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We review recent progress in studying nuclear collective dynamics by solving the

Boltzmann-Uehling-Uhlenbeck (BUU) equation with the lattice Hamiltonian method,

treating the collision term with the full-ensemble stochastic collision approach. This lattice

BUU (LBUU) method has recently been developed and implemented with a GPU parallel

computing technique, and achieves rather stable nuclear ground-state evolution and

high accuracy in evaluating the nucleon-nucleon (NN) collision term. This new LBUU

method has been applied to investigate nuclear isoscalar giant monopole resonances

and isovector giant dipole resonances. While calculations using the LBUU method

without the NN collision term (i.e., the lattice Hamiltonian Vlasov method) provide a

reasonable description of the excitation energies of nuclear giant resonances, the full

LBUU calculations can well reproduce the width of the giant dipole resonance of 208Pb

by including a collisional damping from NN scattering. The observed strong correlation

between the width of the nuclear giant dipole resonance and the NN elastic cross-section

suggests that the NN elastic scattering plays an important role in nuclear collective

dynamics, and the width of the nuclear giant dipole resonance provides a good probe of

the in-medium NN elastic cross-section.

Keywords: Boltzmann-Uehling-Uhlenbeck equation, lattice Hamiltonian method, nuclear giant resonances,

Thomas-Fermi initialization, stochastic collision approach

1. INTRODUCTION

Transport models deal with the time evolution of the Wigner function or phase-space distribution
function f (Er, Ep, t) that arises from the Wigner representation of the Schrödinger equation [1, 2],
and provide a successful semi-classical time-dependent approach to studying nuclear dynamics,
especially with regard to heavy-ion collisions (HICs). One of the main ingredients of transport
models is the mean-field potential, which embodies information on the nuclear equation of
state (EOS) or the in-medium effective nuclear interaction. Therefore, transport models serve
as an important theoretical tool for investigating the EOS of asymmetric nuclear matter from
observables in HICs. A good deal of information on the nuclear EOS, from sub-saturation [3–5]
to supra-saturation densities of about 3–5 times saturation density [6–18], has been obtained from
transport model analyses of various observables, such as collective flows and particle production,
in intermediate- and high-energy HICs. Exact information about the nuclear EOS is crucial for
describing reaction dynamics of exotic nuclei [19, 20], various properties of both finite nuclei
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(e.g., neutron skin thickness [21–23] and drip lines [24, 25]) and
neutron stars (e.g., masses and coolingmechanisms [26–30]), and
astrophysical processes, such as supernova explosion scenarios
[31–33]. In particular, it should be mentioned that the first
gravitational wave signal GW170817 [34] of a binary neutron star
merger has recently been observed and localized by the LIGO and
Virgo observatories, inaugurating a new era of multimessenger
astronomy and supplying important constraints on the dense
nuclear matter EOS [35–39]. Moreover, very recently, using
X-ray data from NASA’s Neutron Star Interior Composition
Explorer (NICER), the mass and radius of the millisecond pulsar
PSR J0030+0451 have been simultaneously estimated [40, 41] and
the implications for the dense nuclear matter EOS analyzed [42].
In addition, a new record for themaximummass of neutron stars,
namely a millisecond pulsar J0740+6620 with mass 2.14+0.10

−0.09M⊙
(68.3% credibility interval), has been reported recently [43]; this
heaviest neutron star observed so far can rule out many soft
nuclear matter equations of state, and in particular, the supersoft
high-density symmetry energy [44].

The time-dependent Hartree-Fock (TDHF) theory provides
a very successful quantum many-body framework at the mean-
field level for describing low-energy nuclear reaction dynamics,
including the nuclear collective dynamics (see e.g., references [45,
46] for a review of recent work). Given that the Vlasov equation,
i.e., the Boltzmann-Uehling-Uhlenbeck (BUU) equation without
the nucleon-nucleon (NN) collision term, corresponds to the
semi-classical limit of the TDHF equation, transport models can
thus be seen as an efficient semi-classical approach to studying
nuclear collective dynamics. In particular, the two-particle-two-
hole (2p-2h) correlation beyond the mean-field approximation,
which dominates the collisional damping of nuclear giant
resonances, can be effectively taken into account in transport
models via binary collisions. The literature contains many works
that study nuclear giant resonances based on the pure Vlasov
equation [47–49], the Vlasov equation with a collision relaxation
time [50], and the full transport model with both the mean-
field and the NN scatterings [51–53]. For example, based on
simulations of transport models, the excitation energies of
nuclear giant resonances have been used to extract information
on the nuclear EOS and neutron-proton effective mass splitting
[54], while the width of nuclear giant dipole resonance (GDR)
has been proposed as an effective probe of the in-medium NN
elastic cross-section [55]. The width of the nuclear GDR can also
serve as a fingerprint of α-particle clustering configurations in
nuclei [56].

Although transport models have been extensively used in the
study of nuclear giant resonances, the accurate description of
giant resonances within transport models is still a challenge. In
transport models, unlike in simulations of HICs at intermediate
and high energies, the calculation of nuclear giant resonances,
which are the collective excitation states with an excitation energy
of about 20 MeV, requires a more proper description of nuclear
ground states and an accurate implementation of Pauli blocking.
In particular, Pauli blocking is intimately related to the collisional
damping and hence the width of nuclear giant resonances in the
transport model calculations. In this sense, studying the nuclear
collective motion provides an ideal way to examine and improve

transport models, since the effects of several deficiencies, such as
the inaccurate treatment of Pauli blocking, are more pronounced
in nuclear collective dynamics with small-amplitude oscillations.
Transport models for HICs can be roughly divided into two
categories, the BUU equation (see e.g., reference [2]) and the
quantum molecular dynamics (QMD) model (see e.g., reference
[57]). From the viewpoint of transport models, the essential
difference between these two types is that the BUU-type models
mimic f (Er, Ep, t) by having a large number of ensembles or test
particles for each nucleon, while the QMD-type models use a
Gaussian wave packet for each nucleon. Recently, the transport
model community started a code comparison project [58–60]
to try to understand the source of the discrepancies between
various transport model codes and thus eventually reduce the
uncertainties in transport models. For the issue of Pauli blocking,
the QMD-type transport models seem not to be as good as the
BUU-type models [59]; therefore the BUU-type transport models
are more suitable for the study of nuclear collective motions,
especially for the calculation of the spreading width, in which the
accurate treatment of Pauli blocking is essential.

In order to study (near-)equilibrium nuclear dynamics within
the framework of transport models, a BUU-type transport model,
namely the lattice BUU (LBUU) method [55, 61], has recently
been developed, which can achieve good stability for the ground-
state evolution [61] and treat Pauli blocking with very high
accuracy [55]. The resulting LBUU framework has the following
features: (1) a smearing of the local density, which is commonly
used in transport models to obtain a smooth mean field, is
included self-consistently in the equations of motion through
the lattice Hamiltonian (LH) method; (2) the ground state of a
nucleus is obtained by varying the total energy with respect to
the nucleon density distribution based on the same Hamiltonian
that governs the system evolution; (3) the NN collision term
in the BUU equation is implemented through a full-ensemble
stochastic collision approach. The above features, as well as a
sufficiently large number of ensembles, make it possible to solve
the BUU equation almost exactly, and thus one can obtain very
accurate results for the nuclear collective motions within the
BUU equation. We note that the high accuracy of the LBUU
method relies on a large amount of computational resources;
therefore, high-performance GPU parallel computing [62] has
been employed in the LBUU implementation to improve the
computational efficiency.

