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In this article, we use s-convex and Green functions to obtain a bound for the Jensen

gap in discrete form and a bound for the Jensen gap in integral form. We present

two numerical examples to verify the main results and to examine the tightness of the

bounds. Then, as an application of the discrete result, we derive a converse of the Hölder

inequality. Based on the integral result, we obtain a bound for the Hermite-Hadamard

gap and present a converse of the Hölder inequality in its integral form. Also, we obtain

bounds for the Csiszár and Rényi divergences as applications of the discrete result.

Finally, we utilize the bound obtained for the Csiszár divergence to deduce new estimates

for some other divergences in information theory.
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1. INTRODUCTION

Convex functions and their generalizations play a significant role in scientific observation and
calculation of various parameters in modern analysis, especially in the theory of optimization.
Moreover, convex functions have some nice properties, such as differentiability, monotonicity, and
continuity, which are useful in applications [1–5]. Interest in mathematical inequalities for convex
and generalized convex functions has been growing exponentially, and research in this respect
has had a significant impact on modern analysis [6–20]. Several mathematical inequalities have
been established for s-convex functions in particular [21–28], one of the most important being the
Jensen inequality. In this paper, we study the Jensen inequality in a more standard framework for
s-convex functions.

Definition 1.1 (s-convexity [29]). For s > 0 and a convex subset B of a real linear space S, a function
Ŵ :B → R is said to be s-convex if the inequality

Ŵ(κ1ε1 + κ2ε2) ≤ κ s1Ŵ(ε1)+ κ
s
2Ŵ(ε2) (1.1)

holds for all ε1, ε2 ∈ B and κ1, κ2 ≥ 0 with κ1 + κ2 = 1.

The function Ŵ is said to be s-concave if the inequality (1.1) holds in the reverse direction.
Obviously, for s = 1 an s-convex function becomes a convex function, which shows that s-convexity
of a function is a generalization of ordinary convexity of that function.

Lemma 1.2 ([29]). Let B be a convex subset of a real linear space S and let Ŵ :B → R be a convex
function. Then the following two statements hold:
(a) Ŵ is s-convex for 0 < s ≤ 1 if Ŵ is non-negative;
(b) Ŵ is s-convex for 1 ≤ s <∞ if Ŵ is non-positive.
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The Green function [30]

G1(t, x) =
{

α1 − x, α1 ≤ x ≤ t,
α1 − t, t ≤ x ≤ α2

(1.2)

defined on [α1,α2]× [α1,α2] and the integral identity

Ŵ(t) = Ŵ(α1)+ (t − α1)Ŵ′(α2)+
∫ α2

α1

G1(t, x)Ŵ
′′(x) dx (1.3)

for the function Ŵ ∈ C2[α1,α2] will be used to obtain the main
results. Note that G1 is convex and continuous with respect to
both variables.

This paper is organized as follows. In section 2 we give a
bound for the Jensen gap in discrete form, which pertains to
functions for which the absolute value of the second derivative
is s-convex. We also derive a bound for the integral version of
the Jensen gap. Then we conduct two numerical experiments
that provide evidence for the tightness of the bound in the
main result. We deduce a converse of the Hölder inequality
from the discrete result and a bound for the Hermite-Hadamard
gap from the integral result. Moreover, as a consequence
of the integral result we obtain a converse of the Hölder
inequality in its corresponding integral version. At the beginning
of section 3 we present bounds for the Csiszár and Rényi
divergences in the discrete case. Finally, we give estimates for the
Shannon entropy, Kullback-Leibler divergence, χ2 divergence,
Bhattacharyya coefficient, Hellinger distance, and triangular
discrimination as applications of the bound obtained for the
Csiszár divergence. Conclusions are presented in the final section.

2. MAIN RESULTS

Using the concept of s-convexity, we derive a bound for
the Jensen gap in discrete form, which is presented in the
following theorem.

