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Recent progress in the numerical solution of the nuclear many-body problem and in

the development of nuclear Hamiltonians rooted in Quantum Chromodynamics, has

opened the door to first-principle computations of nuclear reactions. In this article,

we discuss the current status of ab initio calculations of nucleon-nucleus optical

potentials for medium-mass systems, with a focus on results obtained with the

coupled-cluster method.
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1. INTRODUCTION

Understanding the structure and dynamics of atomic nuclei in terms of nucleons and their mutual
interactions is one of the main goals of nuclear physics. At the typical energy scale of nuclear
phenomena, the quarks and gluons degrees of freedom are not resolved. As a consequence, in this
context, nucleons can be treated as point-like particles and the nuclear problem with protons and
neutrons can be viewed as a low-energy effective approximation to QCD. Within the framework
of Effective Field Theory (EFT), inter-nucleon interactions consistent with the chiral symmetry
can nowadays be derived systematically in terms of nucleon-nucleon, three-nucleon, and higher
many-nucleon forces [1–6]. Starting with a given Hamiltonian, ab initio calculations of nuclei aim
at solving the many-body Schrödinger equation without any uncontrolled approximations. Within
the last decades, the increase in computing power and the development of powerful many-body
methods, combined with the use of chiral-EFT interactions, have enabled a quantitative description
of light andmedium-mass nuclei ab initio [7–12].With the inclusion of continuum effects in many-
body methods, ab-initio calculations have also reached parts of the nuclear chart far from stability
where the coupling to continuum states and decay channels plays an important part in the structure
of nuclei [13–21].

A lot of progress has been made as well in the development of ab initio methods for nuclear
reactions. The No-Core Shell Model with the Resonating Group Method (NCSM/RGM) or with
continuum (NCSMC) have successfully described scattering and transfer reactions for light targets
[22–24], the Green’s Function Monte Carlo [25, 26] has recently been applied to nucleon-alpha
scattering using chiral NN, 3N forces [27], and lattice-EFT computations of alpha-alpha scattering
have recently been reported [28]. For medium-mass nuclei, nucleon-nucleus optical potentials and
elastic scattering cross sections have been computed with chiral forces within the Self Consistent
Green’s Function (SCGF) approach [9, 29–31] and the coupled-cluster method [32–34].

The optical potential plays an important role in reaction theory. It is usual (and practical) in
this context to reduce the many-body problem into a few-body one where only the most relevant
degrees of freedom are retained [35]. Correspondingly, the many-body Hamiltonian is replaced
by a few-body Hamiltonian expressed in terms of optical potentials, i.e., effective interactions
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between the particles considered at the few-body level.
Traditionally, optical potentials have been constructed by
fitting to data, particularly data on β-stable isotopes [36, 37]. For
instance, global phenomenological nucleon-nucleus potentials
enable the description of scattering processes for a large range
of nuclei and projectile energies. However, extrapolation of
these phenomenological potentials to exotic regions of the
nuclear chart are unreliable and have uncontrolled uncertainties.
Moreover, since fitting to two-body elastic scattering data (as it
is most often done) does not constrain the off-shell behavior of
potentials1, a dependence on the choice of potentials may arise
in transfer reactions observables (and other reactions) as shown
in e.g., [38–40]. It is then critical, in order to advance the field
of nuclear reactions and notably for reactions with exotic nuclei
undertaken at rare-isotope-beam facilities [41, 42], to connect the
optical potentials to an underlying microscopic theory of nuclei.
Since potentials derived from ab initio approaches are built up
from fundamental nuclear interactions without tuning to data,
theymay have a greater predictive power in regions of the nuclear
chart that are unexplored experimentally. Furthermore, they
can guide new parametrization of phenomenological potentials
by providing insights on form factors, energy-dependence and
dependence on the isospin-asymmetry of the target.

It is useful for pedagogical purpose and the introduction
of key concepts, to start with the derivation of the optical
potential within the Feshbach projection formalism [43, 44].
Let us consider the process of scattering of a nucleon on a
target A. One can partition the Hilbert space for this A + 1
system into P the subspace of elastic scattering states and Q

the complementary subspace. Denoting P and Q the projectors
operators on respectively P and Q, by construction one has
P + Q = Id. We introduce H the Hamiltonian of the system and
E its energy. The optical potential describing the elastic scattering

process can be identified with the effective Hamiltonian H
eff
P (E)

acting in P, which by construction, reproduces the eigenvalues of
H with a model wavefunction in P . One can show that

