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The non-linear absorption properties of reduced graphene-oxide (RGO) have been

studied extensively but the optical limiting (OL) performance of RGOwas always confined

to visible light. In this study, by anchoring SnSe nanosheets onto the surface of RGO, the

reduced graphene-oxide and a tin-selenide (SnSe/RGO) nanohybrid shows a broader

reverse saturable absorption (RSA), ranging from 400 to 800 nm, and an enhanced

non-linear optical (NLO) response. The improvement of the NLO absorption response

is attributed to a multiphoton-absorption process and electron-transfer effect in this

artificially constructed donor-acceptor system. Pump-probe experiments suggest a

response time of ∼1.7–8 ps for the SnSe/RGO nanohybrid.

Keywords: reduced graphene-oxide (RGO), tin-selenide (SnSe), nanohybrid, donor-acceptor, optical limiting (OL)

INTRODUCTION

Owing to its infinitesimally small thickness and strong light-matter interaction in a broadband,
graphene and its derivatives (such as graphene oxide, GO and reduced graphene oxide, RGO) has
attracted tremendous attention for photonic application. In particular, many studies were done to
investigate both saturable absorption (SA) [1–3] and RSA [4, 5] of two-dimensional (2D) materials,
which are two typical NLO absorption properties of 2D materials. Non-linear optical properties
of diverse 2D materials were investigated, including black phosphorus [6–8], transition metal
dichalcogenides (TMDCs) [9, 10], topological insulator [11–13], SnS [14, 15], etc. The non-linear
absorption properties of atomically-thin 2D-materials are exploited as saturable absorbers [16–19],
optical diodes [20, 21], and optical limiters [22].

Once the input-beam radiation exceeds a threshold, the optical limiting (OL) material strongly
attenuates the intensity of the output beam. This ensures no damage is done to human eyes and
avoids potential damage to optical sensors that are exposed to high energy lasers. The range of
conventional OL materials is diverse, ranging from porphyrins, phthalocyanines [23], and mixed
metal-complexes [24] to carbon-based nanomaterials such as fullerenes and carbon nanotubes [25].
Recently, the OL properties of emerging 2D materials were studied in detail for MoS2 quantum
dots [26], black phosphorus [27], and TiO2/RGO [28]. Carbon-based materials are a typically used
representative 2D-system for optical limiters. Due to its unusual 2D Dirac-like band-structure,
graphene exhibits zero bandgap properties. In contrast, RGO is a semiconductor with a
tunable bandgap (0.5–6 eV) [29]. The non-linear absorption coefficient of RGO was determined
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as 2.67 cm/GW at a wavelength of 532 nm [30]. This
suggests a considerable RSA response in the visible region.
To endow RGO-based OL materials with enhanced OL
properties, an RGO-related nanohybrid was built using several
methods. These methods include: PEG-OPE-RGO hybrids
[PEG: poly(ethylene glycol), OPE: oligo (phenylene ethynylene)]
[31], and SWNT/RGO hybrids (SWNTs: single-walled carbon
nanotubes) [32]. Apart from the expected high OL performance,
broadband OL materials are needed for many OL applications. It
would be highly beneficial if such materials could be obtained by
constructing an RGO-based hybrid.

2D SnSe nanosheets are an ideal candidate for the
construction of RGO-based hybrids that can extend their
OL properties into the near infrared region. The SnSe exhibit
a narrow indirect bandgap of 0.9 eV, which results in a broad
absorption-spectrum (covering the near-infrared region).
Moreover, it is stable under ambient conditions with low toxicity
[33]. These properties make 2D SnSe interesting for use in
many optoelectronic devices, such as memory switching [34],
light-emitting devices [35], and solar cells [36]. In a previous
report, the RSA properties in the near infrared band were
confirmed and studied [37].

In this paper, we constructed a SnSe/RGO nanohybrid using
a hydrothermal method, and we confirmed a broadband OL
property of an as-prepared nanohybrid, ranging from 400 to
800 nm. The dominating OL mechanism of the as-prepared
hybrid was found to be a multi-photon absorption process.
Moreover, using pump-probe measurements, we confirmed the
optical bleaching phenomena in the as-prepared nanohybrid and
revealed a response-time on the scale of picoseconds. Further,
the donor-acceptor model was proposed to get insight into the
underlying mechanisms of the enhanced OL performance of
the nanohybrid.

