature), whereas at temperatures near the phase transition,
where the superconductivity vanishes in the system, results for
J = 0 and J 6= 0 are not distinguishable. Obviously the heat
capacity in the normal phase is not dependent on J. Similar
behavior has been described theoretically using α model e.g., in
MgB2 [68–70], where interactions are described by the electron-
phonon coupling.
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FIGURE 7 | Density of states ρ(ω) [left panels: (A,C)] and spectral function Ak (ω) along the high symmetry directions [right panels: (B,D)] in the presence of

superconductivity with the s±-wave symmetry in both bands. Results for (11;12) equal to (0.2; 0.5) [the top panels: (A,B)] and (0.5; 0.2) [the bottom panels: (C,D)] at

T = 0 and in the absence of the pair hopping coupling (J = 0). The dashed red lines corresponds to the results in the absence of superconductivity presented in

Figure 6.

The behavior of heat capacity observed here was found
experimentally in many multi-band materials like iron-based
superconductors from 11 [71, 72], 111 [73–75], or 122 family [52,
76–87], MgB2—classical two band superconductor [88] and
many others (e.g., 2H-PdxTaSe2 [89], Lu2Fe3Si5 [90] or
NbS2 [91]). One needs to stress that the unconventional
superconductors (with the gap symmetry other than s-wave) is
characterized by a different dependence of C vs. T/Tc.

3.3. The Spectral Functions for Iron-Based
Superconductors (Realistic Case of Both
Bands of s±-Wave Symmetry)
At the beginning, let us start from a definition of the
spectral function, as a tool to study superconducting systems.
This theoretical quantity is important from experimental

point of view due to its correspondence to the angle-
resolved photoemission spectroscopy (ARPES) results [92].
Additionally, it is worthwhile to mention that the shape of
the gap at the Fermi surface has an important influence
on the spectral function and the density of states in the
superconducting state.

Firstly, we define the Green function in the form Ĝ(ω) =
1/(ω − H), and Gεkσ (ω) = 〈cεkσ |Ĝ(ω)|c†εkσ 〉. Formally, it can
be rewritten in the form:

Gεkσ (ω) = (ω −Hεk)
−1 , (16)

where matrix Hεk is given by Equation (6). Then we define the
spectral function as Ak(ω) = −1/π

∑

εσ ImGεkσ (ω + i0+) and
the DOS as ρ(ω) =

∑

k
Ak(ω). Using an expression (Equation 7)

for electron annihilation and creation operators in the language
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FIGURE 8 | The momentum dependence of the superconducting gap (at the

Fermi level) in the first (around X and Y points—red lines) and second (around

Ŵ and M points—green lines) band. Results for s±-wave symmetry in both

bands (and for (11;12) equal to (0.2;0.2) at T = 0) for different values of the

pair hopping coupling: J/|t1| = 0.0 (A), J/|t1| = 0.1 (B), and

J/|t1| = 0.5 (C).

of the Bogoliubov quasiparticle operators we can find [92, 93]:

Ak(ω) =
∑

ετ

[

|uεk|2δ (ω − Eεkτ ) + |vεk|2δ (ω + Eεkτ )
]

, (17)

where δ(ω) is the Dirac delta function. Numerically δ(ω) is
approximated by ζ/[π(ω2+ ζ 2)], with the damping parameter ζ

taken as 0.01. Coherence factors of the Bogoliubov quasiparticles
|uk|2 and |vk|2 are nontrivial functions of the SOP (Equation 9).

In the absence of the interactions (i.e., U1 = U2 = 0 and
J = 0), the spectral function reproduces the non-interacting band
structure of the system. It consists of two branches forming the
FSs around X and Y points (the first band) and around Ŵ andM
points (the second band). In our case the non-interacting spectral
functions (Figure 6B) are in a good agreement with the band
structure of the mentioned model [32, 49]. As a consequence
of the absence of superconductivity, we do not observe any gap
at the Fermi level (Figure 6A). The total DOS is a sum of the
DOSs in the bands and this result well agrees with the previous
studies [49, 94].

The temperature dependence of the gap and specific heat
presented in previous sections (sections 3.1, 3.2, respectively),
do not changes qualitatively for other gap symmetries. Here, we
will discuss in detail the case when gaps in both bands have
the s±-wave symmetry. Similarly to the previous analyses, we
have chosen the s±-wave gap symmetry, which is a characteristic
feature of many iron-based superconductors.

