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Recent experimental advances in ultrafast phenomena have triggered renewed interest

in the dynamics of correlated quantum systems away from equilibrium. We review

non-equilibrium dynamical mean-field theory studies of both the transient and the steady

states of a DC field-driven correlated quantum system. In particular, we focus on the

non-equilibrium behavior and how it relates to the fluctuation-dissipation theorem. The

fluctuation-dissipation theorem emerges as an indicator for how the system thermalizes

and for how it reaches a steady state. When the system thermalizes in an infinite

temperature steady state it can pass through a succession of quasi-thermal states that

approximately obey the fluctuation-dissipation theorem. We also discuss the Wigner

distribution and what its evolution tells us about the non-equilibriummany-body problem.
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1. INTRODUCTION

Strongly correlated systems include some of the most technologically promising materials of our
time. The same quantum-mechanical complexity behind their most intriguing properties also
renders them challenging to study. Much of the interest is motivated by recent experimental
successes. For example, trapping and manipulating ultracold atomic gases in optical lattices
provides a new platform for the controlled examination of strongly correlated systems in and
out equilibrium [1, 2]. In electronics, device miniaturization leads to the creation of nanoscale
devices in which electrons experience strong electric fields and thus cannot be well-approximated
by linear-response theories [3, 4]. Additionally, pump-probe spectroscopy offers a new avenue for
the exploration of available electronic states in correlatedmaterials [5]. These advances have revived
interest in the fundamental behavior of quantum systems away from equilibrium.

There are many unanswered questions. How does an equilibrium quantum system that is
suddenly driven out of equilibrium, subsequently relax to a thermal state [6–9]? What governs
the non-equilibrium driving of a system into a metastable state that is not found among
known equilibrium phases [10, 11]? Answering these questions requires an accurate theoretical
approach. Non-equilibrium dynamical mean-field theory [12] is a powerful tool to address these
pressing questions.

In equilibrium, dynamical mean-field theory (DMFT) [13–16] treats spatial correlations in a
mean-field fashion, while treating temporal correlations exactly. It is one of the most commonly
used and successful methods for studying strongly correlated systems. It has also been extended to
non-equilibrium [12, 17, 18].

Field-driven correlated systems display non-trivial dynamics. When a DC electric field is
applied, the system responds by creating an electric current that flows. That current also leads
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to Joule heating, which, if left unchecked, will heat the system to
infinite temperature (where the current vanishes and the heating
ultimately stops). The heating can also stop prematurely, with the
system reaching a metastable (or possibly even thermal) state.
Indeed, several scenarios for this relaxation process can occur
depending on the specific details of the system [9]. In many of
these situations, the fluctuation-dissipation theorem is no longer
rigorously valid. However, it still remains an important concept
in non-equilibrium, because it can be used to tell us when a
system settles into a thermal steady state [19–22]. We review
non-equilibrium DMFT manifestations of these properties in a
mixture of heavy and light fermionic particles described by the
Falicov–Kimball model [23, 24] that starts in equilibrium and
then has a DC electric field suddenly turned on.

The review is organized as follows. In section 2, we present
a brief description of the non-equilibrium Green’s functions and
introduce the Falicov–Kimball model as it relates to the Hubbard
model. In section 3, we describe the non-equilibrium DMFT
solution first for the transient and then for the steady state. In
section 4, we present a set of results that include manifestations
of the fluctuation-dissipation theorem and provide insights
into the rich dynamics of the field-driven strongly correlated
quantum system.

2. NON-EQUILIBRIUM GREEN’S
FUNCTIONS

The many-body formalism for the non-equilibrium problem
is similar to that of the equilibrium problem. All essential
requirements for perturbation theory still hold away from
equilibrium, except for the identification of the state at long
times being identical to the state for the earliest times. Instead,
it becomes necessary to evolve the system according to the
Heisenberg representation for operators: start from the distant
past, evolve forward to the time of physical interest and
then evolve backward to the distant past (because of the
Hermitian conjugate of the evolution operator in the Heisenberg
representation) [25, 26]. This gives rise to the Kadanoff–Baym–
Keldysh contour illustrated in Figure 1; the contour-ordered
Green’s functions has time ordering performed with respect to
the advance along the contour. It is defined via

Gc
k,σ (t, t

′) = θc(t, t
′)G>

k,σ (t, t
′)+ θc(t

′, t)G<
k,σ (t, t

′), (1)

where θc(t, t′) is the contour-ordered Heaviside function, which
orders time with respect to the contour. It is equal to 1 if t is ahead
of t′ on the contour and is equal to 0 if t is behind t′ on the
contour. Hence, the non-equilibrium formalism automatically
includes several different Green’s functions depending on the
location of each time argument on the contour. The lesser (t on
lower, t′ on upper), greater (t on upper, t′ on lower), time-ordered
(t and t′ on upper), anti-time-ordered (t and t′ on lower) Green’s
functions are respectively defined by the following when both
time arguments of the contour-ordered Green’s function are real:

G<
k,σ (t, t

′) = i〈c†
kσ
(t′)c

kσ
(t)〉 (2)

FIGURE 1 | Kadanoff–Baym–Keldysh contour. The arrows indicate the

direction of time ordering. In this example, t occurs before t′ on the contour,

even though t > t′, when thought of as real numbers.