RESULTS AND DISCUSSION

Characterization of SnSe/RGO Nanohybrid
The predecessors used the liquid-phase exfoliation method to
produce 2D ultrathin structural materials, and proved that the
crystal characteristics did not change during the stripping process
[38, 39]. In this article, we added a hydrothermal intercalation
process to prepare SnSe nanosheets based on the liquid-
phase exfoliation method. Highly pure SnSe powder (99.5%)
was purchased from Alfa Co. Inc. The 2D SnSe nanosheets
were prepared via facile hydrothermal intercalation and liquid
exfoliation [40, 41]. Particularly, the 0.5 g of SnSe was put into
60ml of ethylene glycol (EG) solution containing 1 g of LiOH
and kept in 50-ml of Teflon-lined autoclave at 220◦C for 24 h.
Then, the powder was collected by centrifugation and, following
the sonication process, a few layers of SnSe nanosheets were
obtained. After collecting by centrifugation and washing with
water and ethanol, the desired few layers of SnSe nanosheets were
obtained and dispersed in EG solution. 2D RGO was purchased
from Aladdin Co. Ltd. SnSe/RGO nanocomposite was prepared
using the hydrothermal method. The details can be found in our
previous works [42].

FIGURE 1 | (A) SEM image of the SnSe/RGO nanohybrid. (B) Energy

dispersive X-ray spectroscopy of the SnSe/RGO hybrid. (C) XRD pattern of the

SnSe/RGO nanohybrid. (D) UV-vis absorption spectra of the SnSe nanosheets

(black line), SnSe/RGO nanohybrid (red line), and RGO nanosheets (blue line).

Figure 1A depicts a Scanning electron microscopy (SEM)
(FESEM, Hitachi, Japan) image of the SnSe/RGO nano-hybrid.
It can be seen that some SnSe nanosheets (red arrow) are
anchored on the surface of the RGO nanosheets. Figure 1B
shows the energy dispersive x-ray (EDX) spectroscopy result
for the as-prepared SnSe/RGO nanohybrid. The EDX of the
as-prepared SnSe/RGO nanohybrid displays an Se peak at 1.39
keV and Sn peaks at 3.0 keV, which are characteristic EDX
peaks for Se and Sn. The phase purity and crystal structure
of the as-prepared SnSe/RGO nanohybrid were identified using
X-ray diffraction (Bruker D8 Advance) (see Figure 1C). The
peak at 2θ = 23.4◦ is consistent with a lattice plane (002)
of RGO [43]. The other diffraction peaks match the standard
orthorhombic phase of SnSe well (JCPDS card no. 32–1382)
[44]. Figure 1D shows the UV-vis absorption spectra (Cary60,
Agilent) of the RGO nanosheets, the SnSe/RGO nanohybrid,
and the SnSe nanosheets. Interestingly, after anchoring the
SnSe nanosheets onto RGO, the SnSe/RGO hybrid shows
broadband absorption covering both the visible and near infrared
range. The enhancement of linear absorption increases the
concentration of the photo-excited carrier, which may benefit
charge transfer at the interface of the nanohybrid and induce
the enhanced third-order non-linear optical response of the 2D
nanohybrid.

Non-linear Optical Response
A femtosecond-pulse laser was used with a pulse width of 35 fs
and pulse repetition rate of 2 kHz. Z-scan technology has higher
sensitivity and stronger functionality [45]. We used the OA
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FIGURE 2 | OA Z-scan results of (A) RGO, (B) SnSe, and (C) SnSe/RGO with different excitation wavelengths of 400, 600, and 800 nm.

Z-scan technology to investigate the non-linear characteristics of
materials. In the OA Z-scan measurement system, the incident
femtosecond laser is focused by a lens, with a focal length of
150mm. A cuvette, containing as-prepared samples, moves near
the focus in the direction of the laser-light propagation (z-axis).
Then, the transmitted intensity through the sample was recorded
using a power meter.

Figures 2A–C shows the OA Z-scan results of SnSe, RGO,
and SnSe/RGO at multiple wavelengths. The pristine SnSe
shows the typical saturable absorption (SA) at 400 and
600 nm. When the excitation wavelength changes to near
infrared (800 nm), the SnSe nanosheets exhibit a significant
RSA response, which is similar to previous reports by Ye
et al. [37]. Interestingly, for RGO, there is an RSA response
with the excitation wavelength at 400 and 600 nm, which is
consistent with previous studies [30]. The NLO absorption
response exhibits an SA response, when the excitationwavelength
is 800 nm. Such Pauli-blocking-induced optical bleaching
saturable absorption has been reported previously [46]. As
expected, as-prepared SnSe/RGO exhibits an RSA response
that ranges from visible to the near infrared. A reasonable
physical mechanism of broadened and enhanced RSA will
be discussed, based on non-linear absorption parameters and
the photoexcited carrier dynamic lifetime of material, in the
following section.