H
eff
P (E) = HPP +HPQ

1

E−HQQ + iη
HQP (1)

where HPP ≡ PHP, HPQ ≡ PHQ, . . . and η → 0+. The optical

potential H
eff
P (E) is non-local and from Equation (1), it is clear

that it is also energy-dependent and complex. The imaginary
(absorptive) component of the potential represents the loss of
flux in the elastic channel due to the opening of other channels,
for instance, the excitation of the target to a state of energy EAi
for E > EAi or breakup channels. By adding the Hilbert space of
theA−1 system (hole states in the target) in the formalism, it has
been shown that the resulting optical potential corresponds to the
self-energy defined in Green’s function theory [45]. The particle
part of the self-energy is equivalent to the optical potential (1),
whereas the hole part describes the structure of the target. By
including information on both the (A + 1)- and (A − 1)-system
in the formalism, the Green’s function approach, which will be

1Two phase-equivalent potentials will reproduce the same elastic two-body

scattering data but may have different off-shell behavior.

used in this paper, provides a consistent treatment of scattering
and structure.

In this article, we present some recent results for the ab-initio
computation of nucleon-nucleus optical potential for medium-
mass nuclei, constructed by combining the Green’s function
approach with the coupled-cluster method [10]. The coupled-
cluster method is an efficient tool for the computation of
ground- and low-lying excited states in nuclei with a closed
(sub-)shell structure and in their neighbors with ±2 nucleons.
By including complex continuum basis states in the formalism,
it also provides a versatile framework to consistently compute
bound, resonant states and scattering processes [13, 15–17, 32].
In our approach, the optical potential is obtained by solving
the Dyson equation after a direct computation of the Green’s
function with the coupled-cluster method. As we will see in
section 2, the inclusion of complex continuum basis states
enables also a precise computation of Green’s functions and
optical potentials.

We want to point out here that there has been a lot
of work over the years to compute optical potentials from
various microscopic approaches. In the following, we mention
some of the most recent works dedicated to that goal (for
a more exhaustive review we refer the reader to, e.g., [46]).
The authors in [47] have computed optical potentials for
neutron and proton elastic scattering on 40Ca based on the
application of the self-consistent Hartree-Fock and Random-
Phase Approximations to account for collective states in the
target. Using the phenomenological Gogny interaction, a good
reproduction of data for scattering at E ≤ 30 MeV has been
reported in [47]. In Whitehead et al. [48, 49], nucleon-nucleus
potentials are computed for finite nuclei from a folding of
optical potentials obtained by many-body perturbation theory
calculations in nuclear matter with chiral forces. In these
papers, several calcium isotopes are considered and an overall
satisfactory agreement with data is achieved. For the scattering
of nucleons at intermediate and high energy (E & 100 MeV)
optical potentials can be derived within the multiple scattering
formalism [50, 51] where the optical potential is obtained
based on the folding of the nucleon-nucleon T-matrix or G-
matrix with the nuclear density [52–54]. Recent applications
of this approach, in which the nucleon-nucleus T-matrix
and the density are computed consistently starting from the
same chiral-EFT interaction, have been reported and shown
a successful reproduction of data [55, 56]. In the Dispersive
Optical Model [46, 57–59], a (semi-) phenomenological potential
is constructed by exploiting formal properties of the Green’s
function, such as the dispersion relation, which connects the
real part and imaginary part of the potential [60]. Applications
of this data-driven approach have been made using local
and non-local form factors of the potential for Ca and
Pb isotopes.

This paper is organized as follows. In section 2, we will
briefly review the formalism to construct optical potentials by
combining the Green’s function approach and the coupled-
cluster method. In section 3, recent results for neutron-40,48Ca
optical potentials at negative and positive energies are presented.
In section 4, we will discuss challenges and possible solutions
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for the construction of fully predictive optical potentials with the
coupled-cluster method. Finally, we will conclude in section 5.

2. COUPLED CLUSTER GREEN’S
FUNCTION

In this part, we will briefly review the formalism for deriving
ab-initio nucleon-nucleus optical potentials by combining the
Green’s function approach and the coupled-cluster method. We
start first by introducing below, key quantities of the Green’s
function formalism.