This paper is organized as follows. In section 2, we first
introduce the LBUU method for solving the BUU equation,
including the mean field, the collision integral, and the
initialization for the nuclear ground state, and then describe
how to deal with the nuclear giant resonances within transport
models. In section 3, we present results on the peak energies of
the nuclear giant resonances obtained from lattice Hamiltonian
Vlasov (LHV) calculations, i.e., LBUU calculations without
the NN collision term, and then compare these with results
from the random-phase approximation (RPA). In section 4,
we give results on the strength function and the width of
the GDR from the full LBUU calculations, and compare these
with experimental data from the 208Pb(Ep, Ep ′) reaction carried
out at the Research Center for Nuclear Physics (RCNP) in
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Osaka, Japan [63]. Finally we give a brief summary and outlook
in section 5.

2. MODEL DESCRIPTION

The starting point for calculating the nuclear collective motion
is the BUU equation with a momentum-dependent mean-field
potential U(Er, Ep):

∂f

∂t
+ Ep

E
· ∇Erf + ∇EpU(Er, Ep) · ∇Erf − ∇ErU(Er, Ep) · ∇Epf = Ic, (1)

where f (the Wigner function) is the Fourier transform of the
one-body density matrix ρ(Er +Es/2, Er −Es/2), i.e.,

f (Er, Ep) = 1

(2π h̄)3

∫

exp
(

−i
Ep
h̄
· Es

)

ρ(Er +Es/2, Er −Es/2) d3s. (2)

In the local density approximation, f (Er, Ep) is reduced to
the classical one-body phase-space distribution function. The
collision term Ic, which takes into account the Pauli principle due
to nucleons’ Fermi statistics, reads

Ic = −g

∫

d2p2

(2π h̄)3
d3p3

(2π h̄)3
d3p4

(2π h̄)3
|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4) × [f1f2(1− f3)(1− f4) − f3f4(1− f1)(1− f2)],

(3)

where g = 2 is the spin degeneracy factor andM12→34 is the in-
medium transitionmatrix element. Note that we have ignored the
isospin index in the above three equations, but it can be restored
easily. The BUU equation without the collision term Ic is referred
to as the Vlasov equation, which is the semi-classical limit of
the quantum transport theory with the system described by the
one-body phase-space distribution function [1, 2], whereas the
quantum corrections can be included perturbatively [64, 65].

We use the LH method, originally proposed by Lenk and
Pandharipande [66] in 1989, to solve the BUU equation. The
LH method has been successfully employed in the study of HICs
[67, 68]. It improves the sample smoothing technique of the usual
test particle approach [69] and conserves the total energy almost
exactly. In the LH method, the phase-space distribution function
fτ (Er, Ep, t) is mimicked by A×NE test nucleons with a form factor
S in the coordinate space to modify the relation between the test
nucleons and the Wigner function, i.e.,

fτ (Er, Ep, t) =
1

g

(2π h̄)3

NE

ANE ,τ
∑

i

S
[

Eri(t)− Er
]

δ
[Epi(t)− Ep

]

, (4)

where A is the mass number of the system and NE is the number
of ensembles or number of test particles, usually a very large
number, used in the calculation. The sum in the above expression
runs over all test nucleons with isospin τ . The form factor S
can take a Gaussian form, or a certain form with a finite range
that ensures the particle number conservation. By giving each
test nucleon a form factor, the movement of a test nucleon
leads to a continuous variation of the local nucleon density of

nearby lattice sites, which is useful for smoothing the nucleon
distribution functions in phase space. A similar form factor in
momentum space [here the δ-function is used in Equation (4)]
could be introduced and might help to reduce fluctuations if
a momentum-dependent mean-field potential is employed, and
in the future it would be interesting to carry out a systematic
investigation of the effects of a form factor in momentum space.
The equations of motion of the test nucleons are governed by the
total Hamiltonian, and we approximate the latter by the lattice
Hamiltonian, i.e.,

H =
∫

H(Er) dEr ≈ lxlylz
∑

α

H(Erα) ≡ HL, (5)

where Erα denotes the coordinates of lattice site α, and lx, ly, and
lz are the lattice spacings. Therefore, in the LH method only
the values of the phase-space distribution function at lattice sites
fτ (Erα , Ep, t) need to be calculated.

By solving the BUU equation or Vlasov equation using
the LH method, one obtains the time evolution of f (Er, Ep, t),
or the test nucleons’ coordinates Eri and momenta Epi, and
then the time evolution of other physical quantities can be
calculated accordingly.

2.1. Mean Fields
We employ the Skyrme pseudopotential to calculate the lattice
Hamiltonian in Equation (5). The next-to-next-to-next leading
order (N3LO) Skyrme pseudopotential [70], which is a mapping
of the N3LO local energy density functional [71], generalizes
the standard Skyrme interaction [72] and can reproduce the
empirical nuclear optical potential up to about 1 GeV in kinetic
energy [73], which the standard Skyrme interactions fail to
describe. The Hamiltonian density from the N3LO Skyrme
pseudopotential contains the kinetic termH

kin(Er), the local term
H

loc(Er), the momentum-dependent term H
MD(Er), the density-

dependent term H
DD(Er), and the gradient term H

grad(Er). The
kinetic term

H
kin(Er) =

∑

τ=n,p

∫

d3p
p2

2mτ

fτ (Er, Ep) (6)

and the local term

H
loc(Er) = t0

4

[

(2+ x0)ρ
2 − (2x0 + 1)

∑

τ=n,p

ρ2
τ

]

(7)

are the same as those from the standard Skyrme interaction. The
momentum-dependent term is written in the form

H
MD(Er) =

∫

d3p d3p′ Ks(Ep, Ep′)f (Er, Ep)f (Er, Ep′)

+
∑

τ=n,p

∫

d3p d3p′ Kv(Ep, Ep′)fτ (Er, Ep)fτ (Er, Ep′), (8)

with f (Er, Ep) = fn(Er, Ep) + fp(Er, Ep). The quantities Ks(Ep, Ep′) and
Kv(Ep, Ep′) in Equation (8) represent the isoscalar and isovector
kernels of the momentum-dependent part of the mean-field
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potential, respectively; Ks(Ep, Ep′) and Kv(Ep, Ep′) for the N3LO
Skyrme pseudopotential are expressed as

Ks(Ep, Ep′) =
C[2]

16h̄2
(Ep− Ep′)2 + C[4]

32h̄2
(Ep− Ep′)4 + C[6]

16h̄2
(Ep− Ep′)6,

(9)

Kv(Ep, Ep′) =
D[2]

16h̄2
(Ep− Ep′)2 + D[4]

32h̄2
(Ep− Ep′)4 + D[6]

16h̄2
(Ep− Ep′)6.

(10)

If we keep only the C[2] and D[2] terms, the N3LO Skyrme
pseudopotential reduces to the standard Skyrme effective
interaction. For the sake of simplicity in performing numerical
derivatives, we truncate at the second order of the spatial gradient
of ρ(Er),

H
grad(Er) = 1

8
E[2]

{

ρ(Er)∇2ρ(Er)−
[

∇ρ(Er)
]2

}

+ 1

8
F[2]

∑

τ=n,p

{

ρτ (Er)∇2ρτ (Er)−
[

∇ρτ (Er)
]2

}

= 1

8
g[2]

{

ρ(Er)∇2ρ(Er)−
[

∇ρ(Er)
]2

}

+ 1

8
g
[2]
iso

{

ρδ(Er)∇2ρδ(Er)−
[

∇ρδ(Er)
]2

}

. (11)

In the second line we have introduced g[2] = E[2] + 1
2F

[2],

g
[2]
iso = 1

2F
[2], and ρδ = ρn − ρp. We neglect the second term

in Equation (11) since it is much smaller than the first term; in
other words, we keep only the second-order spatial derivative of
the total nucleon density ρ(Er). The density-dependent term for
the N3LO Skyrme pseudopotential takes its form in the standard
Skyrme interaction,

H
DD(Er) = t3

24

[

(2+ x3)ρ
2 − (2x3 + 1)

∑

τ=n,p

ρ2
τ

]

ρα . (12)

One can see that the Hamiltonian density H(Er), expressed as the
sum of Equations (6)–(8), (11), and (12), is explicitly dependent
on fτ (Er, Ep) as well as on the densities ρτ (Er) and their derivatives.