Theorem 2.1. Suppose |Ŵ|′′ is s-convex for a function Ŵ ∈
C2[α1,α2] and that zi ∈ [α1,α2] and κi ∈ [0,∞) for i = 1, . . . , n
with

∑n
i=1 κi = K > 0. Then the following inequality holds:

∣

∣

∣

∣

∣

1

K

n
∑

i=1

κiŴ(zi)− Ŵ
( 1

K

n
∑

i=1

κizi

)

∣

∣

∣

∣

∣

≤
|Ŵ′′(α1)|

(s+ 1)(s+ 2)(α2 − α1)s
(

1

K

n
∑

i=1

κi(α2 − zi)
s+2 −

(

α2 −
1

K

n
∑

i=1

κizi

)s+2
)

+
|Ŵ′′(α2)|

(s+ 1)(s+ 2)(α2 − α1)s
(

1

K

n
∑

i=1

κi(zi − α1)s+2 −
( 1

K

n
∑

i=1

κizi − α1
)s+2

)

. (2.4)

Proof: Using (1.3), we get

1

K

n
∑

i=1

κiŴ(zi) = 1
K

∑n
i=1 κi

(

Ŵ(α1)+ (zi − α1)Ŵ′(α2)

+
∫ α2
α1

G1(zi, x)Ŵ′′(x) dx

)

(2.5)

and

Ŵ

(

1

K

n
∑

i=1

κizi

)

= Ŵ(α1)+

(

1

K

n
∑

i=1

κizi − α1

)

Ŵ′(α2)

+
∫ α2

α1

G1

(

1

K

n
∑

i=1

κizi, x

)

Ŵ′′(x) dx. (2.6)

Equations (2.5) and (2.6) give

1

K

n
∑

i=1

κiŴ(zi)− Ŵ

(

1

K

n
∑

i=1

κizi

)

=
∫ α2

α1

(

1

K

n
∑

i=1

κiG1(zi, x)− G1

( 1

K

n
∑

i=1

κizi, x
)

)

Ŵ′′(x) dx.

(2.7)

Taking the absolute value of (2.7), we get

∣

∣

∣

∣

∣

1

K

n
∑

i=1

κiŴ(zi)− Ŵ

(

1

K

n
∑

i=1

κizi

) ∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ α2

α1

(

1

K

n
∑

i=1

κiG1(zi, x)− G1

( 1

K

n
∑

i=1

κizi, x
)

)

Ŵ′′(x) dx

∣

∣

∣

∣

∣

≤
∫ α2

α1

∣

∣

∣

∣

∣

1

K

n
∑

i=1

κiG1(zi, x)− G1

( 1

K

n
∑

i=1

κizi, x
)

∣

∣

∣

∣

∣

|Ŵ′′(x)| dx.

(2.8)

By applying a change of variable x = tα1 + (1 − t)α2 for t ∈
[0, 1] and using the convexity of G1(t, x), the inequality (2.8) is
transformed to

∣

∣

∣

∣

∣

1

K

n
∑

i=1

κiŴ(zi)− Ŵ(z̄)

∣

∣

∣

∣

∣

≤ (α2 − α1)
∫ 1

0

(

1

K

n
∑

i=1

κiG1(zi, tα1 + (1− t)α2)

− G1(z̄, tα1 + (1− t)α2)
)

× |Ŵ′′(tα1 + (1− t)α2)| dt, (2.9)

where z̄ = 1
K

∑n
i=1 κizi. The inequality (2.9) leads to the

following by using s-convexity of the function |Ŵ|′′:

∣

∣

∣

∣

∣

1

K

n
∑

i=1

κiŴ(zi)− Ŵ(z̄)

∣

∣

∣

∣

∣

≤ (α2 − α1)
∫ 1

0

(

1

K

n
∑

i=1

κiG1(zi, tα1 + (1− t)α2)

− G1(z̄, tα1 + (1− t)α2)
)

×
(

ts|Ŵ′′(α1)| + (1− t)s|Ŵ′′(α2)|
)

dt.
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= (α2 − α1)
∫ 1

0

(

1

K

n
∑

i=1

κiG1(zi, tα1 + (1− t)α2)t
s|Ŵ′′(α1)|

+
1

K

n
∑

i=1

κiG1(zi, tα1 + (1− t)α2)(1− t)s|Ŵ′′(α2)|

− G1(z̄, tα1 + (1− t)α2)t
s|Ŵ′′(α1)|

− G1(z̄, tα1 + (1− t)α2)(1− t)s|Ŵ′′(α2)|

)

dt

= (α2 − α1)

(

|Ŵ′′(α1)|
1

K

n
∑

i=1

κi

∫ 1

0
tsG1(zi, tα1 + (1− t)α2) dt

+ |Ŵ′′(α2)|
1

K

n
∑

i=1

κi

∫ 1

0
(1− t)sG1(zi, tα1 + (1− t)α2) dt

− |Ŵ′′(α1)|
∫ 1

0
tsG1

(

z̄, tα1 + (1− t)α2
)

dt

− |Ŵ′′(α2)|
∫ 1

0
(1− t)sG1

(

z̄, tα1 + (1− t)α2
)

dt

)

.