2.1. Green’s Function and Dyson Equation
Given a single-particle basis {|α〉, |β〉, . . .}, the Green’s function
[61] of a nucleus A has matrix elements

G(α,β ,E) = 〈90|aα

1

E− (H − EAgs)+ iη
a†
β |90〉

+〈90|a
†
β

1

E− (EAgs −H)− iη
aα|90〉. (2)

Here, H is the Hamiltonian and |90〉 the ground state of A with
the energy EAgs and by definition η → 0+. The operators a†

α and
aβ create and annihilate a fermion in the single-particle state α

and β , respectively. α is shorthand for the quantum numbers
α = (n, l, j, jz , τz)

2. By inserting completeness relations expressed
with the eigenstates of the A ± 1 systems in (2), one obtains the
Lehmann representation of the Green’s function:

G(α,β ,E) =
∑

i

〈90|aα|9
A+1
i 〉〈9A+1

i |a†
β |90〉

E− (EA+1
i − EAgs)+ iη

+
∑

j

〈90|a
†
β |9

A−1
j 〉〈9A−1

j |aα|90〉

E− (EAgs − EA−1
j )− iη

, (3)

where |9A+1
i 〉 (|9A−1

j 〉) is an eigenstate ofH for theA+1 (A−1)

system with energy EA+1
i (EA−1

j ). To simplify the notation, the

completeness relations are written in (3) as discrete summations
over the states in the A±1 systems. The Lehmann representation
has the merit to reveal somewhat more clearly some of the
information content of the Green’s Function. As one can see from
(3), the poles of the Green’s function correspond to the energies
of the eigenstates of H in the A± 1 systems.

The Green’s function fulfills the Dyson equation

G(E) = G(0)(E)+ G0(E)6∗(E)G(E), (4)

where G0(E) is the Green’s function associated with a single-
particle potential U and 6∗(E) the irreducible self energy. The
optical potential is given by

Vopt(E) ≡ 6∗(E)+ U. (5)

2n, l, j, jz , τz label the radial quantum number, the orbital angular momentum,

the total orbital momentum, its projection on the z-axis, and the isospin

projection, respectively.

The potential U is usually taken as the Hartree-Fock (HF)
potential since the corresponding Green’s function is a first-
order approximation to G(E) in Equation (4). In our approach,
since the Green’s function is directly computed with the coupled-
cluster method and is input of Equation 4, the resulting optical
potential is independent of the choice of U.

For E+ ≡ E − EAgs ≥ 0, Vopt(E) corresponds to the
optical potential for the elastic scattering from the A-nucleon
ground state [61]. In other words, the scattering amplitude
ξE+ (r) = 〈90|ar|9E+〉 (here |9E+〉 is the elastic scattering state
of a nucleon on the target with the energy E+ and ar is the
annihilation operator of a particle at the position r) fulfills the
Schrödinger equation

−
h̄2

2µ
∇2ξ (r)+

∫

dr′Vopt(r, r′,E)ξ (r′) = E+ξ (r), (6)

where µ is the reduced mass of the nucleus-nucleon system. For
simplicity, we have suppressed any spin and isospin labels. The
optical potential is non-local, energy-dependent and complex
[61] and for E+ ≥ 0, its imaginary component describes the loss
of flux in the elastic channels to other channels. For E+ < 0,
Equation (6) admits a discrete number of physical solution at
En = EA+1

n −EAgs, which corresponds to the bound states energies
in A+1. In that case, the solutions are given by the overlap ξn(r) =
〈90|ar|9

A+1
n 〉 where |9A+1

n 〉 is a bound state of energy EA+1
n in

the A+ 1 system3.
In the following section, we present the main steps

involved in the computation of the Green’s function with the
coupled-cluster method.

2.2. Coupled-Cluster Green’s Function
We start with the computation of the ground state |90〉 of the
A-nucleon system.Working in the laboratory frame, the intrinsic
Hamiltonian reads

H =

A
∑

i=1

Epi
2

2m
−

EP2

2mA
+

∑

i<j

Vij +
∑

i<j<k

Vijk, (7)

with Epi the momentum of nucleon i of mass m and EP =
∑A

i=1 Epi
the momentum associated with the center of mass motion.
The terms Vij and Vijk are nucleon-nucleon (NN) and three-
nucleon forces (3NFs), respectively. It is useful to rewrite the
Hamiltonian as

H =

A
∑

i=1

Ep2i
2m

(

1−
1

A

)

+
∑

i<j

(

Vij −
EpiEpj

mA

)

+
∑

i<j<k

Vijk, (8)

where one separates the one-body and two- (three-)body
contributions. The single-particle basis solution of the HF
potential generated by H in Equation (8) is a good starting point
for coupled-cluster calculations. Denoting by |80〉 the HF state,
the ground state of the target is represented as

|90〉 = eT |80〉, (9)

3Similarly, for E = EAgs − EA−1
n , the solution of the optical potential Vopt(E) are the

radial overlap ξ−n (r) = 〈90|a
†
r |9

A−1
n 〉 [61].