G>
k,σ (t, t

′) = −i〈c
kσ
(t)c†

kσ
(t′)〉 (3)

Gt
k,σ (t, t

′) = θ(t − t′)G>
k,σ (t, t

′)+ θ(t′ − t)G<
k,σ (t, t

′) (4)

Gt̄
k,σ (t, t

′) = θ(t′ − t)G>
k,σ (t, t

′)+ θ(t − t′)G<
k,σ (t, t

′). (5)

From these Green’s functions, we can construct the so-called
retarded and advanced Green’s functions via

GR
k,σ (t, t

′) = −iθ(t − t′)〈{c
kσ
(t), c†

kσ
(t′)}〉 (6)

GA
k,σ (t, t

′) = iθ(t′ − t)〈{c
kσ
(t), c†

kσ
(t′)}〉. (7)

Here c†
kσ
(t) and ckσ (t) are respectively the Heisenberg

representation of the creation and the destruction operators
for an electron of momentum k and spin σ at time t; θ is the
ordinary Heaviside function, i. e., θ(t − t′) = 0 if t < t′ and
θ(t, t′) = 1 otherwise; {A,B} is the anticommutator of operators
A and B. The symbol 〈O〉 is the expectation value taken of the
operatorO with respect to the initial thermal state:

〈O〉 =
Tre−βH(tmin)O

Tre−βH(tmin)
, (8)

whereH(tmin) is the initial Hamiltonian before any field is turned
on. Several additional Green’s functions are included in the
formalism when at least one time argument is on the imaginary
spur of the contour. These include the imaginary-time (or
Matsubara) Green’s functions with both times on the imaginary
time vertical branch and the mixed-time Green’s functions where
one of the times is on the horizontal branch while the other
is on the vertical branch (formulas not explicitly shown here).
The non-equilibrium many-body formalism works directly with
the contour-ordered Green’s functions [12]. All other Green’s
functions can then be extracted from it.

Note that these Green’s functions are not all independent and
are related by various identities and symmetries. One choice
for two independent ones is the lesser and the retarded Green’s
functions, G< and GR. These determine most physical quantities.
In particular, the retarded Green’s function is related to the
quantum states while the lesser Green’s function is directly related
to how those states are occupied by fermions.
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We are interested in the dynamics of a strongly correlated
system that starts initially in thermal equilibrium and then is
driven out of equilibrium by turning on an external DC electric
field. We describe how the fluctuation-dissipation theorem
manifests itself and how it can be utilized in characterizing
relaxation through transient states to the (long-time)
steady-state.

As an example, we consider a generalized Hubbard model for
strongly correlated systems with spin-dependent hopping:

Heq = −
∑

〈ij〉,σ
Jijσ

(

c†iσ cjσ + h.c.
)

− µ
∑

iσ

c†iσ ciσ + U
∑

i

niσniσ̄ .

(9)
Here 〈ij〉 represents unique nearest-neighbor pairs for sites i and
j; Jijσ is the nearest-neighbor hopping integral; µ is the chemical

potential; niσ = c†iσ ciσ is the number operator for electrons
of spin σ at site i; and U is the on-site repulsion for doubly
occupied sites.

When Jijσ = Jijσ̄ = J, we obtain the conventional Hubbard
model, which is believed to contain the essential elements for
high-temperature superconductivity in the cuprates and for this
reason has been the subject of intense research activity. Despite its
deceptive simplicity, the model remains unsolved except in one
dimension [27] and in the limit of infinite dimensions [13]. But,
when we have Jij↓ = J and Jij↑ = 0, i.e., if the electrons with spin
up are held static while those with spin down are allowed to hop
between nearest-neighbor sites, we obtain the Falicov–Kimball
model, which can also be viewed as describing a mixture of heavy
and light fermions on a lattice. This model has the advantage of
displaying a Mott transition while also being more amenable to
numerical methods than the Hubbard model. We will study this
model at half-filling when there are as many electrons with spin

up as spin down (or, equivalently, as many light, ↓, as heavy, ↑,
fermions) and, in total, as many electrons as there are lattice sites.

3. NON-EQUILIBRIUM DMFT

Dynamical mean-field theory was introduced to address strongly
correlated systems in equilibrium and has been used successfully
to describe key aspects of strongly correlated systems such as
the metal-to-Mott insulator transition [13–16]. The method
has successfully been adapted to studies of non-equilibrium
systems [12, 17, 18]. It maps the lattice model onto an impurity
embedded in a self-consistently determined bath as illustrated
in Figure 2. The method then relies on an accurate solution
of the impurity problem and has been implemented with a
multitude of impurity solvers with varied levels of success. These
solvers include diagrammatic perturbative approaches [28, 29],
Quantum Monte Carlo [30] and exact diagonalization [31, 32].
The Falicov–Kimball model considered in this case has the
advantage of being able to be solved exactly, as shown below.