To quantitatively analyze the OA Z-scan results, the NLO
parameters of the mentioned materials were extracted by fitting
the OA Z-scan curve. Based on the spatial transient Gaussian
pulse model, the transmitted light intensity in the OA Z-scan

experiment is [47].

T(z) =
1

√
πq

0

∞∫

−∞

ln[1+ q0 exp(−x2)]dx (1)

where, z0 is the diffraction length of the beam, q0 =
αNLI0(t)Leff /(1 + z2/z20), I0 (t) is the intensity of the light at
focus, αNL is the third order non-linear absorption coefficient,
Leff = [1 − exp(−α0l)]/α0 is known as the effective length of
the sample, which is defined in terms of the linear absorption
coefficient, α0, and the effective optical path length through the
sample, l. For the OA Z-scan results in Figures 2A–C, we found
that the non-linear absorption coefficient of SnSe/RGO is higher
than in pristine SnSe for visible light. The αNL of SnSe/RGO were
one order of magnitude larger than that of pristine RGO. For
instance, there is an increase from 0.24 ± 0.01 cm/GW (RGO)
to 2.71 ± 0.05 cm/GW (SnSe/RGO) at 400 nm. In addition,
when the excitation wavelength changes to near infrared light
(800 nm), the non-linear absorption coefficients were −5.30 ±
0.17 cm/GW, 11.61 ± 0.28 cm/GW, and 125.09 ± 2.73 cm/GW
for pristine RGO, pristine SnSe, and SnSe/RGO, respectively.
To determine the intrinsic non-linear absorption response, we
extracted the imaginary part of the third-order non-linear optical
susceptibility, Imχ(3), and the figure of merit (FOM) [48]. All
extracted NLO parameters are summarized in Table 1.

For a better quantitative comparison, the OL parameters
of this series of materials were extracted, including the OL
threshold and the onset fluence. The OL threshold is defined
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TABLE 1 | NLO parameters and OL parameters of RGO, SnSe, and SnSe/RGO at multi-wavelengths.

λ (nm) Sample I0 (GW/cm2) αNL (cm/GW) Imχ(3) (×10−13 esu) FOM(×10−13 esu cm−1) Onset of OL (mJ/cm2) OL Th.(mJ/cm2)

400 RGO 5.45 0.24 ± 0.01 1.46 ± 0.06 0.66 ± 0.03 0.036 2.39

SnSe 5.86 −0.19 ± 0.01 −0.56 ± 0.03 0.23 ± 0.01 / /

SnSe/RGO 5.43 2.71 ± 0.05 11.91 ± 0.22 4.48 ± 0.08 0.019 0.25

600 RGO 11.44 0.15 ± 0.01 1.39 ± 0.09 1.01 ± 0.07 0.015 3.88

SnSe 7.21 −0.19 ± 0.01 −0.70 ± 0.04 0.29 ± 0.02 / /

SnSe/RGO 9.22 1.16 ± 0.02 7.17 ± 0.12 2.05 ± 0.04 0.025 0.60

800 RGO 0.13 −5.30 ± 0.17 −70.89 ± 2.27 54.02 ± 1.73 / /

SnSe 0.14 11.61 ± 0.28 55.38 ± 1.33 23.40 ± 0.56 0.004 0.055

SnSe/RGO 0.07 125.09 ± 2.73 1067.08 ± 23.29 353.37 ± 7.71 0.0002 0.0043

as the input fluence, where the transmittance drops to 50%
of the linear transmittance [49]. The onset fluence represents
the laser fluence, where the OL curves start to deviate from
unity [50]. Figures 3A–C depicts the OL properties of SnSe,
RGO, and SnSe/RGO at 400, 600, and 800 nm, respectively.
Compared to pristine RGO, the SnSe/RGO OL performance
improved significantly. All extracted parameters are listed in
Table 1. Taking the near infrared wavelength (800 nm) as an
example, the limiting threshold of SnSe/RGO is 0.0043 mJ/cm2,
while it is 0.055 mJ/cm2 for SnSe. The limiting threshold of
SnSe/RGO is one order of magnitude below that of pristine
RGO or SnSe, at the respective wavelengths. The value of the
OL threshold for the SnSe/RGO is comparable with some other
RSAmaterials, such as Sb2Se3/GO heterostructure∼ 0.085 J/cm2

[51], Graphene ∼ 0.10 J/cm2 [52], MoS2 NS ∼ 3.28 J/cm2 [53],
WS2 NS ∼18.25 J/cm2 [53], Au nanoparticle ∼7.5 J/cm2 [54],
etc. The lower limiting threshold indicates that nanomaterials
show better optical activity and a more effective OL performance
[55]. In terms of onset fluence, lower values were obtained than
for pristine RGO or SnSe. Accordingly, SnSe/RGO is a potential
OL candidate that may be used to shield sensor devices from
high-intensity light.