Frontiers in Physics | www.frontiersin.org 3 July 2020 | Volume 8 | Article 285

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rotureau Coupled-Cluster Computations of Optical Potential

where T denotes the cluster operator

T = T1 + T2 + · · · =
∑

i,a

tai a
†
aai +

1

4

∑

ijab

tabij tijaba
†
aa

†
b
ajai + . . . (10)

The operators T1 and T2 induce 1p− 1h and 2p− 2h excitations
of the reference state, respectively. Here, the single-particle states
i, j, ... refer to hole states occupied in the reference state |80〉
while a, b, ... denote valence states above the reference state. In
practice, the expansion (10) is truncated. In the coupled cluster
method with singles and doubles (CCSD) all operators Ti with
i > 2 are neglected. In that case, the ground-state energy and
the amplitudes tai , t

ab
ij are obtained by projecting the state (9) on

the reference state and on all 1p-1h and 2p-2h configurations
for which

〈80|H|80〉 = E,

〈8a
i |H|80〉 = 0,

〈8ab
ij |H|80〉 = 0. (11)

Here,

H ≡ e−THeT = H + [H,T]+
1

2!
[[H,T] ,T]+ . . . (12)

denotes the similarity transformed Hamiltonian, which is
computed by making use of the Baker-Campbell-Hausdorff
expansion [10]. For two-body forces and in the CCSD
approximation, this expansion terminates at 4-fold nested
commutators4. The CCSD equations (11) show that the CCSD
ground state is an eigenstate of the similarity-transformed
Hamiltonian H̄ = e−THeT in the space of 0p − 0h, 1p − 1h,
2p − 2h configurations. The operator eT being not unitary, H̄ is
not Hermitian. As a consequence, its left- and right-eigenvectors
form a bi-orthonormal set [10].

Denoting 〈80,L| the left eigenvector for the ground state of
A, we can now write the matrix elements of the coupled cluster
Green’s function Gcc as

GCC(α,β ,E) ≡ 〈80,L|aα

1

E− (H − EAgs)+ iη
a†
β |80〉

+〈80,L|a
†
β

1

E− (EAgs −H)− iη
aα|80〉. (13)

Here, aα = e−Taαe
T and a†

β = e−Ta†
βe

T are the
similarity-transformed annihilation and creation operators,
respectively. These are computed with the Baker-Campbell-
Hausdorff expansion (12).

In principle, the Green’s function could be computed from
the Lehman decomposition (3) with the solutions of the particle-
attached equation of-motion (PA-EOM) and particle-removed
equation-of motion (PR-EOM) for the A + 1 and A − 1

4The 3NFs component Vijk of the Hamiltonian in (8) is truncated at the normal-

ordered two-body level in the HF basis (see section 3).

systems, respectively [10]. However, as the sum over all states
in Equation (3) involves also eigenstates in the continuum, this
approach is difficult to pursue in practice. Instead, we make use
of the Lanczos continued fraction technique, which allows for
an efficient and numerically stable computation of the Green’s
function [33, 62–66].

By definition of the Green’s function, the parameter η in the
matrix elements (2) is such that η → 0+. However, in this limit,
because of the appearance of poles at energies E = (EA+1

i − EAgs)
in the Green’s function (see Equation 3), the calculation of optical
potential for elastic scattering becomes numerically unstable. In
order to resolve this issue, we compute an analytic continuation
of the Green’s function in the complex-energy plane by working
in a Berggren basis [17, 67–73] (generated by the HF potential)
that includes bound, resonant, and complex-continuum states.
The solutions of the (PA-EOM) and (PR-EOM) in the Berggren
basis, i.e., the eigenstates of the A ± 1 systems, are either bound,
resonant or complex-scattering states. In other words, the poles
of the analytically continuedGreen’s function are located either at
negative real or complex energy. As a result, the Green’s function
matrix elements for E ≥ 0 smoothly converge to a finite value as
η → 0+ (this is illustrated below in Figure 1).