In the above expressions, the parameters C[n], D[n], E[n], and

F[n] are recombinations of the Skyrme parameters t
[n]
1 , t

[n]
2 , x

[n]
1

and x
[n]
2 , which are related to the derivative terms of the Skyrme

two-body potential vSk(Er1, Er2), i.e.,

C[n] = t
[n]
1 (2+ x

[n]
1 )+ t

[n]
2 (2+ x

[n]
2 ), (13)

D[n] = −t
[n]
1 (2x

[n]
1 + 1)+ t

[n]
2 (2x

[n]
2 + 1), (14)

E[n] = in

2n

[

t
[n]
1 (2+ x

[n]
1 )− t

[n]
2 (2+ x

[n]
2 )

]

, (15)

F[n] = − in

2n

[

t
[n]
1 (2x

[n]
1 + 1)+ t

[n]
2 (2x

[n]
2 + 1)

]

. (16)

Specifically, we obtain the coefficient of the gradient term,

g[2] = E[2] + 1

2
F[2] = −1

8

[

3t
[2]
1 − t

[2]
2 (5+ 4x

[2]
2 )

]

. (17)

Substituting f (Er, Ep, t) as expressed in Equation (4) into
Equations (6)–(12) and noting that the local nucleon density
ρτ (Er) is given by the integral of fτ (Er, Ep, t) with respect to
momentum,

ρτ (Er, t) = g

∫

fτ (Er, Ep, t)
d3p

(2π h̄)3
= 1

NE

α,τ
∑

i

S
[

Eri(t)− Er
]

, (18)

we can express the lattice Hamiltonian HL in Equation (5) in
terms of the coordinates and momenta of the test nucleons. Since
the coordinates and momenta of the test nucleons Eri and Epi can
be regarded as the canonical variables of the lattice Hamiltonian,
their time evolution is then governed by the Hamilton equation
for all ensembles,

dEri
dt

= NE
∂HL

[

Er1(t), . . . , ErA×NE (t); Ep1(t), . . . , EpA×NE (t)
]

∂Epi

= Epi(t)
m

+ NElxlylz
∑

α∈Vi

∂HMD
α

∂Epi
, (19)

dEpi
dt

= − NE
∂HL

[

Er1(t), . . . , ErA×NE (t); Ep1(t), . . . , EpA×NE (t)
]

∂Eri
= −NElxlylz

×
∑

α∈Vi

{ n,p
∑

τ

[

∂(Hloc
α +H

Cou
α +H

DD
α )

∂ρτ ,α

+
∑

n=0

(−1)n∇n ∂H
grad
α

∂∇nρτ ,α

]

∂ρτ ,α

∂Eri
+ ∂HMD

α

∂Eri

}

. (20)

In the above two equations, the subscript α refers to values at
lattice site α. The Vi under the summation sign represents the
volume that the form factor of the ith test nucleon covers, and the
sums run over all lattice sites inside Vi. The Coulomb interaction
contributes to the Hamiltonian density through the term

H
Cou(Erα) = e2ρp(Erα)

{

1

2

∫

ρp(Er ′)
|Erα − Er ′| dEr

′ − 3

4

[3ρp(Erα)
π

]1/3
}

≈ e2ρp(Erα)
{

1

2

∑

α′ 6=α

ρp(Erα′ )lxlylz

|Erα − Erα′ | − 3

4

[3ρp(Erα)
π

]1/3
}

,

(21)

where the second term represents the contribution from the
Coulomb exchange energy. Further tests show that the Coulomb
energyHCou(Erα) converges at the lattice spacing of lx = ly = lz =
0.5 fm used in the present LBUU simulations. The gradient term

H
grad
α in Equation (20) is obtained by considering

δ

∫

H
grad(Er) d3r =

n,p
∑

τ

∫ [

∂Hgrad(Er)
∂ρτ (Er)

δρτ (Er)

+ ∂Hgrad(Er)
∂∇ρτ (Er)

δ∇ρτ (Er)+
∂Hgrad(Er)
∂∇2ρτ (Er)

δ∇2ρτ (Er)+ · · ·
]

d3r

=
n,p
∑

τ

∫

∑

n=0

(−1)n∇n ∂Hgrad(Er)
∂∇nρτ (Er)

δρτ (Er) d3r, (22)
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where we have integrated by parts to obtain the second line. The
spatial derivative of ρτ ,α in Equation (20) is related to the spatial
derivative of S through

∂ρτ ,α

∂Eri
= ∂

∂Eri

τj=τ
∑

Erj∈Vα

S(Erj − Erα) =
{

∂S(Eri−Erα)
∂Eri , τi = τ ,

0, τi 6= τ .
(23)

Substituting the fτ (Er, Ep) from Equation (4) into Equation (8),
we obtain the momentum-dependent parts of the equation of
motion for the test nucleons, and these are expressed in terms
of the sums over the test nucleons as

∂HMD(Erα)
∂Eri

= 2
∂S

[

Eri(t)− Erα
]

∂Eri
×

{

∑

j∈Vα

S
[

Erj(t)− Erα
]

Ks

[Epi(t), Epj(t)
]

+
τj=τi
∑

j∈Vα

S
[

Erj(t)− Erα
]

Kv

[Epi(t), Epj(t)
]

}

, (24)

∂HMD(Erα)
∂Epi

= 2S
[

Eri(t)− Erα
]

×
{

∑

j∈Vα

S
[

Erj(t)− Erα
]∂Ks

[Epi(t), Epj(t)
]

∂Epi

+
τj=τi
∑

j∈Vα

S
[

Erj(t)− Erα
]∂Kv

[Epi(t), Epj(t)
]

∂Epi

}

. (25)

Using Equations (19)–(25), one can evaluate the time evolution of
the coordinates Eri(t) and momenta Epi(t) of the test nucleons, and
then obtain f (Er, Ep, t) from Equation (4), based on which physical
observables can be calculated.

The choice of the form factor S(Eri − Er) should ensure particle
number conservation,

∑

α

ρ(Erα)lxlylz =
1

NE

∑

α

∑

i

S(Eri − Erα) lxlylz = A. (26)

In the present LBUU framework, we use a triangular form

S(Eri − Er) = 1

(nl/2)6
g(1x)g(1y)g(1z),

g(q) =
(nl

2
− |q|

)

θ

(nl

2
− |q|

)

, (27)

where θ is the Heaviside function and n is an integer that
determines the range of S. Generally speaking, calculations
on lattices violate momentum conservation since they break
Galilean invariance. Early studies have shown that the total
momentum can be conserved to a high degree of accuracy if
n ≥ 4 [66].

It should be mentioned that compared with the conventional
test particle method, in which the equations of motion for the
test nucleons are derived from single-particle Hamiltonians, the
equations of motion for the test nucleons in the LH method,

Equations (19) and (20), are derived from the total Hamiltonian
of the system. In the former approach it is difficult to conserve
energy exactly [2, 66], while the latter approach can ensure exact
energy conservation in the dynamic process [66].