3.1. Transient Non-equilibrium DMFT
Here we consider a system on a hypercubic lattice in the limit
of infinite spatial dimensions (d → ∞) with a constant electric
field E applied at a specific time and oriented along a diagonal
of the lattice. The dynamical mean-field theory employs a local
self-energy such that

6kσ (t, t
′) = 6σ (t, t

′).

In the case of a system initially in equilibrium at an initial
temperature T = 1/β , the symbol 〈A(t)B(t′)〉 in Equations (2–
7) is synonymous with Tr e−βHeqA(t)B(t′)/Zeq, where Heq =
H(tmin) is the initial Hamiltonian and Zeq = Tr e−βHeq is the
corresponding partition function.

FIGURE 2 | The dynamical mean-field theory maps the lattice problem (here, a square lattice with hoping integral J between nearest-neighboring sites and Coulomb

interaction U for doubly occupied sites) onto that of an impurity embedded into a self-consistently determined bath with a hybridization function 3(t, t′). In equilibrium,

the hybridization function only depends on the relative time t− t′.
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The contour-ordered Green’s function obeys the Dyson
equation given by

Gkσ (t, t
′) = G0

kσ (t, t
′)+

∫

c
dt̄

∫

c
dt̄′G0

kσ (t, t̄)6σ (t̄, t̄′)Gkσ (t̄′, t
′),

(10)
where G0

kσ
(t, t′) is the non-interacting (U = 0) Green’s function

[also defined by Equations (2–7), but with a Hamiltonian that
has U = 0]. The integrals each range over the entire Kadanoff–
Baym–Keldysh contour. Prior to the electric field being turned
on, the non-interacting Hamiltonian is

H0 =
∑

kσ

(ǫk − µ)c†
kσ
c
kσ
. (11)

Here, ǫk is the band structure for the lattice electrons. When the
electrons move on a hypercubic lattice in infinite dimensions, the
band energy is given by:

ǫk = − lim
d→∞

t∗
√
d

d
∑

i=1

cos(kia), (12)

where a is the lattice spacing (and is set equal to 1); the nearest-
neighbor hopping is rescaled via J = t∗/2

√
d and t∗ is the

unit of energy. In the paramagnetic phase, the spin index may
be dropped.

The system is driven out of equilibrium by an applied electric
field E(r, t) which can be expressed in terms of a scalar potential
φ(r, t) and a vector potential A(r, t) via

E(r, t) = −∇8(r, t) −
1

c

∂A(r, t)

∂t
. (13)

We choose the Hamiltonian gauge (8 = 0), so that the electric
field is completely determined by the vector potential. The
electric field then enters into the Hamiltonian via the Peierls’
substitution which modifies the hopping amplitude with a time-
dependent phase [33]:

Jij → Jij exp

[

−
ie

h̄c

∫ Rj

Ri

A(r, t)dr

]

. (14)

We will be working with a spatially uniform, but time-varying
electric field, which is given by a spatially uniform vector
potential A(t). In this case, the problem remains translationally
invariant, but note that a spatially uniform but time-varying
electric field does mildly violate Maxwell’s equations. We ignore
those magnetic-field effects since they are small.

The non-interacting Green’s function obeys the equation:

[

i∂t + µ − ǫ
k− eA(t)

h̄c

]

G0
kσ (t, t

′) = δc(t, t
′), (15)

where δc(t, t′) is a generalization of the Dirac delta function onto
the contour.

When the field is constant and is turned on at time t = 0,
the vector potential becomes A(t) = −cEtθ(t) and the Peierls’

substitution results in the transformation k → k − eA(t)
h̄c

= k +
eEtθ(t)

h̄
in the Hamiltonian. The non-interacting Green’s function

then depends on the band energy ǫk and on the band velocity

ǭk = − limd→∞
t∗√
d

∑d
i=1 sin(kia) in the direction of the electric

field. Setting h̄ = 1 and c = 1, this leads to the following
expression [34]:

G0
kσ (t, t

′) = −i
[

θc(t, t
′)− f (ǫk − µ)

]

exp

[

−i

∫ t

t′
dt̄

(

ǫk+eEt̄θ(t̄) − µ

)

]

,

(16)
which becomes

G0
kσ (t, t

′) = −i
[

θc(t, t
′)− f (ǫk − µ)

]

eiµ(t−t′)

× exp

[

−i

∫ t

t′
dt̄

{(

θ(−t̄)+ θ(t̄)cos
(

eEt̄
)

)

ǫ

− θ(t̄)ǭ sin
(

eEt̄
)

}

]

. (17)

The dressed lattice Green’s function is constructed from the
non-interacting Green’s function and the self-energy following
Equation (10). The local Green’s function Gσ (t, t′) is found by
summing the momentum-dependent dressed Green’s function
Gkσ (t, t

′) over all momentum, or, equivalently integrating over
the joint density of states, ρ2(ǫ, ǭ). In the non-equilibriumDMFT
formalism, the hybridization of the impurity to the dynamical
mean field is given by