The scattering states entering the Berggren basis are defined
along a contour L+ in the fourth quadrant of the complex
momentum plane, below the resonant single-particle states.
According to the Cauchy theorem, the shape of the contour L+

is not important, under the condition that all resonant states lie
between the contour and the real momentum axis. The Berggren
completeness reads

∑

i

|ui〉〈ũi| +

∫

L+
dk|u(k)〉〈 ˜u(k)| = 1̂, (14)

where |ui〉 are discrete states corresponding to bound and
resonant solutions of the single-particle potential, and |u(k)〉
are complex-energy scattering states along the complex-contour
L+. In practice, the integral along the complex continuum is
discretized yielding a finite discrete basis set.

In Figure 1, we illustrate the numerical stability provided by
the use of the Berggren basis for the computation of the Green’s
function. We are interested in the level density [74, 75]

ρlj(E) = −
1

π
Tr

[

Im(Glj(E)− G
(0)
lj
(E))

]

, (15)

where Glj(E) and G0
lj
(E) are respectively the component of the

Green’s functions and the HF Green’s function in the (l, j) partial
wave5. We show in Figure 1, the Jπ = 3/2+ level density in
17O calculated with the NNLOsat interaction. The ground state
in 16O is computed at the CCSD level while the Green’s function
is computed with the PA-EOM and PR-EOM Lanczos vectors
truncated at the 2p− 1h and 1p− 2h excitation level, respectively
(other details of the calculation are also the same as in section 3).
As η approaches 0, the level density smoothly converges, and

5Since the Green’s functions are here defined by adding (and removing) a nucleon

from the 0+ ground state in the target A, the quantum number (l, j) are conserved.
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FIGURE 1 | Computed level densities in 17O. For the Jπ = 3/2+ level density,

results are shown for several values of the parameter η to illustrate the smooth

convergence pattern for η → 0. The inset shows the energies of the ground

state, first excited and 3/2+ resonant states in 17O calculated at the

PA-EOM-CCSD truncation level (see text for details).

the position of the peak at η = 0 corresponds, as expected, to
the position of the Jπ = 3/2+ resonance in 17O (see inset in
Figure 1, which shows the PA-EOM-CCSD energies in 17O). For
completeness, we also show the Jπ = 5/2+, 1/2+ level densities.
In these cases, the level density at negative energies are equal to
a Dirac delta function peaked at respectively the ground state
and first excited state energies in 17O (see inset in Figure 1). For
purpose of illustration in Figure 1, we have used a finite value
of η for the Jπ = 5/2+, 1/2+ densities and set the height of the
corresponding peaks to 1.

3. SELECTED RESULTS

We now show in this section a few results of the computation
of neutron optical potentials for the double-magic nuclei 40Ca
and 48Ca.

All calculations presented here are performed using the
NNLOsat chiral interaction [5], which reproduces the binding
energy and charge radius of both systems [76, 77]. We want to
point out here that a proper reproduction of the distribution of
nuclear matter, and, more specifically, nuclear radii is critical in
order to obtain an accurate account of reactions observables. All
results are obtained from coupled-cluster calculations truncated
at the CCSD level, while the Lanczos vectors in the PA-EOM
(PR-EOM) have been truncated at the 2p − 1h (1p − 2h)
excitation level. Since the computation of the Green’s function is
performed using the laboratory coordinates [the Hamiltonian H
in Equation (8) is defined with these coordinates], the calculated
optical potential is identified with the optical potential in the
relative coordinates of the n−A Ca system. This identification
will result in a small error, which is a decreasing function of the
target mass number A [33, 34] (see also section 4).

The HF calculations are performed in a mixed basis of
harmonic oscillator and Berggren states, depending on the partial

FIGURE 2 | Diagonal part of the n+40 Ca optical potential for the bound

states in 41Ca computed with the NNLOsat interaction. Results are shown for

several values of Nmax and the corresponding bound state energies (with

respect to the 40Ca ground state) are shown in the table (in MeV). The

components of the HF potential in the associated partial waves are shown for

(Nmax ,N3) = (14, 16) (see text for details).

wave. The NNLOsat interaction contains two-body and three-
body terms. Denoting N2 and N3 the cutoffs in the harmonic
oscillator (HO) basis of respectively, the two-body and three-
body part of the interaction, we set N2 = N3 = Nmax except
for the most extensive calculations where N2 = 14 and N3 =
16. Finally, we truncate the three-nucleon forces at the normal-
ordered two-body level in the HF basis. This approximation has
been shown to work well in light- and medium mass nuclei [78,
79]. The harmonic oscillator frequency is kept fixed at h̄ω =16
MeV (for more details see [33, 34]).