(2.10)

Now, by using the change of variable x = tα1 + (1 − t)α2 for
t ∈ [0, 1], we obtain

∫ 1

0
tsG1(zi, tα1 + (1− t)α2) dt

=
1

(α2 − α1)s+1

(

(α2 − zi)s+2

(s+ 1)(s+ 2)
−

(α2 − α1)s+2

(s+ 1)(s+ 2)

)

. (2.11)

Upon replacing zi by z̄ in (2.11), we get

∫ 1

0
tsG1(z̄, tα1 + (1− t)α2) dt

=
1

(α2 − α1)s+1

(

(α2 − z̄)s+2

(s+ 1)(s+ 2)
−

(α2 − α1)s+2

(s+ 1)(s+ 2)

)

. (2.12)

Also,

∫ 1

0
(1− t)sG1(zi, tα1 + (1− t)α2) dt

=
1

(α2 − α1)s+1

(

(zi − α1)s+2

(s+ 1)(s+ 2)
−

(zi − α1)(α2 − α1)s+1

(s+ 1)

)

.

(2.13)

Upon replacing zi by z̄ in (2.13), we get

∫ 1

0
(1− t)sG1(z̄, tα1 + (1− t)α2) dt

=
1

(α2 − α1)s+1

(

(z̄ − α1)s+2

(s+ 1)(s+ 2)
−

(z̄ − α1)(α2 − α1)s+1

(s+ 1)

)

.

(2.14)

The result (2.4) is then obtained by substituting the values from
(2.11)–(2.14) into (2.10).

Remark 2.2. If we use the Green function G2, G3, or G4 instead
of G1 in Theorem 2.1, where G2, G3, and G4 are given in [30], we
obtain the same result (2.4).

In the following theorem, we give a bound for the Jensen gap
in integral form.

Theorem 2.3. Suppose |Ŵ′′| is an s-convex function for Ŵ ∈
C2[α1,α2], and let ξ1 and ξ2 be real-valued functions defined on
[c1, c2] with ξ1(y) ∈ [α1,α2] for all y ∈ [c1, c2] and such that ξ2,
ξ1ξ2, and (Ŵ ◦ ξ1)ξ2 are all integrable functions on [c1, c2]. Then
the inequality

∣

∣

∣

∣

∣

∫ c2
c1
(Ŵ ◦ ξ1)(y)ξ2(y) dy

ξ
− Ŵ

(∫ c2
c1
ξ1(y)ξ2(y) dy

ξ

)∣

∣

∣

∣

∣

≤
|Ŵ′′(α1)|

(s+ 1)(s+ 2)(α2 − α1)s

{

∫ c2
c1
ξ2(y)

(

α2 − ξ1(y)
)s+2

dy

ξ

−

(

α2 −

∫ c2
c1
ξ2(y)ξ1(y) dy

ξ

)s+2}

+
|Ŵ′′(α2)|

(s+ 1)(s+ 2)(α2 − α1)s

{

∫ c2
c1
ξ2(y)

(

ξ1(y)− α1
)s+2

dy

ξ

−

(∫ c2
c1
ξ2(y)ξ1(y) dy

ξ
− α1

)s+2}

(2.15)

holds provided that
∫ c2
c1
ξ2(y) dy := ξ > 0 when ξ2(y) ∈ [0,∞) for

all y ∈ [c1, c2].

Proof: Using the same procedure as in the proof of Theorem 2.1,
(2.15) can be obtained.

Example 1. Let Ŵ(y) = 4
15y

5
2 , ξ1(y) = y2, and ξ2(y) = 1 for all

y ∈ [0, 1]. Then Ŵ′′(y) = y
1
2 > 0 for all y ∈ [0, 1]. This shows that

Ŵ is a convex function while |Ŵ′′| is 1
2 -convex. Also, ξ1(y) ∈ [0, 1]

for all y ∈ [0, 1] and we have [α1,α2] = [c1, c2] = [0, 1].