3(t, t′) = (i∂t + µ) δc(t, t
′)− G−1(t, t′)+ 6(t, t′), (18)

where we suppressed the spin indices.
To complete the self-consistency loop, we calculate the local

Green’s function from the dynamical mean field and use Dyson’s
equation (on the contour) to extract the self-energy. This is
usually the bottleneck in the DMFT formalism. But in the
case of the Falicov–Kimball model, this step can be determined
analytically. We start from the spinless Falicov–Kimball model in
the absence of a field

Heq = −
1

2
√
d

∑

〈ij〉
t∗ij

(

c†i cj + c†j ci

)

− µ
∑

i

c†i ci + U
∑

i

wic
†
i ci ,

(19)
where wi = 0, 1 is the occupation number operator of a localized
fermions at site i. The corresponding impurity problem is
solved by

Gimp(t, t
′) = (1− 〈w〉)

[

(i∂t + µ) δc(t, t
′)− 3(t, t′)

]−1

+ 〈w〉
[

(i∂t + µ − U) δc(t, t
′)− 3(t, t′)

]−1
, (20)

where 〈w〉 =
∑

i〈wi〉/N is the initial (equilibrium) filling
of the localized fermions. Note that the Green’s function is
represented by sum of the matrix inverses of two continuous
matrix operators.

3.2. Non-equilibrium Steady State DMFT
The main shortcoming of the above non-equilibrium DMFT
solution is that even in cases such as that of the Falicov-Model,
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where we can write an exact expression for the impurity Green’s
function, the non-equilibrium DMFT implementation remains
computationally expensive both in terms of memory and time
(the compute-intensive step is determining the local Green’s
function from the self-energy). It is for this reason that most
studies are limited to examining the short-time transient only.
One may alternatively be interested in studying the system after
it has undergone its relaxation from an initial state and settled
into its steady state. In this case, a steady-state non-equilibrium
DMFT formalism can be formulated directly to study the steady-
state regime. In this situation, we can use a non-interacting initial
state with its non-interacting contour-ordered Green’s function
given by:

G0
k(t, t

′) = −iθ(t − t′)exp

[

−i

∫ t

t′
dt̄

(

ǫ
k+ eEt̄

h̄
− µ

)]

. (21)

Switching to Wigner coordinates, as illustrated in Figure 3, with
the relative time trel = t − t′ and average time tave = (t + t′)/2,
we obtain:

G0
k(t, t

′) = −iθ(trel)exp

[

iµtrel −
2i

Etrel
sin

(

Etrel

2

)

{ǫkcos (Etave)

− ǭksin (Etave)}] (22)

≡ g0k (trel, tave) (23)

FIGURE 3 | Schematic representation of the transformation of time

coordinates (t, t′) on the contour into the Wigner coordinates of average and

relative time [tave = (t+ t′)/2, trel = t− t′]. The dashed gray line represents the

time at which the system is driven away from equilibrium by switching on the

electric field (above and to the right of the dashed lines is where the field is

turned on). The average time axis is illustrated by the red line across the

diagonal and each average time has an associated set of relative times

identified by points running along the blue lines.

in the long-time limit (t ≫ ton and t′ ≫ ton, with ton the time
the field is initially turned on). We denote the Green’s function in
Wigner coordinates by g0

k
(trel, tave). From Equation (22), it is easy

to show that

G0
k−Eτ (t, t

′) = G0
k(t − τ , t′ − τ ) (24)

or, equivalently

g0k−Eτ (trel, tave) = g0k (trel, tave − τ ), (25)

when the system is driven by a DC field.
Using the steady state assumption (in the long-time limit)

that 6(t, t′) = 6(t − t′), one obtains that the dressed Green’s
functions also satisfy the expressions in Equations (24) and (25).
For the choice of τ = (t + t′)/2, we obtain Gk−Eτ (t, t

′) =
Gk

(

(t − t′)/2, (t′ − t)/2
)

. The local Green’s function is G(t, t′) =
∑

k Gk((t − t′)/2, (t′ − t)/2), which, in terms of the relative
time, becomes

G(t, t′) ≡ g(t − t′, tave → ∞) =
∑

k

gk(t − t′, tave → ∞). (26)

Note how gk depends on k only through ǫk and ǭk leading to

g(t − t′, tave → ∞) =
∫ +∞

−∞

∫ +∞

−∞
dǫ dǭ ρ2(ǫ, ǭ)gǫǭ(t − t′, tave → ∞)

(27)

with the joint density of states [13] given by

ρ2(ǫ, ǭ) =
1

π
exp

[

−ǫ2 − ǭ2
]

. (28)

This means that in frequency space, the local Green’s function is
obtained from

g(ω, tave → ∞) =
∫ +∞

−∞

∫ +∞

−∞
dǫ dǭ ρ2(ǫ, ǭ)gǫǭ(ω, tave → ∞) ≡ g(ω).