We start with the computation of the n+40 Ca optical
potentials associated with the bound states in 41Ca. At the PA-
EOM-CCSD level of truncation considered here, there are only
three bound states supported by the NNLOsat Hamiltonian. In
order to show the convergence pattern of the potentials, we
present in Figure 2 results at several values of Nmax with the
corresponding bound state energies. We present the diagonal
part of the potentials, and for comparison the HF potential
[for (Nmax,N3) = (14, 16)] in each partial wave is also shown
in Figure 2. The energies are shown in the table in Figure 2

along with the experimental values. As expected, the convergence
of energies is slower for higher-energy states. The difference
between the 41Ca energies at (Nmax,N3) = (14,14) and (14,16)
is ∼220 keV in the case of the ground-state, whereas it is
∼350 keV in the case of the Jπ = 1/2− second excited state.
Even though the absolute binding energy is underestimated in
the CCSD approximation, when compared to experiment [the
CCSD binding energy of 40Ca is 299.28 MeV for (Nmax,N3) =
(14, 16), whereas the experimental value is 342.05 MeV], the
neutron separation energies are consistently within 600 keV of
the experimental values for 40,48Ca6. The eigenenergies of these

6By including both perturbative triple excitations and perturbative estimates for

the neglected residual 3NFs (3NF terms beyond the normal-ordered two-body
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FIGURE 3 | Differential elastic cross section for 40Ca(n, n)40Ca at 5.2 MeV

(top) and 48Ca(n, n)48Ca at 7.8 MeV (bottom) calculated with the NNLOsat

interaction. Results obtained with the phenomenological Koning-Delaroche

potential potential are shown (dashed line) for comparison. Data points are

taken from Koning and Delaroche[36] (errors on the data are smaller than the

symbols).

potentials are equal, by construction, to the bound states energies
when using the effective mass mA/(A − 1) instead of the actual
reduced mass. This can be traced to Equation (8) where the
effective mass associated with the one-body kinetic operator is
equal tomA/(A− 1) (see also section 4).

We now consider the neutron elastic scattering on 40Ca and
48Ca. The phase shift is computed in each partial wave with the
optical potential calculated in the largest space (Nmax,N3) =
(14, 16). The angular distributions are then obtained by summing
the contributions from each partial wave. Figure 3 shows the
resulting differential elastic cross section for 40Ca(n, n)40Ca at
5.2 MeV and 48Ca(n, n)48Ca at 7.8 MeV. We find that at these
energies the inclusion of partial waves with angular momentum
L ≤ 5 and L ≤ 6 is sufficient for 40Ca and 48Ca, respectively,
the contribution of partial waves with higher L being negligible
(see also the computations of elastic scattering on 40,48Ca at
other energies in Rotureau et al. [34]). The angular distributions
obtained with the phenomenological Koning Delaroche (KD)
potential [36] and the measured cross sections are also shown
in Figure 3 for comparison. As Figure 3 indicates, the data at
small angle where the cross section is larger, are well-reproduced
for 48Ca whereas the computed cross section is slightly above
the data for 40Ca. Overall, the shape of the experimental cross
sections and the positions of the minima are well-reproduced for
both nuclei, as expected from the correct reproduction of matter
densities in 40,48Ca by the NNLOsat interaction.

approximation), a good agreement with experimental binding energies can be

obtained for 40,48Ca [76].

The experimental energy of the first two excited-states in
40Ca, namely E(0+) = 3.35 MeV and E(3−) = 3.74 MeV are
below the scattering energy Escat = 5.2 MeV of the elastic process
40Ca(n, n)40Ca shown in Figure 3. In other words, the channels
for excitation of the 40Ca target are open at this scattering energy.
This should result in a loss of flux in the initial elastic channel
and the corresponding occurrence of an absorptive imaginary
part in the phase shifts. The first excited 0+ state, which has a
strong 4p−4h components, cannot be properly reproduced at the
truncation level considered here: its computed energy, solution of
the EOM-CCSD equations, is ∼16 MeV above the ground state.
On the other hand, the 3− excited state is well-reproduced with
EEOM−CCSD(3

−) = 3.94 MeV. Nevertheless, we have found that
the computed absorption is practically negligible and none of
the computed phase shifts at Escat = 5.2 MeV have a significant
imaginary part. A similar pattern happens for 48Ca(n, n)48Ca at
7.8 MeV: in that case, the first excited state E(2+) = 3.83 MeV is
fairly well-reproduced, the computed value is EEOM−CCSD(2

+) =
4.65 MeV, but again the absorption in that case is negligible too.