To discover the dominate mechanism of such a broadened
RSA performance, we performed further analyzation on the
OA Z-scan results. In a conventional semiconductor system,
the multi-photon absorption process usually dominates such a
reverse saturable absorption. As shown in Figure 3D, the plot
of Ln(1–TNorm) vs. Ln(I) for different wavelengths confirmed
multi-photon absorption induced RSA in the present system
[47, 56]. The slope values for SnSe/RGO are 1.42, 1.16, and
1.18, respectively, which suggests two photon and three photon
absorption takes place during the laser excitation. Additionally,
the pump-probe measurements were exploited to find out the
timescale of the OL response and the mechanism of significantly
enhanced OL for SnSe/RGO. To exclude the effect from the
solvent bubble non-linear optical scattering effect [22], all the
experiments were conducted under threshold value that the
solvent bubble is generated.

As shown in Figures 4A–C, the pump-probe results, at
multiple wavelengths, for RGO, SnSe, and SnSe/RGO are shown.
Using SnSe/RGO as an example, we can observe a typical
negative signal near time zero in the photo-excited carrier

FIGURE 3 | (A–C) Normalized transmittance vs. optical energy density; (D)

Plots of ln(1—TNorm) vs. ln(I) to determine the non-linear order of SnSe/RGO.

dynamic relaxation. The significant decrease in transmittance
indicates a multi-photon-absorption-induced RSA response.
Moreover, we extracted the lifetimes of the photo-excited carriers
of RGO, SnSe, and SnSe/RGO at different wavelengths. For
pristine RGO, the photo-excited lifetime ranges from 0.3 to
0.65 ps for different wavelengths. For pristine SnSe, on the
other hand, the lifetime changed from several picoseconds
(2.51 ps at 800 nm) to several tens of picoseconds (13.47
ps at 600 nm; 34.01 ps at 400 nm). As shown in Figure 4D,
when we summarized the photoexcited carrier lifetimes, a
desired median lifetime of SnSe/RGO was observed at three
measurement wavelengths. This is strong evidence for electron-
transfer in a donor-acceptor system. We believe that favorable
energy-level alignment facilitates the above-mentioned electron
transfer effect in the inset of Figure 4D [57, 58]. In a
conventional organic polymer molecule system, the charge
transfer induced enhancement third-order non-linearity of the
composite was observed [59]. Moreover, these electron transfers
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FIGURE 4 | Pump-probe experiment results of RGO (A), SnSe (B), and

SnSe/RGO (C) at different excitation wavelengths: 400, 600, and 800 nm.

Scatter points represent experimental data and solid lines represent fitted

results. (D) Photo-excited carrier lifetimes at different wavelengths. In the inset

of (D): Schematic diagram of electron transfer. Fermi-energy level alignment of

SnSe [57] and RGO [58].

increase the non-linear absorption process, which has also been
clearly observed in other similar donor-acceptor 2D material
systems [27].

CONCLUSION

In conclusion, the non-linear absorption and carrier dynamics
of SnSe/RGO were determined using an OA Z-scan and pump-
probe experiments at different wavelengths. The RSA response
was obtained for the whole wavelength region, ranging from

visible to near infrared. For pristine RGO this was done only
for the visible range (400–600 nm). The broad RSA response of
the RGO/SnSe nanohybrid can be attributed to a multi-photon
absorption mechanism. The limit thresholds for the RGO/SnSe
nanohybrid were 0.25 mJ/cm2, 0.6 mJ/cm2, and 0.055mJ/cm2 at
400, 600, 800 nm, respectively. These are one order of magnitude
below pristine RGO or SnSe, which suggests that SnSe/RGO has
a stronger OL performance than pristine SnSe and RGO. The
pump-probe measurements confirmed multi-photon absorption
induced optical bleaching in the SnSe/RGO hybrid. The photo-
excited carrier lifetime of the SnSe/RGO hybrid occurs on a
picosecond timescale. We also compared the carrier lifetimes
of the different samples, and the median lifetime of SnSe/RGO
provides reasonable evidence for the electron transfer effect
in the hybrid system, which contributes significantly to the
improved OL performance of SnSe/RGO. Our results provide
new opportunities to construct novel OL material systems.
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