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Samo Penič 1*, Luka Mesarec 1, Miha Fošnarič 2, Lucyna Mrówczyńska 3,
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In this mini-review, a brief historical survey of the mechanisms which determine the

shapes of liposomes and cells and the budding and fission of their membrane is

presented. Special attention is given to the role of orientational ordering of membrane

components in thin membrane necks which connect the membrane buds (daughter

vesicles) to the parent membrane. It is indicated that topological anti-defects in

membrane necks may induce the rupture of the neck and the fission of the membrane

daughter vesicles.
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1. INTRODUCTION

The main building block of the biological membranes is the lipid bilayer with embedded inclusions
like proteins and glycolipids [1, 2]. Protein membrane inclusions may induce the local curvature
changes of the membrane [3–5], resulting also in the global change of the cell shape [6–13].
The non-homogeneous lateral distribution [6–9, 14–16] and the phase separation of membrane
inclusions (nanodomains) are important mechanism that may induce the local changes of
membrane curvature and are therefore the driving force for transformations of the cell shape
[12, 17–20]. The shapes of cells or lipid bilayer vesicles (as model systems) may also be changed
by membrane skeleton or cytoskeleton forces [13, 19, 21–27]. Among them, the ATP consuming
forces are very significant for sustaining different cell functions [12, 16, 28–32]. Consequently,
new theoretical approaches for modeling the cell shape changes under the influence of the energy
consuming active forces have recently been developed [12, 16, 28, 31, 32]. Until recently [29–
31], it was also believed that the active forces are completely absent in the mechanisms of the
determination of the RBC shape, when it was shown that NMIIAmotor nanodomainsmay generate
tension in the spectrin-F-actin RBC membrane skeleton and in this way partially control the RBC
shape [29, 30] and the membrane vesiculation [31]. In accordance with experimental observations,
it was shown [30] that myosin (NMIIA) motor nanodomains should be non-homogeneously
distributed over the entire inner membrane surface of discocyte RBC. In addition, the normal
component of the NMIIA nanodomain force should be different from zero and directed to
the interior of the cell across the whole membrane surface, including the dimple region of the
discocytic RBC, in order to keep the stable discocyte RBC shape and prevent a pancake shape
transformation [30]. It should be pointed out that if NMIIA motor protein is contracted in the
dimple region of the RBC, this may induce small local exvaginations and non-zero component
of myosin force directed to the RBC interior. Because NMIIA motor nanodomains and actin
molecules are distributed only on the inner membrane surface of RBC, the normal component of
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the NMIIA motor nanodomain should be directed to the
interior of RBC (inward). Experimental measurements of NMIIA
densities at the dimple and rim of discocyte RBC shape confirmed
the theoretical predictions of [30] that the NMIIA force density
must be larger in the dimple than at the RBC rim in order to
stabilize the discocyte RBC shape [30].

It was further shown that decreasing the difference between
the relaxed areas of the outer layer and the inner lipid layer
induces the inward bending of the RBC membrane [27, 33–
36], while increasing the difference between the relaxed areas
of the outer and inner membrane layers favors the outward
bending [26, 27, 33–37]. In accordance, the exogenously added
amphiphiles which predominantly bind in the outer lipid layer
induce the transformation of the discoid RBC into the spiculated
(echinocytic) RBC, while amphiphiles predominantly bound in
the inner lipid layer induce the transformation into invaginated
stomatocytic shapes [35, 36, 38]. RBC membranes have in
addition to lipid bilayer also the membrane skeleton composed
of the spectrin-F-actin network which is attached to the inner
surface of the lipid bilayer [24]. It was indicated that besides
the local and non-local bending energy [23, 39–47] also the
shear elastic energy of the membrane skeleton [25–28, 33, 46]
should be considered in the minimization of the membrane free
energy to theoretically explain the observed stability of speculated
(echinocytic) RBC shapes [25, 26]. It was also shown recently that
in RBCs, the ATP-dependent membrane skeleton forces, exerted
on the membrane by the skeleton nodes, may cause membrane
softening, which influences the RBC deformability to facilitate
the movement of RBCs through narrow capillaries [28].