Although some excited states below the scattering energy
are reproduced by the EOM-CCSD calculations, the absorption
is negligible in both situations. This suggests that at the
level of truncation considered here, namely 2p − 1h above
the CCSD ground state, the computed wavefunctions are not
correlated enough (in the perturbative expansion of the Dyson
equation Equation (4), the absorption appears at second-
order, beyond the HF contribution [61]). In other words,
at these energies, the computed level density (15) in the
n+A Ca system is too small. We have observed that only at
higher energy E & 20 MeV the absorption starts to increase
significantly (a similar pattern can be seen in Figure 4 of
Rotureau et al. [33] for the CCSD computation of n+16 Ooptical
potential). It is possible to increase artificially the absorption
by using a finite value of η in Equation (13). This amounts
to increasing the correlations content of the coupled-cluster
wavefunctions and as shown in Rotureau et al. [33, 34], the
computed elastic cross section in that case will decrease. In
section 4, we will return to this lack of absorption in the
computed potential.

We should emphasize here that the computation of the
optical potential with the coupled-cluster method is carried out
without any free parameter. It is then not surprising that it
does not allow for the same quality of reproduction of data
as a phenomenological potential, such as the KD interaction
(see Figure 3). But still, since microscopic optical potentials
are built up from fundamental nuclear interactions without
tuning to data, they may yield guidance for parameterizations
of phenomenological potential, by providing information on the
form factor, energy dependence and dependence on the isospin
asymmetry of the targets. A recent series of studies has shown that
non-locality can affect transfer reaction observables (e.g., [38–
40]) and it is expected that it can equally affect other reaction
channels. Microscopic potential can provide guidance on this
aspect of the optical potential. Keeping in mind that a potential
is not an observable and is not uniquely defined (for a given
potential, it is possible to modify its high-energy component
with a unitary transformation without affecting experimental
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FIGURE 4 | Real part of the neutron potential in several partial waves for
40,48Ca at respectively 5.2 and 7.8 MeV. The potentials are shown at fixed

values of R (equal to the charge radius in both nuclei) and as a function of

r − r′. Symbols corresponds to the calculated potentials and the lines are the

results of a fit with a Gaussian form factor (see text for details).

predictions [80, 81]), we focus in the following on the non-
locality of the CCSD optical potential.

We plot in Figure 4, the n+40,48 Ca potentials in several
partial waves, at a fixed value of R = (r + r′)/2 and as a
function of r − r′. We fix R to be equal to the charge radius in
both nuclei, namely 3.48 and 3.46 fm for respectively 40Ca and
48Ca [5]. We consider the same energy as previously, namely
5.2 MeV for 40Ca and 7.8 MeV for 48Ca. A fit of the potential
using a Gaussian form factor, is also shown in Figure 4. As one
can see, the shape of potentials in Figure 4 are well-reproduced
by the fit. For 40Ca, the values of the range β of the fitted
Gaussian somehow varies slightly with the partial wave: we obtain
β = 1.02, 0.94, 0.98 fm for the f7/2, p3/2 and p1/2 component
of the potentials, respectively. For 48Ca, β = 1.04, 0.93, 0.91
fm for the f5/2, p1/2 and and d5/2 partial waves, respectively.
We have observed even smaller variations of the range with the
energies although a more exhaustive study would be required
to draw definitive conclusion about the dependence of β on
the value of R and the energy. Nevertheless, in all cases, the
non-local pattern of the optical potential display a Gaussian
dependence, which corresponds to the choice made for the non-
local form factor in the phenomenological potentials by Perey
and Buck [82]. Note that due to the non-hermiticity of the
Coupled Cluster Hamiltonian (see section 2.2) the potential is
slightly non-symmetric in r and r′. However, since this effect is
small [33, 34], it is hardly noticeable in Figure 4.

4. CHALLENGES

In this section, we discuss some challenges and possible solutions
for the development of fully predictive ab-initio optical potentials
with the coupled-cluster method.

We saw in the previous section that with the ab-initio optical
potentials computed at the CCSD level, one can arrive at
an overall fair reproduction of data for medium-mass nuclei.
However, the absorptive part of the potential was shown to be
negligible at low energy. This lack of absorption was linked to
neglected configurations in the computed Green’s function.

Currently, ab-initio computation of optical potentials for
medium-mass nuclei using chiral NN and 3NFs, have only
been performed with the coupled-cluster method and the Self
Consistent Green’s Function (SCGF) method [31]. The SCGF is
based on an iterative solution of the Dyson equation performed
until a self-consistency between the input Green’s function and
the result of the Dyson equation has been reached [9]. In Idini
et al. [31], the authors compute neutron optical potential for
16O and 40Ca with the NNLOsat interaction and include up to
2p − 1h configurations in the Green’s function. In that work,
the minima in the elastic cross sections are well-reproduced for
both systems, and as in the CCSD computation of the potential,
an overall lack of absorption was observed and attributed to
neglected configurations in the model space.