Now, the left-hand side of inequality (2.15) gives
∫ 1
0 Ŵ(ξ1(y)) dy−

Ŵ
(∫ 1

0 ξ1(y) dy
)

= 0.0444 − 0.0171 = 0.0273 = E1, which shows
how sharp the Jensen inequality is. The right-hand side of (2.15)
gives 0.0274, which is very close to the true discrepancy E1. That is,
from inequality (2.15) we have

0.0273 < 0.0274. (2.16)

The difference 0.0274− 0.0273 = 0.0001 between the two sides of
(2.16) shows that the bound for the Jensen gap given by inequality
(2.15) is very close to the true value.

Example 2. Let Ŵ(y) = 100
231y

21
10 , ξ1(y) = y, and ξ2(y) = 1 for all

y ∈ [0, 1]. Then Ŵ′′(y) = y
1
10 > 0 for all y ∈ [0, 1], which shows

thatŴ is a convex function while |Ŵ′′| is s-convex with s = 1
10 .Also,

ξ1(y) ∈ [0, 1] for all y ∈ [0, 1] and we have [α1,α2] = [c1, c2] =
[0, 1]. Therefore, from the left-hand side of inequality (2.15) we

Frontiers in Physics | www.frontiersin.org 3 October 2020 | Volume 8 | Article 313

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Adil Khan et al. New Estimates for the Jensen Gap

obtain
∫ 1
0 Ŵ(ξ1(y)) dy − Ŵ

(∫ 1
0 ξ1(y) dy

)

= 0.1396 − 0.1010 =
0.0386 = E2,which shows that the Jensen inequality is quite sharp.
The right-hand side of (2.15) gives 0.0387, a value very close to the
true discrepancy E2. Finally, from inequality (2.15) we have

0.0386 < 0.0387. (2.17)

The difference 0.0387 − 0.0386 = 0.0001 between the two sides
of (2.17) provides further evidence of the tightness of the bound for
the Jensen gap given by inequality (2.15).

As an application of Theorem 2.1, we derive a converse of the
Hölder inequality, stated in the following proposition.

Proposition 2.4. Let q2 > 1 and q1 6∈ (2, 3) be such that 1
q1
+ 1

q2
=

1, and let s ∈ (0, 1]. Also, let [α1,α2] be a positive interval and
let (d1, . . . , dn) and (b1, . . . , bn) be two positive n-tuples such that
∑n

i=1 dibi
∑n

i=1 b
q2
i

, with dib
− q2

q1
i ∈ [α1,α2] for i = 1, . . . , n. Then

(

n
∑

i=1

d
q1
i

)
1
q1
(

n
∑

i=1

b
q2
i

)
1
q2 −

n
∑

i=1

dibi

≤

[

q1(q1 − 1)

(s+ 1)(s+ 2)(α2 − α1)s

{

α
q1−2
1

(

∑n
i=1 b

q2
i (α2 − dib

− q2
q1

i )s+2

∑n
i=1 b

q2
i

−
(

α2 −
∑n

i=1 dibi
∑n

i=1 b
q2
i

)s+2
)

+ αq1−2
2

(

∑n
i=1 b

q2
i (dib

− q2
q1

i − α1)s+2

∑n
i=1 b

q2
i

−
(

∑n
i=1 dibi

∑n
i=1 b

q2
i

− α1
)s+2

)}]
1
q1 n
∑

i=1

b
q2
i . (2.18)

Proof: Let Ŵ(x) = xq1 for x ∈ [α1,α2]; then Ŵ′′(x) = q1(q1 −
1)xq1−2 > 0 and |Ŵ′′|′′(x) = q1(q1−1)(q1−2)(q1−3)xq1−4 > 0,
which shows that Ŵ and |Ŵ′′| are convex functions. The function
|Ŵ′′| is also non-negative, so by Lemma 1.2 it is also an s-convex
function for s ∈ (0, 1]. Thus, using (2.4) with Ŵ(x) = xq1 , κi =

b
q2
i , and zi = dib

− q2
q1

i , we derive

(

(

n
∑

i=1

d
q1
i

)(

n
∑

i=1

b
q2
i

)q1−1
−
(

n
∑

i=1

dibi

)q1

)
1
q1

≤

[

q1(q1 − 1)