2. MEMBRANE BUDDING AND
ENDOVESICULATION

The membrane skeleton of RBC plays an important role also
in the vesiculation of the RBC membrane [35, 37, 48–51].
Because of the local disruption of the interactions between the
membrane skeleton and the membrane bilayer [48], the RBC
microexovesicles are depleted in the membrane skeleton [49].
It was shown that at sublytic concentrations of amphiphiles
in the RBC suspension, the anisotropic amphiphiles induce
tubular membrane budding and the release of stable tubular
microexovesicles [18, 35, 37, 49, 51], while most of the other
amphiphile molecules induce small, predominantly spheroidal
microexovesicles that are formed from small membrane buds
[8, 35, 51, 52]. The experimentally observed tubular budding
and vesiculation of the RBC membrane [18, 35, 49, 51] can be
theoretically explained by deviatoric membrane properties due
to the in-plane orientational ordering of anisotropic membrane
inclusions [8, 10, 15, 53–61].

Certain amphiphilic molecules can induce stomatocyte shape
transformation and the formation of a large number of small
spheroidal membrane invaginations (buds/endovesicles) in the
region of large stomatocytic invagination [35, 36]. But it is also
possible that small exvaginations are formed in the region of
large stomatocyte invaginations. For example, it was observed in
RBCs that the lipid rafts component ganglioside GM1 distributes

and even enriches the membrane of large stomatocytic RBC
invaginations [17]. It was proposed that single GM1 molecules
have zero intrinsic curvature, while small GM1 aggregates have
the positive intrinsic curvature [62]; therefore, it is possible
that small GM1 aggregates in the region of large stomatocyte
invagination(s) also induce the outward budding and the release
of small exovesicles which, however, can hardly be observed in in
vitro experiments since they are washed out in the preparation
of the samples for microscopy. It was pointed out that the
recently suggested role of active forces of NMIIA motors [29]
in the RBC membrane shape determination [30] may play
an important role also in membrane endovesiculation and the
control of the shape and size of membrane endovesicles [31].
By using Monte Carlo (MC) simulations, it was indicated that
the formation of a large number of small spheroidal membrane
buds/endovesicles may be coupled to non-homogeneous lateral
distribution active forces motor nanodomains/inclusions and to
a global invaginated closedmembrane shape transformation [31].

Themain subject of this mini-review is the possible theoretical
explanation of the fission of membrane endovesicles [i.e., the
rupture of the neck connecting the membrane buds (daughter
vesicles) with the parent membrane] following the formation of
membrane invagination/buds. Our interest in the subject was
motivated by experimental observations of a large number of
buds/endovesicles in red blood cells (RBCs) [35, 36] (Figure 1)
and by the results of Monte Carlo (MC) simulations (Figure 2).

Figure 1 shows transmission electron microscopy
(Figure 1A) and confocal laser scanning microscopy images
(Figure 1B) of a large number of small inward membrane
buds/endovesicles in an invaginated stomatocytic RBC induced
by amphiphilic molecules of chlorpromazine hydrochloride.
Small spheroidal buds/endovesicles shown in Figure 1 are
concentrated in the vicinity of the large primary invagination(s)
of stomatocytic RBCs [17, 63].

Figure 2 shows the MC simulations predicted closed
membrane shape with the membrane inclusions (nanodomains)
with the negative intrinsic curvature which may induce the
formation of long undulated thin inward membrane protrusions
(buds). The inclusions are accumulated in the region of the
protrusions. The theoretically predicted shapes in Figure 2 may
partially correspond to situations in RBCs when the protrusion
is growing in the region where the local disruption of the
interactions between the membrane skeleton and the membrane
bilayer appears or the skeleton is detached from the protrusion
[48, 49], so that the inward membrane protrusion is not covered
by membrane skeleton.

