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A broadband high gain polarization reconfigurable antenna based on metasurface has
been presented. The antenna is composed of a planar metasurface, a slot antenna
and an air cavity. The metasurface is made up of 64 identical patches, and all the
patches are on the top surface of the substrate. The spatial equivalent circuit of the
metasurface is discussed and two approximate calculation formulas of the equivalent
circuit are obtained. The antenna can be reconfigured to linear polarization, left-hand
and right-hand circular polarizations by adjusting the relative positions between the
metasurface and the planar slot antenna. The gain of the antenna is improved. In order to
verify these methods, the antenna is studied and designed to operate at around 11GHz.
The simulated and measured results show that the 3dB axis ratio bandwidth is 10-12
GHz (fractional bandwidth 18.18%) and maximum gain of 14.6 dBi.

Keywords: metasurface, polarization reconfiguration, Fabry-Perot cavity, high gain, slot antenna

INTRODUCTION

Metamaterials, such as metasurface (MS), electromagnetic band gap (EBG), photonic band gap
(PBQG), frequency selective surface (FSS) and left handed metamaterials (LFM), are commonly
designed by arranging a number of electrically small scatterers in regular or irregular periods
within a space region to obtain some special electromagnetic behaviors [1-5]. In recent years,
reconfigurable antennas based on metasurface have been attracting a wide attention of researchers
[6-10]. Reconfigurable antennas generally include operating frequency, radiation pattern, and
polarization modes tunability, which can well meet the complex communication systems and
multitasking demands [11-13]. Polarization reconfigurable antennas are usually able to achieve
polarization mode transitions. For example, the antenna can be reconfigured to left-hand circular
polarization (LHCP), right-hand circular polarization (RHCP) and linear polarization [14-17].
The direction of the electric field vector is changed at the time of reconstruction. Frequency
reconfigurable antennas are very useful owing to their tunable operating frequency, which can be
classified into two types, band switching and continuous tuning, respectively [18-21]. The radiation
pattern of an antenna can be classified into omnidirectional radiation, bidirectional radiation,
unidirectional radiation and multidirectional radiation. Radiation pattern reconfigurable antennas
can usually be switched from one radiation pattern to another.
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Just as a two-dimensional equivalent of metamaterial, order to achieve the characteristics of specialized engineering
metasurface, which cannot be really found in the nature, is  [22, 23]. Research shows that MS can be used to enhance
essentially periodic arrangements of scatterers or apertures in  the performance of antennas. Thus, much research work
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FIGURE 1 | Geometry of proposed MS. (A) top view of the MS, (B) Unit cell with corners truncated, and (C) Schematic with the size parameters of the patch.
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FIGURE 2 | Geometry of proposed antenna. (A) Assembly schematic, (B) Polarization of the antenna, (C) Feeder line of slot antenna, and (D) Surface of slot antenna.
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has been carried out in the field of improving antenna
gain, achieving polarization reconfigurable and frequency
reconfigurable antennas by using MS.

In literature [24], a frequency and polarization reconfigurable
antenna consisting of a frequency reconfigurable MS, a
polarization reconfigurable MS and a microstrip patch
antenna with the same diameter is proposed. The polarization
reconfigurable MS consists of periodic corner-truncated
square elements placed on the upper surface of the frequency
reconfigurable MS, and the microstrip patch antenna placed in
the bottom layer as a source antenna. By rotating the frequency
reconfiguration MS, the designed antenna has a tuning range of
4.0-4.35 GHz. By rotating the polarizable reconfigurable surface,
the designed antenna can realize the transformation of linear
and circular polarization at 5.0-5.2GHz (relative bandwidth 4%).
In [25], the studies of polarization reconfigurable antenna with a
slot antenna and an asymmetric corss shaped MS are conducted.
The linear polarization of the slot antenna is reconfigured into
LHCP and RHCP by rotating the MS around the center of the
slot antenna. The designed polarization reconfigurable antenna
has a 3dB axis ratio (AR) bandwidth of 4.29-4.41 GHz (relative
bandwidth 2.7%). In [22], A radiation pattern reconfigurable
antenna based on MS is proposed. The operating frequency
range of the designed radiation pattern reconfigurable antenna
is 5.4-5.6 GHz. A low profile broadband circularly polarized
MS antenna was proposed in [26]. The MS consisting of 4 x
4 square metal patches to realize the miniaturization of the
antenna.The 3 dB axial ratio bandwidth is 1.4-1.62 GHz (relative
bandwidth 14.5%).