The results for the spectral functions are shown in Figure 7.
As a consequence of nonzero pairing interaction, which leads
to particle-hole mixing [92, 95], we observe typical BCS
behavior of the band branches around the Fermi level. In
the DOS we can distinguish coherent peaks corresponding to
the superconducting gaps 11 and 12. This feature is indeed
independent of the chosen model parameters (cf. upper and
lower panels). As it was written previously in section 3.1,
increasing J leads to larger values of the gaps. This effect of J 6= 0
is also present for non-isotropic nodeless gaps (what is also well
visible in Figure 8).

The numerical results of gap anisotropy (i.e., the momentum
dependence of the energy gaps at the Fermi level) are shown
in Figure 8. In the absence of the pair hopping (J = 0), in
both bands one can observe the anisotropic gaps (Figure 8A).
Increasing J leads only to the modification of the gap values in
both bands (Figures 8B,C) without changing the “symmetry” in
both bands.

3.4. Spectral Functions in the Case of
Bands With Different Gap Symmetry (s-
and dx2y2-Wave Symmetries)
Theoretically, we can assume that a few gaps with different
symmetries can exist in a superconducting material. As a
consequence, for J 6= 0 one can find interesting features of
the DOS and the untypical anisotropies of the gaps at the
Fermi surface. Now, we will discuss the case when the gap
in the first band is of s-wave symmetry and the gap in the

Frontiers in Physics | www.frontiersin.org 9 August 2020 | Volume 8 | Article 284

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ptok et al. Effects of Pair-Hopping Coupling

FIGURE 9 | Density of states ρ(ω) [left panels: (A,C)] and spectral function Ak (ω) along the high symmetry directions [right panels: (B,D)] in the presence of

superconductivity. In the first (second) band the superconducting gap is of the s-wave (dx2y2 -wave) symmetry. Results for (11;12 ) equal to (0.8; 0.2) at T = 0 in the

absence [(A,B), J = 0] and the presence [(C,D), J/t1 = 0.5] of the pair hopping coupling J. The dashed red lines corresponds to the results in the absence of

superconductivity presented in Figure 6. Red arrows show places, where the coupling J between bands opens additional gaps [cf. (B,D)].

second band is of dx2y2 -wave symmetry (J 6= 0 mixes the gap
symmetries). Here we do not consider the s±-wave symmetry,
for better description of effects of one band with strongly
anisotropic gap on the second band with constant gap. The gap
in the band with dx2y2 -wave symmetry exhibits nodal points
and thus the mutual relations between nodal and nodeless gaps
are investigated.

The results of spectral function are shown in Figure 9. First,
we will discuss the case in the absence of pair hopping coupling
(top panels). In the first band we can find well visible gap
structure, while in a second band as a consequence of the nodal
lines, in some regions along the high symmetry directions, we can
find places without the gap (shown by red arrows in Figure 9B).
It has a direct impact on the DOS (Figure 9A)—we can find a
conventional s-wave gap structure [96] and second non-empty

gap with a characteristic V-shape (similar like in the case of
d-wave high temperature superconductors [97–99]).

As we have shown in section 3.3, increasing J leads to the
change of the gap shape in the momentum space. For the chosen
symmetry (conventional s-wave symmetry and d-type symmetry
with nodal lines), the gap opening is well visible along the nodal
lines (shown by red arrows in Figure 9D). As a consequence,
we can observe also modification of the gap structures in the
DOS—initially non-empty small gap ismodified by the part of the
isotropic symmetry and it leads to opening of the conventional
gap (marked by the gray are in Figure 9C).

The momentum dependence of the superconducting gap for
the considered case are shown in Figure 10. For J = 0, in the first
band the gap is isotropic (red lines), while in the second band the
gap is anisotropic (green lines) with the nodal lines (Figure 10A).
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FIGURE 10 | The same as in Figure 8 for two different symmetries of the gap:

the s-wave and dx2y2 -wave symmetries in the first and second band,

respectively. Results for (11;12 ) equal to (0.2;0.2) at T = 0 for different values

of the pair hopping coupling: J/|t1| = 0.0 (A), J/|t1| = 0.1 (B), and

J/|t1| = 0.5 (C).

Similarly as in the previous case, increasing J leads to the
modification of the gap values. However, due to the different
symmetries, the gaps change also their shapes (Figures 10B,C).

Due to J 6= 0 initially isotropic gap in the first band is modified
by the anisotropic gap in the second band and vice versa. This is
particularly well visible for the second band (green lines), where
the influence of J results in vanishing of the gap in some parts of
the FS (shown by arrow in Figure 10C).