(29)

One can similarly show that in the long-time limit, we have
Gk(t+ 2π

E , t′+ 2π
E ) = Gk(t, t

′) or equivalently, gk(trel, tave− 2π
E ) =

gk(trel, tave) i.e., gk is periodic with respect to tave with period
2π/E; this is the Bloch-Zener periodicity and νn = nE (with
n an integer) are the Bloch frequencies. There is a subtle issue
going on here, because we are working in this long-time limit.
The formulas stated here hold when both times are much larger
than ton. Nevertheless, the Green’s function has a periodic average
time dependence in this long-time limit, and this is what we are
describing here. As a result, Fourier transforming gk(trel, tave) in
this long-time limit, gives

gk(ω, νl) =
E

2π

∫

dtrel e
iωtrel

∫ 2π
E

0
dtave e

iνltavegk(trel, tave) (30)

where ω is a continuous variable while νl is quantized and the
integral over tave can be restricted to be taken over just one
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Bloch period. In frequency space, the Dyson equation can then
be written in the form

gk(ω, νl) = g0k (ω, νl)+
∑

m

g0k (ω + νm, νl − νm)

6(ω − νl + 2νm)gk(ω − νl + νm, νm). (31)

The periodicity in this long-time limit, maps the system to
behave exactly as a many-body Floquet system acts. We now
describe how to solve the steady-state problem within such a
Floquet formalism, using discrete matrices within the Dyson
equation for the Green’s function defined within a frequency
range determined by the Floquet period. We start by choosing a
finite frequency range over which the Green’s function has non-
zero spectral weight. Next, we choose an integer L≫ 1 such that
6(ω) 6= 0 only for ω ∈ [−νL, νL] and let φ be a real variable
allowed to vary continuously between −E/2 and E/2. Equation
(31) for (ω, νl) = (φ + ν−L+p, νp) can be rewritten as follows:

gip(φ) = g0ip(φ)+
L

∑

j=0

Aij(φ)gjp(φ) = g0ip(φ)+
L

∑

j=0

g0ij(φ)6j(φ)gjp(φ)

(32)
and one can immediately see that the frequency φ is coupled only
to frequencies shifted by integer multiples of the Bloch frequency.
Here we have defined

6i(φ) = 6(φ + ν−L+2i) (33)

g0ij(φ) = g0(φ + ν−L+i+j, νi−j) (34)

gij(φ) = g(φ + ν−L+i+j, νi−j) (35)

Aij(φ) = g0ij(φ)6j(φ) (36)

with i, j, p being integer indices. Equation (32) provides a
convenient way to solve the Dyson equation. For this purpose,
it is necessary to obtain the Fourier transform of the non-
interacting Green’s function in Equation (22) to frequency space.
The result is

g0ǫǭ(ω, νn) = R(ω, νn)+ D(ω, νn) (37)

with

R(ω, νn) =
πe−inα

E sin
(

πu− π |n|
2

) J |n|
2 −u

(r′)J |n|
2 +u

(r′) (38)

=
2e−inα

E

+∞
∑

m=−∞
P

(

1

2u−m

)

J 1
2 |m|− 1

2 |n|
(r′)J 1

2 |m|+ 1
2 |n|

(r′)

{

cos2
(

πn
2

)

ifm = 2k
sgn(m) sin2

(

πn
2

)

ifm = 2k+ 1

and

D(ω, νn) = −2π i
+∞
∑

m=−∞
δ(2u−m)e−inα

× J 1
2 |m|− 1

2 |n|
(r)J 1

2 |m|+ 1
2 |n|

(r)

{

cos2
(

πn
2

)

ifm = 2k
sgn(m)sin2

(

πn
2

)

ifm = 2k+ 1
(39)

where Ja(x) is the Bessel function of the first kind and P denotes
the principal value. The different variables are defined by u =
ω+µ
E , r =

√
ǫ2 + ǭ2, r′ = r/E, cosα = ǫ√

ǫ2+ǭ2
and sinα =

ǭ√
ǫ2+ǭ2

.

Note that the integer indices i, j, and p in Equation (32),
are chosen such that i, j, p = 0, 1, 2, · · · L, for the quantized
frequencies νi, νj, and νp, which combine with the real variable
φ ∈ [−E/2,E/2] to produce a dependence on a single continuous
frequency that varies within the range of non-zero spectral weight
[−νL, νL]. This single variable is relabeled as ω.

To complete the self-consistency loop for this non-
equilibrium steady-state DMFT algorithm, the only missing
ingredient is the impurity solver. In the case of the Falicov–
Kimball model [which is initially described by the Hamiltonian
in Equation (19)], the dressed Green’s function is related to the
non-interacting Green’s function via

g(ω) = (1− w1)g
0(ω)+

w1

g0
−1 (ω)− U

. (40)

Combining this with the Dyson equation yields

6(ω) =
[

1+ g(ω)6(ω)
]

Uw1

1+ g(ω)
[

6(ω)− U (1− w1)
] (41)

The self-consistency loop is now complete and proceeds
as follows:

1. For a given 6(ω), solve the Dyson equation for gǫ,ǭ(ω, tave →
∞);

2. Next, solve Equation (29) for the local Green’s function;
3. Then, solve Equation (41) for 6(ω);
4. Repeat steps 1− 3 until convergence is achieved.