The operating bandwidth of the previously published
literature with polarization reconfigurable and radiation pattern
reconfigurable antenna is often subject to the restriction of the
structure of MS, As is in [26], the 3 dB AR is only 14.5%.
In this paper, a polarization reconfigurable antenna using an
improved MS is proposed. When the antenna operates in circular
polarization, there will be three inflection points in the AR curve.
Thus, the 3 dB AR bandwidth is expanded greatly.

In this paper, a reconfigurable antenna using an improved MS
is proposed. The 3 dB AR bandwidth is expanded greatly. To
clearly show that this antenna can provide circular polarization
radiation, the vector electric field at different phases from 0
to 360 degrees, at the antenna aperture in the far field is
analyzed. Our work extracts and analyses the equivalent circuit
parameters of the improved MS. In the new design, Fabry-
Perot cavity antenna and MS are combined to expand the
bandwidth of antenna, improve the gain of antenna, and realize
polarization reconfiguration.

TOPOLOGY STRUCTURE AND PRINCIPLE
OF OPERATION OF THE
RECONFIGURABLE POLARIZATION
CONVERTER

As is shown in Figure 1, the proposed MS is made up of 64
identical periodic patches, and all the patches are on the top

surface of the dielectric substrate. In Figure 1A, the structure
within the area enclosed by the red curve can be considered as
a unit cell. In order to analyze the polarization properties of
the MS, the unit cell is enlarged and redrawn, as is presented
in Figure 1B.

The perpendicular E-field components broken down
by the MS will cause two different impedances. The
expression for two impedances is shown in Equations
(1) and (2).

1
Zy = 2Ry +jw(2L1) + —— = Rz + jXn (1)
joCy
. 1 .
Zy = 2Ry +jw(2Ly) + —— =Rz + Xz (2)
joCy

The spatial equivalent circuit of the metal microstrip structure
is discussed in literature [27]. The equivalent circuit of the
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FIGURE 4 | The simulated amplitude of the reflection and transmission
coefficients of the metasurface’s unit cell.
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FIGURE 5 | The path difference ¢4, the reflection phase ¢y, of the
metasurface and the total phase difference ¥ at different frequencies.

Frontiers in Physics | www.frontiersin.org

August 2020 | Volume 8 | Article 316


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Ni et al.

Polarization Reconfigurable Antenna Using Metasurface

metasurface is analyzed and two approximate calculation
formulas of the equivalent circuit are obtained. As is shown
in Equations (3) and (4), g is the permittivity and o is
the permeability of the free space; &, is dielectric constant of
substrate; yg is the relative distance of two patches, which is
related to the dimension of the patch and the cutting part; 7 is
length of the truncated patch; p is the length of the patch; b is the
length of the unit cell.

24/2b 1

C = sper 1 _ 3
£oer— n(sm(z%h)) (3)

), n1=+2b—yg (4)

1
L = po—=In(——7—
2 sm(z%b)

According to Equations (3) and (4), when y g increases, the L,
increases and the C, decreases. Thus, the value of X, becomes
large, making Z, less capacitive than Z;. The phase difference
between Z; and Z, can be achieved by varying the dimension
of the truncated corners. When the unit cell is truncated such
that |Z1| = |Z3|, and /Z, — /Z; = 90°, then |E;| = |E;|

and ZE"Z — ZEI = 90°. The antenna will be RHCP. As is
shown in Figure 2B, when the MS is rotated 45° or 135° in the
counterclockwise direction, the antenna is changed to LP. When
the rotation angle is 90°, the antenna is reconfigured to LHCP.
The schematic assembly of antenna is drawn in Figure 2A. It can
be seen that the reconfigurable antenna presented in this paper
consists of a slot antenna, a supersurface and an air cavity. These
three components together form the Fabry-Perot cavity antenna
in structure.

The property of the metasurface layer is highly relevant
with the characteristics of the fabry-perot resonator antenna. In
addition, the frequency resonance of an fabry-perot resonator
antenna can be described as

2nmw = n=0,1,2... (5)

4 hy
. f+§0m+(/7r ,

where ¢, and ¢,, respectively, represent the reflection phases
of the metasurface layer and the ground plane, and hy is the
height of the fabry-perot cavity. Supposing that the ground plane
is perfectly electric conducting (¢, = -m) and the reflection

T=80 mm

W1=6 mm
>
L1=6 mm I

T=80 mm|

=

W=1.72 mm,

L=38.9 mm

measurement setup.

Ls1=23.5mm

FIGURE 6 | Photograph of the designed antenna and Antenna test system. (A) feeder line of slot antenna. (B) surface of slot antenna. (C) surface of MS. (D) antenna
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phase of the metasurface layer varies around -, according to
equation (5), the fabry-perot cavity has a minimum height h of
~/2 when the fabry-perot resonator antenna operates at the first
resonance (n = 0).