The natural next step to address the lack of absorption at
the CCSD level would be to include higher-order correlations
in the Green’s function by considering next order excitations
in the coupled-cluster calculations, namely triple corrections.
One should expect in that case an increased level density in
the A + 1 system and as a result, a larger absorptive part of
the optical potential. Coupled-cluster calculations with triple
corrections are routinely used for nuclear spectroscopy [10] and
have recently been implemented in the computation of the dipole
polarizability of 48Ca [83]. In that paper, the authors show that by
including 3p − 3h excitations in the computation of the nuclear
response function to an electromagnetic probe (the Green’s
function is a similar object since it is the response function to
the addition/removal of a nucleon), the results improve over
previous computations at CCSD.

For most nuclei, and particularly for heavier systems, there
are many compound-nucleus resonances above the particle
threshold. Since these states consist of a high number of particle-
hole excitations they cannot be reproduced accurately by ab-
initio methods and are usually best described by a stochastic
approach [84]. In order to account for the formation of the
compound nucleus and the resulting loss of flux in the elastic
channel, one could add a polarization term to the ab-initio
potential. A possible way to compute this term would be to use
Random Matrix Theory to generate an effective Hamiltonian
belonging to a Gaussian Orthogonal Ensemble [85].

Since the coupled-cluster Green’s function is computed in
the laboratory frame, the optical potential solution of the Dyson
equation is defined with respect to the origin of that frame O.
As mentioned in section 3, we have identified this potential with
the potential in the relative n − A coordinate. For the medium-
mass nuclei considered here, this prescription creates a small
error, which decreases with A [33, 34, 86]. For light systems, a
correction to the optical potential becomes necessary to account
for the identification between laboratory and relative coordinates.
It has been demonstrated that the coupled cluster wavefunction
factorizes to a very good approximation into a product of an
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intrinsic wave function and a Gaussian in the center-of-mass
coordinate [87]. Since both the potential and the center-of-mass
wavefunction of the target are computed in the laboratory frame,
it seems reasonable to suggest that such a correction could be
introduced in the form of a folding of the potential with the
center-of-mass wavefunction (nevertheless, such a prescription
would have to be worked out and checked). Another possible
way to introduce a correction of the potential could be to use the
integral method utilized in the GFMC approach (see e.g., [88])
for computation of overlap functions (see also e.g., [89, 90]).

5. SUMMARY

In this article, we have presented recent developments in the
computation of nucleon-nucleus optical potential constructed by
combining the Green’s function and the coupled-cluster method.
A key element in this approach is the use of the Berggren basis,
which enables a consistent description of bound, resonant states
and scattering process of the (nucleon-target) system and at the
same time, allows to properly deal with the poles of the Green’s
function on the real energy axis.

We have shown results for optical potentials at negative and
positive energy for the double magic systems 40Ca and 48Ca
using a chiral NN and 3NFs that reproduces the binding energy
and charge radii in both systems. We pointed out that a proper
reproduction of the distribution of nuclear matter, and, more
specifically, nuclear radii, by the Hamiltonian, is essential to give
an accurate account of reaction observables. At the truncation
level considered here, namely 2p−2h and 2p−1h / 2h−1p in the
computation of the target and the Green’s function, respectively,

an overall fair agreement with data was obtained. Nevertheless,
in that case, the optical potential at positive energy suffers from
a lack of absorption, which stems from the neglect of higher-
order configurations. In (near) future development, higher-order
excitations in the coupled-cluster expansion will be included to
address this issue.

In the future, the Green’s function formalism and coupled-
cluster method could be combined for applications to other
reaction channels, such as transfer, capture, breakup, and
charge-exchange. Another possible approach toward the ab-initio
computation of transfer reactions with medium-mass nuclei
is the Green’s Function Transfer (GFT) method [91]. Using
the optical potential and Green’s function computed with the
coupled-cluster method as input of the GFT equations, as well
as phenomenological ingredients, a very good reproduction of
data for populating the ground states in 41,49Ca was obtained
with this approach. Although the current implementations of the
GFTmethod require phenomenological inputs, future extensions
of the formalism should allow ab-initio computation of transfer
reactions [91].
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