This formalism is equivalent to using Floquet theory to solve
the steady-state problem for a field driven system [20, 21,
35, 36]. It allows the characterization of the steady state for
a given electric field and interaction strengths. In particular,
one can obtain the local density of states (DOS) from
ρ(ω) = −Im[g(ω)]/π .

4. RELAXATION DYNAMICS AND
FLUCTUATION DISSIPATION THEOREM

4.1. Steady-State Density of States
In order to be able to describe the effects of the electric field, it
is instructive to start by looking at the equilibrium local density
of states (DOS) in Figure 4 obtained by the DMFT algorithm
in equilibrium [16]. As the interaction strength is increased, we
see a transition from a broadened Gaussian-like DOS in the
weak-interaction regime to a gapped spectrum with two peaks
in the strong-interaction regime. The spectral gap at ω = 0 is
characteristic of the Mott-insulating regime, with the critical U
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FIGURE 4 | Local density of states of the Falicov–Kimball model solution in equilibrium for U = 0.5 (A), U = 1.50 (B), U = 2.0 (C), U = 3.0 (D). The system develops

a Mott-insulating gap as the interaction is increased with the transition occurring when U =
√
2.

FIGURE 5 | Local density of states of the field-driven system in its steady state for E = 0.5 and U = 0.25 (A), U = 1.0 (B), U = 2.0 (C), U = 3.0 (D).

FIGURE 6 | Local density of states of the field-driven system in its steady state for E = 1.0 and U = 0.25 (A), U = 1.0 (B), U = 2.0 (C), U = 3.0 (D).

occurring at U =
√
2. Note that the DOS of the Falicov–Kimball

model, in the normal state, does not depend on temperature.
The non-equilibrium steady state DOS shows much richer

behavior than in equilibrium. Figures 5, 6 show the steady-state
DOS for electric fields E = 0.5 and E = 1.0, respectively,
for the same interaction strengths as the equilibrium DOS in
Figure 4. In the weak-interaction regime, the DOS displays
the Wannier–Stark ladder [37–39] with peaks centered around
ω = nE with n = 0,±1,±2, ... and the amplitude is

sharply suppressed away from the central peak. The peaks are
broadened by a width governed by the interaction strength
and the central peak has a dip separated by two side peaks
at ±U/2. As the interaction is further increased, the initial
peaks eventually merge, while preserving the central dip that
arises from strong correlations. With stronger interactions
this dip does not however become the full width of the
gap due to the presence of “in gap” states created by the
electric field.
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In both the equilibrium and the steady-state regime, the
system obeys the fluctuation-dissipation theorem and the lesser
Green’s function satisfy the relation

g<(ω) = −2ifT(ω)Im
[

gR(ω)
]

. (42)

Where fT(ω) is the Fermi distribution function at temperature T.
It is interesting to now ask how do the dynamics transiently take
us from equilibrium to the steady state?

4.2. Monotonic Thermalization
In earlier work, we examined the transient dynamics of correlated
quantum systems when they are driven away from equilibrium
by a DC electric field [9]. Key findings included the fact that the
DOS is only constrained by causality and takes its steady-state
value as soon as the field is turned on (seeing this in the frequency
domain takes a little longer, because one needs the retarded
Green’s function behavior to hold for a long-enough relative time
span that a Fourier transformation can be performed). Since the
system is isolated and the electric field remains constant after it is
switched on, Joule heating should lead to an infinite-temperature
state, if the system thermalizes. Without assuming the system to
be thermal, an effective temperature at a time t can be obtained by
comparing the energy of the system to that of the corresponding
equilibrium system (in other words, using a thermometer based
on the energy as a scale, without determining if the system has
actually thermalized). The evolution of the effective temperature
as a function of time is presented in Figure 7. We found
that for some parameter regimes, this infinite-heating scenario
did take place. Sometimes the infinite-temperature limit was
approached monotonically, sometimes it was approached in an
oscillatory fashion, with the effective temperature alternating
between positive and negative temperatures en route to T = ∞.

We focus on the case of monotonic relaxation toward
the infinite-temperature thermal state as it exhibits interesting
manifestations of the fluctuation-dissipation theorem. Besides
the effective temperature from an energy thermometer, several
other quantities are used in characterizing the relaxation. These
include the real part of the frequency-dependent lesser Green’s
function (Figure 8, left panel), and the current, the kinetic,
potential and total energy (Figure 8, right panel). If the system
is in a thermal state, then the lesser Green’s function and
the retarded Green’s function satisfy the fluctuation-dissipation
theorem. Namely, in frequency space, they obey Equation (42).