2.2. Collision Integral
In the present LBUU method, the stochastic collision method
[74], instead of the commonly used geometric method, is
implemented for the NN collision term in the BUU equation.
In the stochastic collision approach, the collision probability of
two test nucleons can be derived directly from the NN collision
term, Ic in Equation (3), as follows. Considering nucleons around
lattice site Erα from twomomentum space volume elementsVEp1 =
Ep1 ± 1

21
3Ep1 and VEp2 = Ep2 ± 1

21
3Ep2, one can average over

momentum space volume VEpi to obtain the distribution function
f (Erα , Epi) according to Equation (4):

f (Erα , Epi) ≈
1

13Epi
(2π h̄)3

gNE

Epj∈VEpi
∑

j

S(Erj − Erα). (28)

The number of collisions between nucleons from these two
momentum space volumes that happen in a time interval 1t is

1Ncoll(Erα , Ep1, Ep2) = g
13Ep1
(2π h̄)3

∣

∣

∣

df (Erα , Ep1)
dt

∣

∣

∣

coll

Ep2
lxlylz1t

= g
13Ep2
(2π h̄)3

∣

∣

∣

df (Erα , Ep2)
dt

∣

∣

∣

coll

Ep1
lxlylz1t. (29)

The quantities
∣

∣

df (Erα ,Ep1)
dt

∣

∣

coll
Ep2 and

∣

∣

df (Erα ,Ep2)
dt

∣

∣

coll
Ep1 are the changing

rates of f (Erα , Ep1) and f (Erα , Ep2), respectively, caused by two-body
scatterings between the nucleons inVEp1 andVEp2 . These terms can
be obtained directly from Equation (3), i.e., the NN collision term
in the BUU equation, as

∣

∣

∣

df (Erα , Ep1)
dt

∣

∣

∣

coll

Ep2
= g

13Ep2
(2π h̄)3

f (Erα , Ep1)f (Erα , Ep2)
∫

d3p3

(2π h̄)3
d3p4

(2π h̄)3
|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4)

= g
13Ep2
(2π h̄)3

f (Erα , Ep1)f (Erα , Ep2)vrelσ ∗
NN, (30)

where we have substituted in the definition of the cross-section,

σ ∗
NN = 1

vrel

∫ d3p3
(2π h̄)3

d3p4
(2π h̄)3

|M12→34|2(2π)4

δ4(p1 + p2 − p3 − p4), (31)

with vrel being the relative velocity of the test nucleons in the
two momentum space volumes and σ ∗

NN the scattering cross-
section in the two-nuclei center-of-mass frame. Here, we obtain
the in-medium NN cross-section σ ∗

NN by multiplying the free

NN cross-section σ free
NN by a medium-correction factor. The

NN elastic scattering cross-section in free space, σ free
NN , is taken

from the parameterization in reference [75] with a cutoff of
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σ free
NN (plab ≤ 0.1 GeV/c) = σ free

NN (plab = 0.1 GeV/c) for
neutron-neutron (nn) or proton-proton (pp) scatterings and a
cutoff of σ free

NN (plab ≤ 0.05 GeV/c) = σ free
NN (plab = 0.05 GeV/c)

for neutron-proton (np) scatterings, since the parameterization
is shown to be valid for nucleon momentum plab down to
the corresponding cutoff [75]. We note that the plab cutoff
actually corresponds to only a few MeV of incident kinetic
energy (i.e., 1.3 MeV for plab = 0.05 GeV/c and 5.3 MeV for
plab = 0.1 GeV/c), and these very low-energy scatterings are not
important in the present transport model calculations. Since this
parameterization of σ ∗

NN is given in the two-nucleon center-of-
mass frame, its value in the two-nuclei center-of-mass frame can
be obtained through the Lorentz invariant quantity E1E2vrelσ

∗
NN.

From Equations (28)–(30) one obtains

1Ncoll(Erα , Ep1, Ep2) =

Epi∈VEp1
Epj∈VEp2
∑

i,j

1Ncoll
ij

=

Epi∈VEp1
Epj∈VEp2
∑

i,j

1

N2
E

vrelσ
∗
NNS(Eri − Erα)S(Erj − Erα)lxlylZ1t, (32)

where 1Ncoll
ij denotes the number of physical collisions from the

scattering of the ith and jth test nucleons. Given that every test
nucleon is 1/NE of a physical nucleon, one obtains the collision
probability of the ith and jth test nucleons as

Pij =
1Ncoll

ij

(1/NE)2
= vrelσ

∗
NNS(Eri − Erα)S(Erj − Erα)lxlylz1t. (33)

One can reduce statistical fluctuations of the collision events
by allowing collisions of test nucleons that come from different
ensembles. In this case the collision probability is reduced, Pij →
Pij/NE, via the scaling σ ∗

NN → σ ∗
NN/NE. In our case, the NN

scattering probabilities are very small within one time step, so
instead of evaluating the probabilities of all possible collisions
of test nucleons, we randomly divide the test nucleons that
are available for scattering around the lattice site α into many
pairs for scattering, and amplify the corresponding scattering
probabilities accordingly, which is a common practice when one
allows the scattering of test nucleons from different ensembles
[74, 76]. The amplified scattering probabilities are given by

P′ij = Pij
Nα(Nα − 1)/2

N′
α/2

, (34)

where Nα is the number of test nucleons that contribute to
lattice site Erα and N′

α is the number of test nucleons available
for scattering. Since we choose a finite-range form factor for
coordinates in the LBUU framework, one test nucleon can be
involved in different collision events at different lattice sites.
Those test nucleons that have already collided at another lattice
site are excluded from the scattering at the present lattice site,
so N′

α is not necessarily equal to Nα . The time step 1t needs to
be sufficiently small to pin down the effect of such an exclusion

by suppressing the chance of multi-scattering attempts, as well as
to keep P′ij less than unity. In the present LBUU framework, we

choose 1t = 0.2 fm/c for the full LBUU calculations and 1t =
0.4 fm/c for the Vlasov calculations (i.e., the LBUU calculations
without the NN scatterings).

To verify the accuracy of the stochastic collision treatment
within the present LBUU framework, we simulate collisions of
nucleons confined in a cubic box of volume V = 10 × 10 ×
10 fm3 with periodic boundary conditions. In this simulation, we
ignore the nuclear mean-field potential and the quantum nature
of nucleons. Initially, 80 neutrons and 80 protons are uniformly
distributed over the box, corresponding to a nucleon density of
ρ = 0.16 fm3. Their momenta are generated according to the
relativistic Boltzmann distribution,

P(p) ∝ p2 exp

[

√

m2 + p2

T

]

, (35)

where m = 939 MeV is the free nucleon mass. Here, the
temperature T is taken to be 14.24 MeV so that the system
has the same kinetic energy density as the zero-temperature
isospin-symmetric Fermi gas of nucleons.

Using the NN elastic scattering cross-section in free space
[75], we simulate the time evolution of this system up to 1 fm/c
with a time step of 0.2 fm/c and NE = 1, 000. It is constructive
to see the collision rate as a function of the center-of-mass
energy

√
s of the colliding nucleon pair. The

√
s distributions

of the collision rates for np and for nn plus pp are plotted as
red circles in the left and right panels of Figure 1, respectively.
Theoretically, considering two species of particles following
relativistic Boltzmann distributions, the

√
s distributions of their

collision rates can be derived as

dNcoll

dt ds1/2
= 1

1+ δij

NiNj

V

s(s− 4m2)K1(s
1/2/T)σ (s1/2)

4m4TBK
2
2 (m/T)

, (36)

where Kn is the nth order modified Bessel function, Ni (Nj) is the
number of particles i (j) in the volumeV , and σ is their scattering
cross-section. The expected distributions are shown as black
solid lines in Figure 1 for comparison. It is seen that the LBUU
calculations are in excellent agreement with the expected results.