Figure 2 also shows the cluster size distributions that
were determined from the averaging over the convergent
MC realizations. It can be seen in Figure 2 that the cluster
size distribution of nanodomains/inclusions has only two
peaks corresponding to two, spheroidal and necklace-like
aggregate of inclusions in the form of protrusions (phase
separation). We may conclude that the inclusions aggregates
into curved membrane protrusions or buds which is the
consequence of non-zero (negative) intrinsic curvature of
inclusions and high enough interaction (attractive) energy
between inclusions.
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FIGURE 1 | Transmission electron micrograph (A) and confocal laser scanning microscopy of invaginated stomatocytic RBC incubated with amphiphilic molecules

chlorpromazine (B). Chlorpromazine molecules induce the formation of a large number of small membrane buds/endovesicles. Adapted from Hägerstrand et al. [17]

and Bobrowska-Hägerstrand et al. [63].

FIGURE 2 | The Monte Carlo simulation of the RBC membrane transformation induced by mobile membrane inclusions with intrinsic curvature c = −1d−1
min.

Concentration of membrane inclusions p = 5%. The triangulated membrane surface is drawn semitransparent to uncover its interior shape. Red arrows in enlarged

insets point to the neck area, where there is a lack of inclusions. In the corresponding cluster-size distributions, the y-axis is the ensemble averaged number of

inclusion clusters of each size and the x-axis is the inclusion cluster size. The values of other model parameters are: local bending stiffness of lipid bilayer κ = 25 kT

and direct interaction parameter w = 1.25 kT. The parameters for simulations are based on values in [31]. The simulations were run on a personal computer with Intel

i7-7500U processor and 8 GB of RAM; however, the memory requirements for the Monte Carlo simulations are not the limiting factor for the speed of computations.

Each simulation was running on a single thread, where simulations with multiple parameter sets were executed on the same processor. The average time for

simulations to complete 1,000 time-steps with 100 · 103 mcs each was ≈ 14.5 days. After finishing the simulations, the graph of free energy term and asphericity was

observed to check if thermal equilibrium was reached.

The MC program and theoretical basis used in calculations
presented in Figure 2 were described in details elsewhere [16,
31]. For simulations, we used trisurf_ng, a software we
developed ourselves. It performs random thermal fluctuations
based on Metropolis-Hastings Monte Carlo algorithm and it
is described in literature [5, 16, 64, 65]. The model for the
discretization of a closed surface representing a phospholipid
vesicle is a triangulated mesh, consisting of vertices, connected
with bonds, forming triangles on the surface. The number of

vertices used in simulation wasN = 3, 127. The initial state of the
triangulated surface is a pentagonal dipyramid with all the edges
divided into equilateral bonds so that the network is composed
of 3(N − 2) bonds forming 2(N − 2) triangles. The phospholipid
membrane and vertices representing the membrane have no
intrinsic curvature (c0 = 0), except for Nc randomly selected
vertices with inclusions that were given non-zero isotropic
intrinsic curvature of c0 = −1 d−1

min, where dmin is the minimal
distance between the vertices in triangulated mesh and can be
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used as a dimensional scaling parameter. The positive curvature
means the membrane will locally bend toward the exterior, the
negative curvature will force the membrane to locally bend
toward the interior of the vesicle [16, 31]. The energy is a sum
of two components: W = Wb + Wd, where Wb is the bending
energy of the membrane and Wd is the energy of the direct
interaction between vertices with intrinsic curvature. For the
bending energy Wb of the membrane, the standard Helfrich
expression [66] for a tensionless membrane including a term
that represents the intrinsic curvature is used. The contribution
of the Gaussian curvature to the change of bending energy is
omitted from the expression Wb = κ