(s+ 1)(s+ 2)(α2 − α1)s

{

α
q1−2
1

(

∑n
i=1 b

q2
i (α2 − dib

− q2
q1

i )s+2

∑n
i=1 b

q2
i

−
(

α2 −
∑n

i=1 dibi
∑n

i=1 b
q2
i

)s+2
)

+ αq1−2
2

(

∑n
i=1 b

q2
i (dib

− q2
q1

i − α1)s+2

∑n
i=1 b

q2
i

−
(

∑n
i=1 dibi

∑n
i=1 b

q2
i

− α1
)s+2

)}]
1
q1 n
∑

i=1

b
q2
i . (2.19)

By using the inequality xγ − yγ ≤ (x − y)γ for 0 ≤
y ≤ x and γ ∈ [0, 1] with x =

(
∑n

i=1 d
q1
i

)

×
(
∑n

i=1 b
q2
i

)q1−1
, y =

(
∑n

i=1 dibi
)q1 , and γ = 1

q1
, we obtain

(

n
∑

i=1

d
q1
i

)
1
q1
(

n
∑

i=1

b
q2
i

)
1
q2 −

n
∑

i=1

dibi

≤

(

(

n
∑

i=1

d
q1
i

)(

n
∑

i=1

b
q2
i

)q1−1
−
(

n
∑

i=1

dibi

)q1

)
1
q1

. (2.20)

The inequality (2.18) follows from (2.19) and (2.20).

In the following proposition, we provide a converse of
the Hölder inequality in integral form as an application of
Theorem 2.3.

Proposition 2.5. Let q2 > 1 and q1 6∈ (2, 3) be such that
1
q1

+ 1
q2

= 1. Also, let ζ1, ζ2 :[c1, c2] → R
+ be two functions such

that ζ
q1
1 (y), ζ

q2
2 (y), and ζ1(y)ζ2(y) are integrable on [c1, c2] with

ζ1(y)ζ
−q2/q1
2 (y) ∈ [α1,α2]when [α1,α2] ⊂ R.Then the inequality

(

∫ c2

c1

ζ
q1
1 (y) dy

)
1
q1
(

∫ c2

c1

ζ
q2
2 (y) dy

)
1
q2 −

∫ c2

c1

ζ1(y)ζ2(y) dy

≤

[

q1(q1 − 1)

(s+ 1)(s+ 2)(α2 − α1)s

{

α
q1−2
1

(

1
∫ c2
c1
ζ
q2
2 (y) dy

∫ c2

c1

ζ
q2
2 (y)

(

α2 − ζ1(y)ζ
− q2

q1
2 (y)

)s+2
dy

−

(

α2 −
1

∫ c2
c1
ζ
q2
2 (y) dy

∫ c2

c1

ζ1(y)ζ2(y) dy

)s+2)

+ αq1−2
2

(

1
∫ c2
c1
ζ
q2
2 (y) dy

∫ c2

c1

ζ
q2
2 (y)

(

ζ1(y)ζ
− q2

q1
2 (y)− α1

)s+2
dy

−

(

1
∫ c2
c1
ζ
q2
2 (y) dy

∫ c2

c1

ζ1(y)ζ2(y) dy− α1

)s+2)}] 1
q1
∫ c2

c1

ζ
q2
2 (y) dy

(2.21)

holds for s ∈ (0, 1].

Proof: Using (2.15) with Ŵ(x) = xq1 for x ∈ [α1,α2], ξ2(y) =

ζ
q2
2 (y), and ξ1(y) = ζ1(y)ζ

− q2
q1

2 (y) and following the procedure of
Proposition 2.4, we deduce (2.21).

As an application of Theorem 2.3, in the following corollary
we establish a bound for the Hermite-Hadamard gap.

Corollary 2.6. Let ψ ∈ C2[c1, c2] be a function such that |ψ ′′| is
s-convex; then

∣

∣

∣

1

c2 − c1

∫ c2

c1

ψ(y) dy− ψ
( c1 + c2

2

)∣

∣

∣

≤
(c2 − c1)2

(s+ 1)(s+ 2)

(

|ψ ′′(c1)| + |ψ ′′(c2)|
)

(

1

s+ 3
−

1

2s+2

)

.

(2.22)
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Proof: The inequality (2.22) can be obtained by using (2.15)
with ψ = Ŵ, [α1,α2] = [c1, c2], ξ2(y) = 1, and ξ1(y) = y
for y ∈ [c1, c2].