Given the quantum nature of nucleons, we handle Pauli
blocking in the LBUU method as follows. If the NN scattering
between the ith and jth test nucleons happens at the lattice site
Erα according to Pij or P

′
ij, the directions of their final momenta Ep3

and Ep4 are determined by the differential cross-section given in
reference [75], and then the Pauli blocking factor [1− f (Erα , Ep3)]×
[1 − f (Erα , Ep4)] is used to determine whether the collision is
blocked by the Pauli principle. The distribution function fτ (Erα , Ep)
is calculated according to Equation (28). For the momentum
space volume 13Epi, we take a sphere with radius R

p
τ (Erα , Ep)

centered at Epi. In typical BUU transport models, R
p
τ (Erα , Ep) is a

constant of about a hundred MeV. For the calculation of small-
amplitude nuclear collective dynamics near the ground state, a
specifically proposed R

p
τ (Erα , Ep) is more suitable [51], i.e.,

R
p
τ (Erα , Ep) = max[1p, pFτ (Erα)− |Ep|], (37)
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FIGURE 1 | The
√
s distribution of (A) np and (B) nn+ pp elastic

collision rates for the Boltzmann distribution at T = 14.24 MeV, with
80 neutrons and 80 protons in a cube of volume

V = 10× 10× 10 fm3, for theoretical predictions (black solid line)
and LBUU calculations (red circles). In both calculations, we choose
free NN cross-sections as parameterized in reference [75].

where 1p is a constant that should be sufficiently small and
pFτ = h̄(3π2ρτ )

1/3 is the nucleon Fermi momentum.

2.3. Ground State Initialization and
Evolution Stability
In the present LBUU method, we obtain the ground state of
nuclei at zero temperature by varying the Hamiltonian with
respect to the nuclear radial density, which is sometimes called
Thomas-Fermi (TF) initialization [51, 66, 77, 78] in the one-body
transport model. We assume that for a ground-state nucleus at
zero temperature, its Wigner function satisfies

fτ (Er, Ep) =
2

(2π h̄)3
θ
[

|Ep| − pFτ (Er)
]

, (38)

where pFτ (Er) is the local Fermi momentum given by

pFτ (Er) = h̄
[

3π2ρτ (Er)
]1/3

. (39)

It should be noted that, in principle, with the inclusion of
NN scatterings, which goes beyond mean-field correlations, the
nucleon momentum distribution in the ground state may differ
slightly from the zero-temperature Fermi distribution. If we
assume for simplicity that the nucleus is spherical, the total
energy of a ground-state nucleus at zero temperature can be
regarded as a functional of the radial density ρτ (r) and its
spatial gradients,

E =
∫

H
[

r, ρτ (r),∇ρτ (r),∇2ρτ (r), . . .
]

dr. (40)

The neutron (proton) radial density in a ground-state nucleus
can be obtained, by varying the total energy with respect to
ρτ (r) [note that for protons the contribution from the Coulomb
interaction in Equation (21) should also be included in the
Hamiltonian density], as

1

2m

{

pFτ
[

ρτ (r)
]}2 + Uτ

{

pFτ
[

ρτ (r)
]

, r
}

= µτ , (41)

where µτ is the chemical potential of a proton or neutron inside
the nucleus, with value determined by the given proton number
Z or neutron number N. The quantity Uτ

{

pFτ
[

ρτ (r)
]

, r
}

refers
to the single nucleon potential of the nucleon with local Fermi
momentum. The single nucleon potential is derived by varying
the Hamiltonian density in Equations (6)–(12) with respect to
the phase-space distribution function and density gradients, and
its detailed expression for the N3LO Skyrme pseudopotential is
given in reference [73]. The physical significance of Equation (41)
is very intuitive: in a classical picture, in a ground-state nucleus at
zero temperature, the nucleons in the Fermi surface at different
radial positions have the same chemical potential. The local
density ρτ (Er) for a ground-state spherical nucleus is obtained
by solving Equation (41) subject to the following boundary
conditions on the total local density ρ(r) = ρn(r)+ ρp(r):

∂ρ(r)

∂r

∣

∣

∣

∣

r=0

= ∂ρ(r)

∂r

∣

∣

∣

∣

r=rB

= 0. (42)

Here, rB is the boundary of the nucleus and it satisfies ρ(rB) = 0.
In the present LBUU framework, the initial coordinates

of test nucleons are generated according to the obtained
ρτ (Er), while their initial momenta are generated from a zero-
temperature Fermi distribution with the Fermi momentum
given in Equation (39). Owing to the presence of the form
factor S(Er − Er ′) introduced in Equation (4), the density is
smeared slightly in the LBUU calculations compared with
the realistic local density. Thus the initial ground-state radial
density distribution is slightly different from the solution of
Equation (41). Unlike the Gaussian wave packet that is used to
mimic the Wigner function in QMD model [57], the form factor
S(Er − Er ′) does not have any physical meaning; it can be regarded
as a numerical technique introduced in the test-particle approach
so that one can obtain well-defined densities and mean fields. As
shown in the following, an additional gradient term in the local
density can compensate for the effects caused by the smearing of
the local density due to the form factor. In this subsection, we
will denote by ρ̃(Er) the local density in the LBUU calculation and
by ρ(Er) the realistic local density. The local density ρ̃(Er) can be
regarded as a convolution of the realistic local density with the
form factor,

ρ̃(Er) =
∫

ρ(Er ′)S(Er − Er ′) d3r′. (43)

To express ρ(Er) in terms of ρ̃(Er), we have formally

ρ(Er) =
∫

ρ̃(Er ′)S−1(Er ′ − Er) d3r′

=
∫

[

∞
∑

n=0

1

n!
∇nρ̃(Er)(Er ′ − Er)n

]

S−1(Er ′ − Er) d3r′

≈ ρ̃(Er)+ c∇2ρ̃(Er), (44)

where we have truncated at next-to-leading order [the ∇ρ̃(Er)
term vanishes because of the symmetry of the integral] and
S−1(Er − Er ′) is the inverse of S(Er − Er ′), which satisfies

∫

S(Er − Er ′′)S−1(Er ′′ − Er ′) d3r′′ = δ(Er − Er ′). (45)
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The parameter c, defined by

c ≡
∫

1

2
(Er ′ − Er)2S−1(Er ′ − Er) d3r′, (46)

is a small constant that depends only on the form of S. In the
LBUU framework, to obtain ρ(Er) by direct correction of ρ̃(Er)
is not feasible since numerically the density in Equation (44) is
not always positive. If we substitute Equation (44) into the total
Hamiltonian, with several necessary approximations, we obtain
an additional term that is proportional to cρ̃(Er)∇2ρ̃(Er). This term
leads to an additional gradient term Ẽ[2]∇2ρ̃ in the equations of
motion (20). Therefore, in practice we can add the extra gradient
terms Ẽ[2]∇2ρ̃ to the equations of motion, to compensate for
the smearing of density due to the form factor. In principle,
the parameter Ẽ[2] should contain higher-order effects, so we
adjust it to roughly obtain the ground-state root-mean-square
(rms) radius evolution with the smallest oscillation, since the rms
radius in the exact ground state should not change with time.
Normally Ẽ[2] is a small parameter, around 15 MeV for various
(N3LO) Skyrme parameter sets. It should be mentioned that this
correction of the density gradient term improves the stability
of the ground-state evolution (rms radius and radial density
profile) only slightly, and does not lead to much difference in
the results for collective motions. In ideal cases with NE → ∞
and lx, ly, lz → 0, the local density in the LBUU calculation will

approach the physical local density, and Ẽ[2] will become zero.
Since all the LBUU calculations are based on ρ̃(Er), we do not
distinguish between ρ̃(Er) and ρ(Er), and ρ(Er) should be interpreted
as ρ̃(Er) in the rest of the article.