2

∮

A(c1 + c2 − c0)2 dA,
where κ is the bending stiffness of the membrane, c1, c2, and
c0 are the two principal curvatures and the intrinsic curvature
of the vesicle membrane at the point under consideration. The
integration is performed over membrane area A. In Figure 2, we
adopted the value of κ which is compatible with the membrane
of giant lipid vesicles [67, 68]. In the absence of inclusions
with attraction forces (direct interactions) between them, our
simulations can produce spherical shape, a discocyte biconcave
shape and also pure stomatocyte shape transformation (without
small membrane invaginations) after proper variation of the
model parameters [69]. For modeling attraction force between
the vertices with intrinsic curvature, the additional energy term
was used [16, 31]:Wd = −w

∑

i<j H(r0− rij), where w is a direct
interaction constant, defining the affinity for the inclusions to
group into rafts. The energy is summed over all inclusion pairs
with their in-plane distance rij, where H(r) is a Heaviside step
function and r0 is the range of direct interaction. The value for
direct interaction distance is limited to neighboring nodes with
inclusions (r0 = dmax). In MC simulations [16, 31] presented
in Figure 2, we do not consider explicitly the bilayer structure
of the membrane lipid bilayer. Also the skeleton elasticity is not
explicitly taken into account. Therefore, we took the value of
the bending modulus which is compatible with the membrane
of giant lipid vesicles [67, 68] and not with the RBC membrane
[28, 70–73]. Further, for simplicity reasons, in the current MC
simulations we consider membranes with only one type of
inclusions that can induce local membrane bending due to their
negative intrinsic curvature [16, 31].

Due to the simplifications introduced in our MC model, we
cannot perform a detailed comparison of the predictions of MC
simulations and experimentally observed amphiphile induced
large membrane invagination(s) in the RBCs accompanied by the
formation of a large number of small membrane invaginations,
i.e., buds/endovesicles [17, 63], as shown in Figure 1. As written
above, we hope that further improvements of the MC model
presented in this work will allow us to better understand
the phenomena presented in Figure 1 and other processes
connected to exo- and endo-vesiculation in RBCs. Among
others also the active forces in the RBC membrane which are
generated by NMIIA motor nanodomains (inclusions) bound
to F-actin of the RBC membrane skeleton [29–31]. Previous
theoretical descriptions of the invaginated (stomatocyte) shape,
based on the minimization of the membrane bending energy,
were able to explain only large stomatocyte invagination(s),
but not also the large number of small membrane buds and
endovesicles. Accordingly, it was shown recently [31] that the

formation of invaginations/buds may be coupled also to a global
shape transformation driven by the non-homogeneous lateral
distribution of active force. It was indicated that the invaginated
stomatocytic shapes can have different forms of invaginations
[31], which is an extension of the previously theoretically
predicted shape classes of the invaginated stomatocytic shapes
which were mostly limited to the simple stomatocytic shape with
one or two large smooth invaginations (see for example [27,
44]), as was experimentally observed also in a giant unilamellar
lipid vesicle [74]. Active force nanodomains/inclusions may
induce the formation of a large number of small membrane
invaginations/buds on the large stomatocyte invagination [31].

3. FISSION OF THE MEMBRANE
DAUGHTER ENDOVESICLES

Long undulated membrane protrusions as predicted by MC
simulations in Figure 2 may be further transformed into small
independent spherical buds/endovesicles, due to the frustrations
in the orientational ordering of membrane components in
the highly curved membrane necks (Figure 3). The same
mechanism can also be responsible for the possible detachment
of the complete inward membrane protrusion from the
parent membrane [75] and the consequent formation of the
buds/endovesicles (Figure 1).