3. APPLICATIONS TO INFORMATION

THEORY

Definition 3.1 (Csiszár f -divergence [31]). Let t = (t1, . . . , tn) ∈
R
n and r = (r1, . . . , rn) ∈ R

n
+ with ti

ri
∈ [α1,α2] (i = 1, . . . , n)

for [α1,α2] ⊂ R. For a function f :[α1,α2] → R, the Csiszár
f -divergence functional is defined as

D̄c(t, r) =
n
∑

i=1

rif

(

ti

ri

)

.

Theorem 3.2. Let f ∈ C2[α1,α2] be a function such that |f ′′| is
s-convex. Then for t = (t1, . . . , tn) ∈ R

n and r = (r1, . . . , rn) ∈
R
n
+ the inequality

∣

∣

∣

∣

∣

1
∑n

i=1 ri
D̄c(t, r)− f

(

∑n
i=1 ti

∑n
i=1 ri

)

∣

∣

∣

∣

∣

≤
|f ′′(α1)|

(s+ 1)(s+ 2)(α2 − α1)s

{

1
∑n

i=1 ri

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2

−
(

α2 −
∑n

i=1 ti
∑n

i=1 ri

)s+2
}

+
|f ′′(α2)|

(s+ 1)(s+ 2)(α2 − α1)s

{

1
∑n

i=1 ri

n
∑

i=1

ri

( ti

ri
− α1

)s+2

−
(

∑n
i=1 ti

∑n
i=1 ri

− α1
)s+2

}

(3.23)

holds provided that
∑n

i=1 ti
∑n

i=1 ri
, tiri ∈ [α1,α2] for i = 1, . . . , n.

Proof: The inequality (3.23) can easily be deduced from (2.4) by
taking Ŵ = f , zi = ti

ri
, and κi = ri

∑n
i=1 ri

.

Definition 3.3 (Rényi divergence [31]). For µ ≥ 0 with µ 6= 1
and two positive probability distributions t = (t1, . . . , tn) and
r = (r1, . . . , rn), the Rényi divergence is defined as

Dre(t, r) =
1

µ− 1
log

(

n
∑

i=1

t
µ
i r

1−µ
i

)

.

Corollary 3.4. Let 0 < s ≤ 1 and [α1,α2] ⊆ R
+. Then for positive

probability distributions t = (t1, . . . , tn) and r = (r1, . . . , rn), the
inequality

Dre(t, r)−
1

µ− 1

n
∑

i=1

ti log

(

ti

ri

)µ−1

≤
1

(µ− 1)α21(α2 − α1)s(s+ 1)(s+ 2)

×

{

n
∑

i=1

ti

(

α2 −
( ti

ri

)µ−1)s+2
−
(

α2 −
n
∑

i=1

v
µ
i w

1−µ
i

)s+2
}

+
1

(µ− 1)α22(α2 − α1)s(s+ 1)(s+ 2)

×

{

n
∑

i=1

ti

(( ti

ri

)µ−1
− α1

)s+2
−
(

n
∑

i=1

v
µ
i w

1−µ
i − α1

)s+2
}

.

(3.24)

holds provided that
∑n

i=1 ri
( ti
ri

)µ
,
( ti
ri

)µ−1 ∈ [α1,α2] for i =
1, . . . , n with µ > 1.

Proof: Let Ŵ(x) = − 1
µ−1 log x for x ∈ [α1,α2]. Then Ŵ′′(x) =

1
(µ−1)x2

> 0 and |Ŵ′′|′′(x) = 6
(µ−1)x4

> 0, which shows that Ŵ

and |Ŵ′′| are convex functions with |Ŵ′′| ≥ 0; so by Lemma 1.2
the function |Ŵ′′| is s-convex for s ∈ (0, 1]. Therefore, using

(2.4) with Ŵ(x) = − 1
µ−1 log x, κi = ti, and zi =

( ti
ri

)µ−1
, we

derive (3.24).

Definition 3.5 (Shannon entropy [31]). Let r = (r1, . . . , rn) be
a positive probability distribution; then the Shannon entropy is
defined as

Es(r) = −
n
∑

i=1

ri log ri.