In this case, the lesser Green’s function has a vanishing
real part both in time and in frequency space. Figure 8, left
panel, shows that the real part of the lesser Green’s function
relaxes monotonically toward zero (its infinite-temperature
value). Additionally, it is easy to evaluate the total energy at
infinite temperature. This is given by the dashed magenta line
in Figure 8, right panel. To evaluate the transient total energy
of the system, one starts from the known equilibrium energy at
the initial temperature T = 0.1. Next, we integrate the inner
product 〈j(t)〉 · E up to time t to obtain the energy added to the
system by Joule heating [here j(t) is the current at time t]. Adding
this Joule heating energy to the initial energy produces the total
energy of the system at time t. In Figure 8, one can see that in this
case the total energy in the transient calculation approaches this

FIGURE 7 | Effective temperature Teff as a function of time for the field-driven

system. The dashed magenta line corresponds to infinite temperature and the

data is plotted so that the vertical axis shows the inverse of the effective

temperature while the horizontal axis displays the inverse of time. Along with

the temperature, the dynamics of several physical quantities are used to

identify different relaxation scenarios by examining different parameters

(different field strength and interaction values). We observe monotonic thermal

(red), oscillatory thermal (black), monotonic non-thermal (blue), and oscillatory

non-thermal (green) relaxation. Non-thermal relaxation is characterized by not

going to the infinite-temperature limit at long times. Reprinted figure with

permission from H. F. Fotso, K. Mikelsons and J. K. Freericks, Scientific

Reports 4, 4699 (2014).

limit monotonically, as the current also decays monotonically
toward zero.

This decay of the current toward zero is to be expected
at infinite temperature where particles are equally likely to
move in opposite directions. The potential and kinetic energy
also monotonically approach their infinite-temperature values.
In this monotonic thermalization scenario, we find that even
before reaching the infinite-temperature thermal state, the
system appears to follow an evolution through successive
quasi-thermal states approximately satisfying the fluctuation-
dissipation theorem. This is illustrated in Figure 9 for the lesser
Green’s function as a function of frequency and average time.
After the field is turned on, g< switches from its equilibrium
value (green line) to different transient values. Their evolution is
pictured in grayscale with lighter shades indicating later average
times. At infinite average time, g< is expected to adopt the
infinite-temperature fluctuation-dissipation result (blue dashed
line). It is seen in the graph that at the last available simulation
times, the transient already follows the fluctuation-dissipation
theorem: the red line is the fluctuation-dissipation theorem at
the effective temperature (using energy as the thermometer scale)
corresponding to this average time and shows good agreement
with the transient.

Another window into the relaxation of the field driven
system is through the distribution function [40]. For the non-
interacting system in equilibrium, this is simply the Fermi-Dirac
distribution function. This equilibrium distribution function is
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FIGURE 8 | Physical indication of the monotonic evolution of the system toward an infinite temperature thermal state for E = 0.5 and U = 1.5 evolving from a system

initially in equilibrium at temperature T = 0.1. The left panel shows the real part of the lesser Green’s function as a function of trel for successive average times (the field

is turned on at ton = −15); a grayscale is used with lighter shades indicating later average times. The inset shows the maximum (or absolute value of the minimum) of

g<(trel) as a function of average time. The panel on the right shows the total energy (ETot, green), the potential energy (EPot, blue), kinetic energy (EKin red) and the

current (black) as functions of time. The dashed line indicates the total energy at infinite temperature for the same interaction strength. Reprinted figure with permission

from H. F. Fotso, K. Mikelsons and J. K. Freericks, Scientific Reports 4, 4699 (2014).

FIGURE 9 | Imaginary part of the lesser Green’s function as a function of

frequency for initial temperature T = 0.1, U = 1.5 and E = 0.5 corresponding

to a monotonic, thermalized case. The green line indicates the equilibrium

curve before the electric field is turned on. The evolution of the non-equilibrium

lesser Green’s function, after the early transient, is shown by the grayscale

plots with lighter shades indicating later average times. As the lesser Green’s

function evolves toward its infinite-temperature steady-state value (blue

dashed curve), it is shown to be well-matched by the

fluctuation-dissipation-theorem result, after an early transient. This is illustrated

with the fluctuation-dissipation theorem curve at the latest average time (red

curve) for a system at the corresponding effective temperature (as determined

by the energy thermometer). While not perfectly matching the

fluctuation-dissipation theorem result, it is quite close. Reprinted figure with

permission from H. F. Fotso, K. Mikelsons and J. K. Freericks, Scientific

Reports 4, 4699 (2014).

FIGURE 10 | Plot of nk as a function of E(k) for V (k) = 0.0 and for different

values of U; the shaded area represents the range [0.45, 0.55] over which nk is

plotted in Figures 11, 12. The deviation from the Fermi-Dirac distribution in

equilibrium for T = 0.1 comes from the many-body effects of the interactions

between the two types of atoms. Reprinted figure with permission from H. F.

Fotso, J. C. Vicente and J. K. Freericks, Phys. Rev. A 90, 053630 (2014).

Copyright 2020 by the American Physical Society.

modified by many-body effects for finite U values although
the lineshape is essentially preserved as shown in Figure 10.
We envision this situation as corresponding to fermionic atoms
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of two different masses trapped in a mixture on an optical
lattice [24].