We shall describe below that topological anti-defects may
induce the rupture of the highly curved membrane structures
possessing the in-plane orientational ordering of membrane
components. Biological membranes may exhibit global and local
in-plane orientational ordering [51, 75–77]. A lipid bilayer is
basically a thin liquid crystal film [66, 77]. The orientational
order in membranes could occur due to the anisotropic
shape of membrane components like anisotropic proteins or
lipids [8, 53, 56, 78–80]. A typical example of inclusions
possessing nematic order [58] are anisotropic banana shaped
BAR protein domains [11, 81, 82]. The orientational order
often arises in highly curved parts of the membrane due to
the alignment of these anisotropic components [8, 51, 76].
Furthermore, chiral membrane constituents [83, 84] or self-
organized filament networks [85] may also be a source of
the membrane orientational order. The orientational order in
membranes has been observed in giant unilamellar vesicles where
lipid molecules were in the gel or in some other ordered phase
[58, 76, 86]. In-plane ordering in biological membranes may
occur also due to the tilt of lipid tails relative to the surface
normal [83, 87, 88].

In biological membranes possessing the tangential (in-
plane) orientational ordering, topological defects are often
present. Furthermore, topological defects are, in most cases,
unavoidable due to topological reasons [89, 90]. Below, we shall
describe the possible mechanism of the fission of the single
membrane invagination/bud and the fission of the necklace-like
buds/endovesicles predicted by MC simulations and indicated
in in vitro experiments (Figure 1), where we shall take into
account the possible role of topological defects in highly curved
regions of the RBCmembrane necks [60, 75]. Topological defects
are a source of relatively large local elastic penalties. At the
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origin of defects, the ordering field is melted [91, 92], which
is why the presence of defects might have a strong impact on
systems’ properties. Topological defects in biological membranes
could for example trigger significant biological processes, such
as cell membrane fission or fussion [75, 93]. Below, we will
demonstrate how topological defects might trigger the pinching-
off of the large and small membrane invaginations/buds from
the parent membrane (membrane fission) and the fission of
the necklace-like buds/endovesicles in membranes exhibiting
in-plane nematic ordering.

4. MODELING OF MEMBRANE ORDERING
IN THE NECK REGION

Biological membranes may exhibit global or local in-plane
orientational ordering [51, 75–77]. Here, we shall describe the
application of a simple 2-D Landau-de Gennes type model to
qualitatively demonstrate the assembly of topological antidefects
in regions with the high negative Gaussian curvature (membrane
necks). Strong orientational order in membranes often arises in
highly curved parts [8, 51, 76]. Therefore, for simplicity reasons,
we assume in our simulations that nematic ordering is present
only in the catenoid-like neck region of the membrane. Surface
patches with the positive (negative) Gaussian curvature have a
tendency to host topological defects (antidefects) [75, 94–96].
If the Gaussian curvature is strong enough, it can even trigger
the formation of new defect-antidefect pairs. The presence or
the formation of a topological defect (antidefect) in a surface
patch with the positive (negative) Gaussian curvature neutralizes
that surface patch in terms of “effective topological charge”
as described in [94]. Simulations of orientational ordering
on catenoid necks, which are geometrically the same as the
membrane necks in our paper, show that antidefects assemble
in catenoid necks, even though these necks are not connected
to the rest of the membrane surface [97]. Therefore, we expect
topological antidefects to assemble in the neck regions also
if there is no or very weak orientational order and in the
other regions of the membrane, as is actually the case in the
RBC membrane.

Orientational (nematic) ordering is studied on catenoid-
like membrane neck surfaces. Molecules which contribute to
orientational ordering are bound to lie on the local tangent
plane on a surface. Local surface curvature is described by the
principal curvatures c1 and c2. Gaussian curvature, which acts as
an attractor for topological defects, is defined as: K = c1c2. In
order to describe the orientational nematic ordering on a closed
surface, we introduce a surface order tensor Q, which can be
expressed in its diagonal form as [90, 98]:

Q = λ(n⊗ n− n⊥ ⊗ n⊥). (1)

Here, ⊗ represents a tensor product and {n,n⊥} are the
eigenvectors of Q corresponding to the eigenvalues of {λ,−λ}
[94, 99]. In Equation (1), n represents the nematic director
field, i.e., the direction of molecules, which exhibits head-to-tail
invariance [92]. On two-dimensional surfaces, the topological
charge is the same as the winding number, which is calculated

as the total rotation of the orientational field n divided by
2π upon encircling the defect core counter-clockwise [91, 92,
100]. The topological charge of topological defects/antidefects is
positive/negative. Furthermore, the amplitude λ represents the
degree of orientational order, where the upper bound (λ = 1/2)
corresponds to the maximal degree of the orientational order,
while the lower bound (λ = 0) represents the isotropic state,
where the orientational order is lost. Consequently, the points on
the surface exhibiting λ = 0 usually signal topological defects,
since at the core of topological defects the orientational order is
melted [90, 94]. Furthermore, topological defects also display a
singularity in n in the center of their core [94].