Corollary 3.6. Let [α1,α2] ⊆ R
+, and let r = (r1, . . . , rn) be

a positive probability distribution such that 1
ri

∈ [α1,α2] for
i = 1, . . . , n with 0 < s ≤ 1. Then

log n− Es(r) ≤
1

α21(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

(

α2 −
1

ri

)s+2
− (α2 − n)s+2

}

+
1

α22(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

( 1

ri
− α1

)s+2
− (n− α1)s+2

}

. (3.25)

Proof: Let f (x) = − log x for x ∈ [α1,α2]. Then f ′′(x) = 1
x2
> 0

and |f ′′|′′(x) = 6
x4
> 0, which shows that f and |f ′′| are convex

functions. Also, |f ′′| is non-negative and so by Lemma 1.2 we
conclude that it is s-convex for s ∈ (0, 1]. Therefore, using (3.23)
with f (x) = − log x and (t1, . . . , tn) = (1, . . . , 1), we get (3.25).

Definition 3.7 (Kullback-Leibler divergence [31]). For two
positive probability distributions t = (t1, . . . , tn) and r =
(r1, . . . , rn), the Kullback-Leibler divergence is defined as

Dkl(t, r) =
n
∑

i=1

ti log
ti

ri
.
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Corollary 3.8. Let 0 < s ≤ 1 and 0 < α1 < α2, and let
t = (t1, . . . , tn) and r = (r1, . . . , rn) be positive probability
distributions such that ti

ri
∈ [α1,α2] for i = 1, . . . , n. Then

Dkl(t, r) ≤
1

α1(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2
− (α2 − 1)s+2

}

+
1

α2(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

( ti

ri
− α1

)s+2
− (1− α1)s+2

}

. (3.26)

Proof: Let f (x) = x log x for x ∈ [α1,α2]. Then f ′′(x) = 1
x > 0

and |f ′′|′′(x) = 2
x3
> 0, which shows that f and |f ′′| are convex

functions. Also, |f ′′| ≥ 0, and so Lemma 1.2 guarantees the
s-convexity of |f ′′| for s ∈ (0, 1]. Therefore, using (3.23) with
f (x) = x log x, we get (3.26).

Definition 3.9 (χ2 divergence [31]). The χ2 divergence Dχ2 (t, r)
for two positive probability distributions t = (t1, . . . , tn) and
r = (r1, . . . , rn) is defined as

Dχ2 (t, r) =
n
∑

i=1

(ti − ri)2

ri
.

Corollary 3.10. Let 0 < s ≤ 1 and 0 < α1 < α2, and
let t = (t1, . . . , tn) and r = (r1, . . . , rn) be positive probability
distributions such that ti

ri
∈ [α1,α2] for i = 1, . . . , n. Then

Dχ2 (t, r) ≤
2

(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2
− (α2 − 1)s+2

}

+
2

(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

( ti

ri
− α1

)s+2
− (1− α1)s+2

}

. (3.27)

Proof: Let f (x) = (x − 1)2 for x ∈ [α1,α2]. Then f ′′(x) =
2 > 0 and |f ′′|′′(x) = 0, which shows that f and |f ′′| are
convex functions. Also, the function |f ′′| is non-negative, and
so Lemma 1.2 confirms its s-convexity for s ∈ (0, 1]. Therefore,
using (3.23) with f (x) = (x− 1)2, we obtain (3.27).

Definition 3.11 (Bhattacharyya coefficient [31]). For two positive

probability distributions t = (t1, . . . , tn) and r = (r1, . . . , rn), the
Bhattacharyya coefficient is defined as

Cb(t, r) =
n
∑

i=1

√
tiri.

Corollary 3.12. Let 0 < s ≤ 1 and [α1,α2] ⊆ R
+, and let

t = (t1, . . . , tn) and r = (r1, . . . , rn) be two positive probability
distributions such that ti

ri
∈ [α1,α2] for i = 1, . . . , n. Then

1− Cb(t, r) ≤
1

4α
3
2
1 (α2 − α1)s(s+ 1)(s+ 2)

{

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2
− (α2 − 1)s+2

}

+
1

4α
3
2
2 (α2 − α1)s(s+ 1)(s+ 2)

{

n
∑

i=1

ri

( ti

ri
− α1

)s+2
− (1− α1)s+2

}

. (3.28)

Proof: Let f (x) = −
√
x for x ∈ [α1,α2]. Then f ′′(x) = 1

4x
3
2
> 0

and |f ′′|′′(x) = 15

16x
7
2
> 0, which shows that f and |f ′′| are convex

functions. Also, |f ′′| ≥ 0 implies its s-convexity for s ∈ (0, 1]
by Lemma 1.2. Therefore, using (3.23) with f (x) = −

√
x, we

obtain (3.28).