For the interacting system away from equilibrium, the
distribution function is given by the gauge-invariant Wigner
distribution nk(t) = −iG<

k+A(t)(t, t) [41]. Here, nk(t) represents
the occupation of states in momentum space. The dependence
on k is recast into a dependence on the band energy and

FIGURE 11 | False-color image of the initial equilibrium Wigner distribution

function at temperature T = 0.1. The graph shows nk as a function of

E(k) ≡ ǫk and V (k) ≡ ǭk for U = 0.25. When the distribution function is larger

than 0.55, it is plotted with the color at 0.55 and similarly when it is smaller

than 0.45. Reprinted figure with permission from H. F. Fotso, J. C. Vicente and

J. K. Freericks, Phys. Rev. A 90, 053630 (2014). Copyright 2020 by the

American Physical Society.

the band velocity. Prior to the electric field being switched
on, the system is in equilibrium at a temperature T = 0.1
and the Wigner distribution in momentum space is shown
in Figure 11 for U = 0.25 and is similar for other
interaction strengths.

Once the field is turned on, it is expected that the onset of the
electric current will lead to Joule heating that will increase the
temperature until the system has reached an infinite-temperature
state where all points in momentum space, or equivalently in
[band energy:E(k) ≡ ǫk; band velocity:V(k) ≡ ǭk]-space,
are equally likely to be occupied. In this state, the current
vanishes and the Wigner distribution is now homogeneous for
all k. This is translated into the false color plot being entirely
white for the plotted region. It was previously reported that the
evolution between the initial configuration of Figure 11 to this
uniform configuration goes through the development of different
patterns that depend on the field and interaction strength. For
instance, for a strong electric field and weak interaction (E =
2.0, U = 0.25), we observe in the false-color plots of the Wigner
distribution as a function of time, the formation of ring-shaped
disturbances on a timescale of 2π/U (Figures 12a,c,d). These
rings spiral around the center of the graph on a timescale of
2π/E (Figure 12b) and we see the formation of additional rings
after every 2π/U time step (Figures 12c,d). 2π/E is the period
of Bloch oscillations while 2π/U is the timescale for the collapse
and revival of Bloch oscillations [1, 42–45]. As the interaction
is increased (E = 2.0, U = 1.0), these two timescales merge
and we no longer observe well-separated individual rings but
rather the growth of a single spiral that gradually scrambles the
occupation of the states. We also observe at larger interaction
strengths (E = 2.0, U = 3.0) that long-lived features with both a
stable region of high occupation and a region of low occupation
rotate around the origin at the Bloch period.

5. DISCUSSION

In general, the fluctuation-dissipation theorem is not satisfied
once a system is driven away from equilibrium. This review

FIGURE 12 | False color snapshots of the evolution of the gauge-invariant Wigner distribution in momentum space at different times for E = 2.0, and U = 0.25 [40].

Each panel shows nk (t) at an instant in time after the field is switched on (at t0 ). New rings are formed on a timescale of 2π/U (a,c,d) and spiral around the origin on a

2π/E timescale (b). When the distribution function is larger than 0.55, it is plotted with the color at 0.55 and similarly when it is smaller than 0.45. This is done to zoom

in on the interesting patterns, which are a few percent effect. Reprinted figure with permission from H. F. Fotso, J. C. Vicente and J. K. Freericks, Phys. Rev. A 90,

053630 (2014). Copyright 2020 by the American Physical Society.
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describes non-equilibrium DMFT studies for both the transient
and the steady-state of the Falicov–Kimball model, describing a
Fermi-Fermi mixture of heavy-light particles, when it is driven
away from equilibrium by a constant electric field. We showed
the complex range of relaxation scenarios exhibited by this
non-equilibrium system. In particular, the density of states is
fundamentally altered by the electric fields with the formation
of Wannier-Stark ladders and a dielectric breakdown that arises
with the presence ofmid-gap states that are absent in equilibrium.
This density of states however switches to its steady-state value
rapidly after the field is turned on. For an isolated system, the
relaxation to a steady state satisfying the fluctuation-dissipation
theorem can then occur in several identified scenarios. We
have particularly examined the monotonic thermalization
scenario where the system monotonically goes to an infinite-
temperature thermal state (satisfying the fluctuation-dissipation
theorem) and evolves through consecutive quasi-thermal states
(approximately satisfying the fluctuation-dissipation theorem)
en-route. Ongoing work will take advantage of this property to
develop an extrapolation scheme that bridges the gap between
the transient and the steady state at minimal computational cost.
We have also described how the key timescales that appear in
the current in the form of Bloch oscillations and their collapse
and revival, or beats, are manifested in the Wigner distribution

function and its evolution toward infinite temperature where
all states are equally occupied [nk = 0.5]. These results
illustrate the rich physics of field-driven correlated quantum
systems and the role the fluctuation-dissipation theorem plays
in understanding this behavior. The non-equilibrium DMFT
technique and the relaxation analysis discussed in this review for
field-driven correlated systems may also be applicable to other
non-equilibrium problems including quantum annealing [46]
and quantum quenches [47, 48], as well as extensions of lattice
models that include phonons [49] and inhomogeneities [50, 51].
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