We first examine the ground-state evolution stability of the
LHV calculation, i.e., the LBUU calculation without the collision
term, since in principle all NN scatterings should be blocked in
the ground state. We show in Figure 2 the time evolution of the
radial density profile from the LHV calculation for the nucleus
208Pb in ground state up to 1, 000 fm/c, obtained with NE =
10, 000 and a time step of 1t = 0.4 fm/c by using the N3LO
Skyrme pseudopotential SP6m.We notice from Figure 2 that the
profile of the radial density exhibits only very small variations
with time, which indicates the success of the above initialization
method. It also shows that the smearing of the local density
caused by the inclusion of the form factor S does not affect the
dynamic evolution significantly. Such features indicate that the
present LBUU method of solving the BUU equation can be used
to study long-time nuclear processes, such as nuclear spallation
and heavy-ion fusion reactions.

Apart from the radial density profile, other properties of the
ground-state evolution stability are also examined. In Figure 3

we present the time evolution of the rms radius, the fraction
of bound nucleons, and the binding energy of the LHV
calculation (i.e., the LBUU calculation without NN scatterings).
The calculations are performed with time step1t = 0.4 fm/c and
with NE = 5, 000 and 10, 000. The test nucleons for which the
form factor does not overlap with that of others are considered
free test nucleons, and they are excluded when calculating the
fraction of bound nucleons and the rms radius. We notice from
Figure 3A that although in the NE = 5, 000 case the rms radius

FIGURE 2 | Time evolution of the radial density profile of the ground state of
208Pb based on the LHV calculation (i.e., the LBUU calculation without NN

scatterings) with the N3LO Skyrme pseudopotential SP6m up to 1, 000 fm/c.

Reproduced from reference [61] with permission from the American Physical

Society.

starts to decrease after about 800 fm/c, the LHV calculation gives
a fairly stable time evolution of the rms radius. The observed
decrease is due to the evaporation of test nucleons from the
bound nuclei, which is illustrated in Figure 3B. Such evaporation
of test nucleons is inevitable in transport model calculations
because of the limited precision of the numerical realization, but
it can be suppressed by increasing NE, as seen in Figure 3B,
though the result with EE = 5, 000 is already satisfactory
[61]. As Figure 3C shows, the LH method ensures the energy
conservation to a very high degree. The difference between the
cases of NE = 5, 000 and NE = 10, 000 is mainly due to the
numerical precision of the gradient term in the Hamiltonian.
It is seen from Figure 3 that the present LBUU framework can
give a fairly stable ground-state time evolution. Owing to the
high efficiency of GPU parallel computing, it becomes possible to
include more ensembles or test particles in the LBUU calculation.
As one will see in the following, to obtain the correct GDR
width, as many as 30, 000 ensembles are needed in the full LBUU
calculation with NN scatterings.

For the stability of the ground-state evolution in the full LBUU
calculation, we note that for σ free

NN with NE = 30, 000, the rms
radius and the ground-state energy of 208Pb vary <3.6% (0.2 fm)
and 3.2% (50 MeV), respectively, during the time evolution of 0–
500 fm/c [55]. The stability of the rms radius in the full LBUU
calculation is not as good as in the LHV case, and this may
be due to the fact that with the inclusion of NN scatterings,
i.e., beyond mean-field correlations, the nucleon momentum
distribution in the ground state may differ slightly from the zero-
temperature Fermi distribution. Apart from this, although the
LHmethod can conserve the energy almost exactly for the mean-
field evolution without NN collisions, the non-perfect energy
conservation in the LBUU calculation could be caused by the NN
scattering processes, which usually violate energy conservation
when the momentum-dependent mean-field potentials are used.
Both problems require further investigation of transport model
calculations in the future.
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FIGURE 3 | Time evolution of (A) rms radius, (B) fraction of bound nucleons, and (C) binding energy of the 208Pb ground state from the LHV calculation (i.e., the

LBUU calculation without NN scatterings) with the N3LO Skyrme pseudopotential SP6m up to 1, 000 fm/c. Calculations are performed with a time step of

1t = 0.4 fm/c and with NE = 5, 000 and 10, 000. Reproduced from reference [61] with permission from the American Physical Society.

2.4. Nuclear Giant Resonances Within
Transport Models
We consider a small excitation of the Hamiltonian,

Ĥex(t) = λQ̂δ(t − t0), (47)

where Q̂ is the excitation operator for a given mode and λ is
the initial excitation parameter, which is assumed to be small.
In linear response theory [79], the response of the excitation
operator Q̂ as a function of time is given by

1〈Q̂〉(t) = 〈0′|Q̂|0′〉(t)− 〈0|Q̂|0〉(t)

= −2λθ(t)

h̄

∑

F

|〈F|Q̂|0〉|2 sin (EF − E0)t

h̄
, (48)

where |0〉 is the unperturbed nuclear ground state with energy
E0, |0′〉 is the nuclear state after the perturbation, and |F〉 is the
energy eigenstate of the excited nucleus with eigen-energy EF .
The strength function, which is defined as

S(E) =
∑

F

|〈F|Q̂|0〉|2 δ(E− EF + E0), (49)

can be expressed as a Fourier integral of 1〈Q̂〉(t) in
Equation (48):

S(E) = − 1

πλ

∫ ∞

0
dt1〈Q̂〉(t) sin Et

h̄
. (50)

By evaluating the time evolution of 1〈Q̂〉(t) within the transport
model, we can obtain the strength function and, subsequently,
other quantities, such as the peak energy, width, and energy-
weighted sum rules. The time evolution of 1〈Q̂〉(t) can be
expressed in terms of the Wigner function f (Er, Ep) as follows.

If we assume that Q̂ is a one-body operator, then it can be
written as the sum of single-particle operators q̂ acting on each
nucleon, Q̂ = ∑A

i q̂, and the expectation value of Q̂ for a given
state is evaluated as

〈Q̂〉 = 〈8|Q̂|8〉 =
∫

〈8|Er1 · · · ErN〉〈Er1 · · · ErN |Q̂|Er′1 · · · Er′N〉

〈Er′1 · · · Er′N |8〉 d3r1 · · · d3rN d3r′1 · · · d3r′N , (51)

where we have added two identity operators. Considering the
definition of the one-body density matrix,

ρ(Er1, Er′1) = A

∫

〈Er1Er2 · · · ErN |8〉〈8|Er′1Er2 · · · ErN〉 d3r2 · · · d3rN ,

and combining it with the one-body operator condition
Q̂ = ∑A

i q̂, we can rewrite Equation (51) as

〈Q̂〉 =
∫

ρ(Er′1, Er1)〈Er1|q̂|Er′1〉 d3r1 d3r′1. (52)

The density matrix can be expressed in coordinate space as the
inverse Fourier transform of f (Er, Ep),

ρ

(

Er − Es
2
, Er + Es

2

)

=
∫

f (Er, Ep) exp
(

i
Ep
h̄
Es
)

d3p. (53)

In the above equation we have changed the integration variables:
Er1 = Er + Es

2 and Er′1 = Er − Es
2 . We define the Wigner transform of q̂

in coordinate space,

q(Er, Ep) ≡
∫

exp
(

−i
Ep
h̄
· Es

)

q
(

Er + Es
2
, Er − Es

2

)

d3s, (54)

where q
(

Er + Es
2 , Er − Es

2

)

=
〈

Er + Es
2 |q̂|Er − Es

2

〉

represents the matrix
element of q̂ in coordinate space. By substituting Equation (53)
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and the inverse transform of Equation (54) into Equation (52),
the expectation of Q̂ can be written in the form

〈Q̂〉 =
∫

f (Er, Ep)q(Er, Ep) d3r d3p, (55)

which means that the time evolution of 〈Q̂〉 can be calculated
through the time evolution of f (Er, Ep).