Definition 3.13 (Hellinger distance [31]). The Hellinger distance
D2
h(t, r) between two positive probability distributions t =

(t1, . . . , tn) and r = (r1, . . . , rn) is defined as

D2
h(t, r) =

1

2

n
∑

i=1

(
√
ti −

√
ri )

2.

Corollary 3.14. Let 0 < α1 < α2 and 0 < s ≤ 1, and
let t = (t1, . . . , tn) and r = (r1, . . . , rn) be positive probability
distributions such that ti

ri
∈ [α1,α2] for i = 1, . . . , n. Then

D2
h(t, r) ≤

1

4α
3
2
1 (α2 − α1)s(s+ 1)(s+ 2)

{

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2
− (α2 − 1)s+2

}

+
1

4α
3
2
2 (α2 − α1)s(s+ 1)(s+ 2)

{

n
∑

i=1

ri

( ti

ri
− α1

)s+2
− (1− α1)s+2

}

. (3.29)

Proof: Let f (x) = 1
2 (1 −

√
x)2 for x ∈ [α1,α2]. Then f ′′(x) =

1

4x
3
2
> 0 and |f ′′|′′(x) = 15

16x
7
2
> 0, which shows that f and |f ′′|

are convex functions. Also, |f ′′| ≥ 0, and so from Lemma 1.2
we conclude its s-convexity for s ∈ (0, 1]. Therefore, using (3.23)
with f (x) = 1

2 (1−
√
x)2, we deduce (3.29).

Definition 3.15 (Triangular discrimination [31]). For two positive
probability distributions t = (t1, . . . , tn) and r = (r1, . . . , rn), the
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triangular discrimination is defined as

D△(t, r) =
n
∑

i=1

(ti − ri)2

ti + ri
.

Corollary 3.16. Let 0 < s ≤ 1 and 0 < α1 <

α2, and let t = (t1, . . . , tn) and r = (r1, . . . , rn) be
positive probability distributions such that ti

ri
∈ [α1,α2] for

i = 1, . . . , n. Then

D△(t, r) ≤
8

(α1 + 1)3(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

(

α2 −
ti

ri

)s+2
− (α2 − 1)s+2

}

+
8

(α2 + 1)3(α2 − α1)s(s+ 1)(s+ 2)
{

n
∑

i=1

ri

( ti

ri
− α1

)s+2
− (1− α1)s+2

}

. (3.30)

Proof: Let f (x) = (x−1)2

(x+1) for x ∈ [α1,α2]. Then f ′′(x) = 8
(x+1)3

>

0 and |f ′′|′′(x) = 96
(x+1)5

> 0, which shows that f and |f ′′| are
convex functions. Also, |f ′′| is non-negative, and thus s-convexity
of the function |f ′′| for s ∈ (0, 1] follows from Lemma 1.2.

Therefore, using (3.23) with f (x) = (x−1)2

(x+1) , we get (3.30).

Remark 3.17. Analogously, bounds for various divergences
in integral form can be derived as applications
of Theorem 2.3.

4. CONCLUSION

The Jensen inequality has numerous applications in engineering,
economics, computer science, information theory, and coding;

it has been derived for convex and generalized convex
functions. This paper presents a novel approach to bounding
the Jensen gap. Some bounds are obtained for the Jensen
gap via s-convex functions. Numerical experiments not only
confirm the sharpness of the Jensen inequality but also
provide evidence for the tightness of the bound given in
(2.15) for the Jensen gap. These experiments also show
that the bound in (2.15) gives very close estimates for the
Jensen gap even when the functions are not convex. The
bounds are used to obtain new estimates for the Hermite-
Hadamard and Hölder inequalities. Furthermore, based on
the main results, various divergences are estimated. These
estimates for divergences can be applied to signal processing,
magnetic resonance image analysis, image segmentation, pattern
recognition, and other areas. The ideas in this paper can also
be used with other inequalities and for some other classes of
convex functions.
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