Mutual interplay between two gaps with different symmetries
can be important for a realization of a gap anisotropy in multi-
band materials like iron-based superconductors that have been
observed in these compounds [100–104]. In these materials
the results similar to those shown in Figure 10 have been
observed experimentally. Moreover, the results presented here
reveal the situation when one band has a nodal line in the
gap structure. Results, similar to those presented for anisotropic
gaps, have been also found in other theoretical studies using
the fluctuation exchange approximation (FLEX) [105–110] or ab
initio calculations [111]. However, it is possible to change a nodal
gap into nodless one by disorder [112].

3.5. Additional Remarks and Comments
One should be aware that the structure of the DOS between the
coherence peaks can be different in cases of nodal and nodeless
symmetry [113, 114]. In the case of the s-wave symmetry, we
observe a full-gaped structure. Any additional anisotropy of
the gap symmetry (e.g., in a case of the s±-wave) leads to
emergence of additional structure around the coherence peaks.
Finally, for the symmetry with nodal lines we observe the
(mentioned) V-shape DOS structure. From a shape of the in-
gap states in the DOS that can be experimentally observed
by, e.g., the scanning tunneling microscopy (STM) [115], one
can deduce the information about the gap symmetry. Similarly
like in the cuprates [116], the gap in the presence of disorder
strongly depends on a impurity configuration. This effect can
be also observed in the iron-based materials and can lead to the
modification of the double-gap structure of the DOS [113, 117].

The experimental results indicate the existence of the
two anisotropic s-wave gaps in 11 [118–120] or 122
family compounds [113, 120–122], (Li1−xFex)OHFeSe [57],
SmFeAsO0.9F0.1 [123]. However, the interplay of coherence
peaks in the DOS shows an existence of some kind of interaction
between the bands [124], what can be visible as the disappearance
of the double-gap structure of the DOS. Similar behavior can be
also observed in MgB2 [125, 126], where the interplay between
two (conventional) gaps in the DOS occurs.

We should also have in mind the possibility of mixing gap
symmetries other than that investigated in section 3.4, e.g., like
s+id symmetry. This scenario was firstly proposed in a context of
the cuprates by Ruckenstein et al. [127] and by Kotliar [128]. In
such a case, due to a mutual competition between two different
symmetries like s and d, for some range of parameters a state
with form factor η(k) = ηs(k) + αηd(k) can be stable [129],
where ηi(k) are the form factors and α defines the ratio between
amplitudes of the order parameters with symmetry s and d.
This competition can be expected in Ba1−xKxFe2As2, where
doping leads to change of the gap symmetry. In such a case,
in some range of parameters the mixing gap symmetry s + is±
can be expected [130, 131]. Recent experiments based on the
muon spin rotation (µSR) measurements suggest a realization
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of this state in Ba1−xKxFe2As2, around x ∼ 0.7 [132]. Similar
measurements suggest also a realization of s+d symmetry in
CsCa2Fe4As4F2 [133] and KCa2Fe4As4F [134].

The possibility of the realization of a state with the
mixing symmetry was suggest in the system with time-reversal
symmetry-breaking [107, 135, 136]. This is possible due to
lowering spontaneously the fourfold rotational symmetry C4
to C2 symmetry, e.g., by a transition from tetragonal to
orthorhombic phase [137]. This transition can be also associated
with nematicity of the system [138].

Concluding, competition between two different types of the
gap symmetry can lead to a state with mixed symmetry gap.
In a context of our study, a role of the interband interaction
is important [139], which can lead to an effective modification
of the momentum-dependent gap value (cf. section 3.4). In our
case, the interplay between different types of the symmetries at
Ŵ- and M-centered FSs leads to a modification of the gap value
dependently on J strength.

4. SUMMARY

The multi-band nature of many superconducting materials make
them very interesting for experimental and theoretical studies.
A mutual influence between bands leads to the unconventional
behavior of various physical properties. In this paper, using the
two-band model of the iron-based superconductors we have
studied a role of the pair-hopping coupling between bands on
the physical properties such as superconducting gap, specific
heat, spectral function and density of states. We show that
the arbitrary small but finite pair-hopping coupling between
the bands strongly influence the temperature dependence of
superconducting gap and heat capacity, which significantly
deflect from the BCS-type behavior. Also the spectral function
and electron density of states demonstrate the unconventional
nature of superconductivity in the two-band system. These
results can be helpful to obtain the information about

the symmetry of the gap [72, 140, 141] and the relations
between effective interactions in the multi-band systems. The
unconventional behavior found in the present work can be
observed in many experiments and are in a good agreement
with the predictions of the Ginzburg-Landau theory [44]. More
recently, similar results have been also found in the case of
the two-band superfluid system in the BCS-BEC crossover
regime [142].
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