In the transport model, different external excitations
λQ̂δ(t − t0) can be generated by changing the positions and
momenta of the test nucleons as follows [47]:

Eri → Eri + λ
∂q(Eri, Epi)

∂Epi
, Epi → Epi − λ

∂q(Eri, Epi)
∂Eri

. (56)

The detailed forms of q(Eri, Epi) for different collective modes and
their corresponding initializations in the transport model will be
given later.

3. LATTICE HAMILTONIAN VLASOV
CALCULATIONS

In this section we compare the peak energy of nuclear giant
resonances obtained from LBUU calculations without the NN
scatterings, i.e., LHV calculations, with that obtained from the
RPA, since the 2p-2h correlation is absent in both cases. Both
the isoscalar monopole and isovector dipole modes of 208Pb
are examined.

3.1. Isoscalar Monopole Mode
Since the isoscalar giant monopole resonance (ISGMR) provides
information about the nuclear matter incompressibility [80–85],
which is a fundamental quantity that characterizes the EOS of
symmetric nuclear matter, it is interesting to study the ISGMR
within the transport model to make a cross-check with the
incompressibility extracted from the HICs.

From the point of view of the one-body transport model,
the isoscalar monopole mode is regarded as a compressional
breathing of the nuclear fluid. The excitation operator Q̂ISM for
the isoscalarmonopolemode and its one-body operator q̂ISM take
the forms

Q̂ISM = 1

A

A
∑

i

r̂2i , q̂ISM = r̂2

A
. (57)

From Equation (54) we obtain the Wigner transform of q̂ISM as

qISM(Er, Ep) = Er2
A
. (58)

According to Equation (56), we can generate in the transport
model the initial isoscalar monopole excitation by changing the
initial phase-space information of test nucleons with respect to
that of the ground state:

Epi → Epi − 2λ
Eri
A
. (59)

FIGURE 4 | Time evolution of 1〈Q̂ISM〉 of 208Pb after a perturbation by

Ĥex(t) = λQ̂ISMδ(t− t0 ) with λ = 100 MeV · fm−1/c in the LHV calculations. The

results correspond to three N3LO Skyrme pseudopotentials, SP6s, SP6m,

and SP6h, and one conventional Skyrme interaction MSL1. Reproduced from

reference [61] with permission from the American Physical Society.

The spatial coordinates of the test nucleons remain unchanged
since qISM in Equation (58) is independent of momentum. Note
that the rms radius of a nucleus, shown in Figure 3, is given by
the square root of the expectation value of Q̂ISM.

We show in Figure 4 the time evolution of 1〈Q̂ISM〉, i.e.,
the difference between the expectation values of 〈Q̂ISM〉 for the
excited state and the ground state from the LHV calculations.
The results are from one conventional Skyrme interaction MSL1
and three N3LO Skyrme pseudopotentials, SP6s, SP6m, and
SP6h. In the calculation, we set the number of ensembles NE

to 5, 000, and the initial excitation parameter λ is taken to
be 100 MeV · fm−1/c. One sees from the figure that the time
evolution of 1〈Q̂ISM〉, or equivalently the rms radius, displays
a very regular oscillation, and the rapid increase of the radius
with time that is generally seen in most BUU calculations using
the conventional test particle method does not show up here.
Besides that, since the only damping mechanism in the LHV
calculation is Landau damping, the amplitude of the oscillation
only decreases slightly. Landau damping is caused by one-
body dissipation, which is governed by a coupling of single-
particle and collective motions. It should be mentioned that in
the RPA framework, the damping also comes only from one-
body dissipation, since the coupling to more complex states,
such as 2p-2h states, is missing in RPA [86]. We obtain the
peak energy of the giant monopole resonance through Fourier
transform of the time evolution of 1〈Q̂ISM〉 shown in Figure 4.
The obtained peak energy is 13.8 MeV for SP6s, 13.6 MeV for
SP6m, 13.9 MeV for SP6h, and 13.5 MeV for MSL1. In order
to compare the result from the LHV calculation with that from
RPA, we calculate the strength function of the giant monopole
resonance using the Skyrme-RPA code of Colo et al. [87] with
the MSL1 interaction. The obtained peak energy of 14.1 MeV is
comparable to that from the LHV calculation with MSL1, and
the small discrepancy may reflect the difference between their
semi-classical and quantum natures.

3.2. Isovector Dipole Mode
The isovector giant dipole resonance (IVGDR) of finite nuclei
is the earliest observed nuclear collective excitation. Systematic
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FIGURE 5 | Same as Figure 4 but for the isovector dipole mode with

λ = 25 MeV/c. Reproduced from reference [61] with permission from the

American Physical Society.

experimental investigation of the IVGDR with photon-nuclear
reactions was conducted decades ago [88]. Recent precise
measurements of the isovector dipole response have been
performed at the RCNP for 48Ca [89], 120Sn [90], and 208Pb
[63] with inelastic proton scattering, as well as at GSI for 68Ni
[91] by using Coulomb excitation in inverse kinematics. Recently,
a low-lying mode called pygmy dipole resonance (PDR) has
been observed experimentally [92–95], and this effect has already
been studied based on the Vlasov equation [47]. The IVGDR
[54, 96, 97], PDR [98, 99], and electric dipole polarizability αD

[100–103], which are dominated by these isovector dipole modes,
provide sensitive probes to constrain the density dependence of
the nuclear symmetry energy.

For the isovector dipole mode, the external perturbation can
be written in the form

Q̂IVD = N

A

Z
∑

i

ẑi −
Z

A

N
∑

i

ẑi. (60)

The coefficients in front of the single-particle position operator
are chosen so as to keep the center of mass of the nucleus at
rest. According to Equation (56), in transport models the excited
nucleus can be obtained by changing the initial phase-space
coordinates of test nucleons:

pz →
{

pz − λN
A for protons,

pz + λ Z
A for neutrons.

(61)

We show in Figure 5 the time evolution of 1〈Q̂IVD〉 for
208Pb with the interactions SP6s, SP6m, SP6h, and MSL1 of
the LHV calculations. The number of ensembles NE and the
initial excitation parameter λ are set to 5, 000 and 25 MeV/c,
respectively. Based on the time evolution of 1〈Q̂IVD〉 shown
in Figure 5, the obtained peak energies for SP6s, SP6m, SP6h,
and MSL1 are 13.4 MeV, 13.5 MeV, 13.7 MeV, and 13.1 MeV,
respectively. The peak energy of MSL1 from the RPA calculation
is 13.3 MeV, which is comparable to that obtained from the
LBUU calculation without the NN collision term.

4. SPREADING WIDTH OF THE GIANT
DIPOLE RESONANCE AND COLLISIONAL
DAMPING

It is generally thought that in low-energy HICs with incident
energies of only a few MeV/nucleon, the NN scatterings can
be safely neglected since they are mostly blocked by the
Pauli principle. However, when it comes to the width of the
GDR, the collisional damping caused by NN scatterings is
an essential mechanism for enhancing the insufficient GDR
width obtained through the pure Vlasov calculation [55].
Nevertheless, to properly implement the damping mechanism
caused by NN scatterings in transport models requires a rather
accurate treatment of the Pauli blocking, which is a challenge
in transport model calculations. The main difficulty lies in
accurately calculating local momentum distributions fτ (Erα , Ep) in
transport models. Inaccuracy of fτ (Erα , Ep) negatively affects the
accuracy of the Pauli blocking and leads to spurious collisions,
which enhance the collisional damping and thus overestimate the
width of nuclear giant resonances. There are threemain origins of
the inaccuracy of the calculated fτ (Erα , Ep) and hence the spurious
collisions in transport models:

(1) fluctuations in calculating fτ (Erα , Ep) through Equation (28)
caused by too-small NE;

(2) a spurious temperature caused by a finite 1p in calculating
fτ (Erα , Ep) (also see reference [51]);

(3) the finite lattice spacing l causing diffusion in local
momentum space due to the averaging of different local
lattice densities in the nuclear surface region.