As we know, the Fabry-Perot cavity can improve the gain
of antenna greatly. In this design, a slot patch antenna which
is chosen has the potential of easy feed, stable transverse
radiation and wide bandwidth. Complete schematic with
the dimensions of feeder line of the source antenna is
drawn in Figure 2C. The surface source antenna is drawn
in Figure 2D.

To demonstrate the circular polarization (CP) characteristics
of MS, the simulated current distribution on the MS antenna
at different time points is shown in Figure 3. It is obvious
that the electric field vector distribution varies and rotates
with time. Numerical simulations have been performed by
using the full wave electromagnetic simulator HFSS. Figure 3A
shows the direction of rotation of the electric field vector of
the metasurface’s unit cell when 6 = 0°. According to the
rotation direction of the electric field vector, the electric field
is RHCP.

Figure 3B shows the direction of the electric field
vector when 6 45°. According to the direction of the
electric field vector, the electric field is LP at this time. The
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FIGURE 8 | Measured and simulated axial ratio with different rotation angle.
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simulated reflection and transmission coefficients of the
metasurface’s unit cell under normal incidence are plotted
in Figure 4.

As described above, the size of the hy is affected by the
reflection phase of the metasurface. However, the reflection phase
of the metasurface also changes with frequency. The simulation
results of reflection phase of the metasurface are shown in
Figure 5. According to the size of h,, the phase difference caused
by the path difference can be calculated. Figure 5 also shows the
path difference ¢a, the reflection phase ¢,, of the metasurface
and the total phase difference ¥ at different frequencies. As
shown in Figure 5, the total phase difference ¥ is close to 0 at
10.5 GHz when 0 = 45°, where the same phase superposition
maximizes the gain of the antenna. When 6 = 0°, the total phase
difference ¥ 1is close to 0 at 11 GHz. The maximum gain of
antenna will appear at 11 GHz. The gain of the antenna will also
change with the total phase difference ¥.

POLARIZATION RECONFIGURABLE
ANTENNA BASED ON METASURFACE

In order to verify the correctness of the antenna design
method in the previous section, much research has
been carried out and the experimental results show that

when the cutting shape is fan-shaped, the bandwidth
for circularly polarized has been greatly expanded.
Photographs of antennas and test systems are shown
in Figure 6.

The antenna is designed on RO4003C substrate with
€,=3.55, 32 mil thickness. As shown in Figure 5, the optimized
dimensions of the antenna are T = 80 mm, ho = 16.2mm W1
= 6mm, L1 = 6.7mm, W = 1.72mm, L = 38.9mm, Wsl
= 22mm, Lsl = 23.5mm, Ls = 41.1mm, p = 7mm, g =
3.42mm, b = 9mm. The simulated and measured S11 of the
designed antenna with different rotation angles are shown in

0 0
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| |
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FIGURE 9 | Measured and simulated radiation patterns and gains with different rotation angle at 11 GHz.
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at 11 GHz, when 6 = 0°. Figure 10 shows the gain of the slot

L antenna and the gain of the reorganizable antenna. The gain of

1% slot antenna is about 6-7 dBi. When the MS is placed atop the

\
L A
- .

b LN
— / — oo \K\
@ 12 L/A /»';"/ —e— slot antenna \'“:\f )
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FIGURE 10 | Measured and simulated peak gains vs. frequency with different
rotation angle.

TABLE 1 | Comparison of some published polarization reconfigurable antennas
and our work.

fo (GHz) 3 dB AR Peak gain Polarization
Bandwidth (%) (dBi)

Kandasamy et 4.35 2.7 6.5 LP/LHCP/RHCP
al. [25]

Liu et al. [26] 1.51 145 7 RHCP

Fan et al. [28] 10 16 17.9 LHCP
Lietal [29] 8.9 13.8 1.2 LHCP

Hu et al. [30] 5.5 17.8 9.39 LP/LHCP/RHCP
Zhu et al. [31] 3.5 1.4 7.5 LP/LHCP/RHCP
This work ihl 18.18 14.6 LP/LHCP/RHCP

Figure 7. The measured results are in good agreement with the
simulated results.

The simulated and measured AR of the designed antenna with
different rotation angle 6 is shown in Figure 8. The measured
3 dB AR bandwidth is 10-12 GHz (relative bandwidth 18.18%)
for the rotation angle & = 0° and 6 = 90°. The simulated and
measured radiation patterns and gains of the proposed antenna
at 11 GHz are illustrated in Figure 9. The measurements of the
antenna pattern are only performed around the main beam for
achieving more accurate test results. The measured maximum
gain of the designed antenna is more than 14 dBi, when 6 = 0°,
0 =45°, 6 = 90°, and 0 = 135°. The maximum peak is 14.6 dBi
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