In order to obtain the spreading width with high accuracy from
the BUU equation, one should choose a large NE together with
sufficiently small l and1p. After a careful test, it is found [55] that
to get a convergent GDR width, l should be smaller than 0.5 fm,
1p smaller than 0.05 GeV, and NE larger than 30, 000. Further
reducing 1p and l or increasing NE leads to only a negligible
decrease of the calculated GDRwidth. Therefore, in the following
full LBUU calculations of the GDR width, we take l = 0.5 fm,
1p = 0.05 GeV, and NE = 30, 000.

The collisional damping or NN scattering can have a

significant effect on the width of nuclear giant resonances.

Figure 6 shows the time evolution of the isovector dipole

response 1〈Q̂IVD〉 of 208Pb and its strength function obtained

from the LHV calculation and the full LBUU calculation with the
free NN elastic scattering cross-section [55]. In both cases, the
N3LO Skyrme pseudopotential SP6h is adopted, and the same
initial excitation with λ = 15 MeV/c is employed (we note
that varying λ by 2/3 leads to almost the same value of the
GDR width). The dotted line in the left panel of Figure 6 is the
time evolution of the expectation value 〈0|Q̂IVD|0〉 in the ground
state of 208Pb as obtained from the LBUU calculation with the
free-space NN cross-section. The expectation value 〈0|Q̂IVD|0〉
in the ground state of 208Pb is negligible compared with that
in the GDR cases with and without NN scatterings. It is seen
that including NN scatterings significantly increases the damping
of the oscillations and leads to a much larger width. From the

Frontiers in Physics | www.frontiersin.org 11 October 2020 | Volume 8 | Article 330

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wang et al. Nuclear Collective Dynamics in Transport Model

FIGURE 6 | Time evolution of 1〈Q̂IVD〉 (left) and its strength function (right) for 208Pb after a perturbation Ĥex = λQ̂IVDδ(t− t0) with λ = 15 MeV/c obtained from the

LHV (Vlasov) calculation and the LBUU calculation with the free NN cross-section σ free
NN . The dotted line in the left panel is the expectation value of Q̂IVD in the ground

state from the LBUU calculation with σ free
NN . Reproduced from reference [55] under the Creative Commons CCBY license.

FIGURE 7 | Strength function of the GDR in 208Pb after a perturbation

Ĥex = λQ̂IVDδ(t− t0) with λ = 15 MeV/c obtained from the LBUU calculation

using the FU4FP6 parameterization [107] for the in-medium NN scattering

cross-section. The strength function measured in the RCNP experiment [63] is

also shown for comparison.

strength functions, the obtained GDR width of 208Pb is 1.5 MeV
in the Vlasov calculation and 6.5 MeV in the LBUU calculation
with NN scatterings. We also notice from the right panel of
Figure 6 that the peak shifts to a higher energy when the NN
scatterings are included. The impact that the NN scatterings have
on the width indicates that they may also affect some particular
observables in low-energy HICs, such as the nuclear stopping of
HICs in the Fermi energy region, which merit further study.

Recent experiments performed at the RCNP on the
208Pb(Ep, Ep′) reaction [63] have measured the GDR width of
208Pb accurately, giving a value of 4.0 MeV. Therefore, the
LBUU calculation with the free NN elastic cross-section (which
predicts a GDR width of 6.5 MeV) significantly overestimates
the GDR width of 208Pb. It is well-known that the NN elastic

cross-section is suppressed in the nuclear medium, so the
overestimation of the GDR width with σ free

NN is understandable
since the medium effects on the NN elastic cross-section will
weaken the collisional damping and thus result in smaller GDR
width. As shown in reference [55], in order to reproduce the
experimental GDR width of 208Pb obtained at the RCNP, a
strong medium reduction of the NN cross-section is needed.
There are many parameterizations for the medium reduction
of the NN cross-section [104–107], which could be dependent
on density, collision energy, or isospin. As an example, we
choose the FU4FP6 parameterization [107] for the medium
reduction of the cross-section to calculate the strength function
and width of the GDR in 208Pb. The FU4FP6 parameterization
of the medium reduction is density-, momentum-, and isospin-
dependent; it is preferred by the nucleon induced nuclear
reaction cross-section data [107] and predicts a very strong in-
medium reduction of NN scattering cross-sections. The strength
function of the GDR in 208Pb from the LBUU calculation is
shown in Figure 7 and compared with the RCNP data [63]. The
GDR width obtained from the LBUU calculation through the
full width at half maximum (FWHM) of the strength function is
4.32 MeV, which is consistent with the value of 4.0 MeV found
in the RCNP experiment. However, the Skyrme pseudopotential
SP6h used in the calculation overestimates the peak energy by
about 1.5 MeV. Using effective interactions with a different
symmetry energy slope parameter L or different nuclear effective
masses can easily reproduce the correct peak energy [54]. In
order to compare the shape of the strength function and the
value of the width of the GDR in 208Pb, we shift the strength
function from the LBUU calculation to match the experimental
peak energy. We conclude from Figure 7 that the present LBUU
method with the FU4FP6 parameterization [107] for the medium
reduction of the NN scattering cross-section can well reproduce
the measured shape of the strength function and the width
of the GDR in 208Pb. It should be stressed that the FU4FP6
parameterization suggests a very strong in-medium reduction
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of NN scattering cross-sections, consistent with the conclusions
obtained in reference [55].

5. SUMMARY AND OUTLOOK

We have reviewed recent progress in calculating nuclear
collective motions by solving the BUU equation with the LH
method. In order to calculate the nuclear collective motions
accurately with the BUU equation, the present LBUU framework
includes the following features: (1) the smearing of the local
density is incorporated in the equations of motion self-
consistently through the lattice Hamiltonian method; (2) the
initialization of a ground state nucleus is carried out according
to a nucleon radial density distribution obtained by varying
the same Hamiltonian that governs the evolution; (3) the
NN collision term in the BUU equation is implemented
through a full-ensemble stochastic collision approach; (4) high-
performance GPU parallel computing is employed to increase
the computational efficiency. The present LBUU framework with
these features affords a new level of precision in solving the
BUU equation.

Within the LBUU framework, it has been shown that the
peak energies of the ISGMR and IVGDR obtained from the
pure Vlasov calculation are consistent with those from the RPA
calculation, and the full LBUU calculation can yield a reasonable
GDR strength function compared with the experimental data.
The peak energies can be used to extract information about the
nuclear EOS, while the width of the GDR can constrain the
medium reduction of the elastic NN scattering cross-section.

The success of the present LBUU framework in describing the
nuclear collective motions has demonstrated its capability in
treating the stability of ground-state nuclei and the nuclear
dynamics near equilibrium. Thus the present LBUU framework
provides a solid foundation for studying long-time processes of
heavy-ion reactions at low energies, such as heavy-ion fusion
and multi-nucleon transfer reactions at near-barrier energies,
based on solving the BUU equation. The significant effects of the
collisional damping on the width of the nuclear GDR indicate

that NN scatterings should play a crucial role in nuclear collective
dynamics with small-amplitude oscillations.

The present LBUU framework has been shown to significantly
reduce the uncertainties in transport model simulations of HICs
in various respects, especially with regard to the stability of the
nuclear ground-state evolution and the accurate treatment of NN
scatterings as well as the Pauli blocking. This is very important for
various studies of HICs based on transport model calculations,
such as the extraction of the nuclear EOS and the in-medium
NN scattering cross-sections. Further studies of HICs from low
to intermediate energies within the present LBUU framework are
in progress, and it is expected that more reliable information
on the nuclear EOS, the in-medium NN scattering cross-
sections, and the effective nuclear interactions will be gained in
near future.
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