The total free energy associated with nematic in-plane
ordering in the membrane is given as [90, 94, 98]:

Ftot =
∫ ∫

ζ

(

−α TrQ2 +
β

2

(

TrQ2)2 +
ki

2
|∇sQ|2

)

d2r, (2)

where ∇s stands for the surface gradient operator, d2r is an
infinitesimal surface element and the integration is carried out
over the whole membrane neck surface area ζ . The first two
terms in Equation (2) represent the condensation term, which
enforces the equilibrium nematic ordering amplitude λ0 =√

α/β , where α and β are positive material constants [94]. The
third term in Equation (2) is the orientational elastic term and
is weighted by the positive intrinsic ki elastic constant [94].
This term represents the direct interactions between neighboring
molecules, i.e., the energy associated with this term is minimized
if the neighboring molecules are parallel. Furthermore, the
nematic order correlation length, i.e., the characteristic material-
dependent length of the model, is expressed as ξ =

√

ki/α
[90, 94].

Orientational ordering configurations were calculated on the
necks of fixed closed membrane surfaces. For demonstration
purposes, we chose two types of shapes, i.e., invaginated
stomatocyte (cup-shaped) shapes and necklace-like endovesicle
shapes (similar to invaginated bud presented in Figure 2). Both
types of shapes exhibit a region with the negative Gaussian
curvature, which acts as an attractor for topological antidefects
[75, 94–96]. On neck surfaces of these fixed shapes, equilibrium
nematic ordering configurations are determined by minimizing
the free energy associated with nematic ordering (Equation 2).
The minimization is performed using the Monte Carlo method.
In the minimization procedure, the equilibrium profiles of
nematic ordering amplitude λ and the nematic director field n

in the neck region of the membrane ζ are determined. Further
numerical details are described in [94].

5. DISTRIBUTIONS OF ANTIDEFECTS IN
MEMBRANE NECK REGIONS

In Figures 3, 4, it is shown how topological antidefects
can cause fission of a closed membrane into two separate
closed membrane surfaces. In our simulations, we calculated
the orientational ordering in the neck regions on necklace-
like buds/endovesicles (Figure 3) and in the neck regions of
invaginated (stomatocyte) membranes (Figure 4) with different
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FIGURE 3 | Necklace-like buds/endovesicles with topological antidefects in their necks. The sequence demonstrates the transformation from the shape without a

prominent neck (A) through the intermediate shape (B) to the shape with three prominent thin necks (C). Finally, the neck rupture results in the formation of two

distinct membranes (D). The positions of antidefects are marked by small squares. Orientational ordering profiles with the superimposed nematic director fields in the

vicinity of topological antidefects are magnified. R/ξ = 21, where R represents a typical linear dimension of a shape and ξ the nematic order correlation length defined

in section 4.

neck radii. The color plot in Figures 3, 4 represents the nematic
ordering amplitude, while the nematic director field (i.e., the
orientation of molecules) is denoted by thin lines. At the core of
topological defects/antidefects, the nematic order is lost [90, 94,
99]. Therefore, topological defects (and antidefects) are located
at the points on the surface exhibiting λ = 0. The approximate
positions of topological antidefects in thin membrane necks are
schematically shown in Figures 3, 4—they are marked by small
squares. In these figures, orientational ordering profiles in the
vicinity of topological antidefects are magnified.

In Figure 3, we analyse how topological antidefects assemble
in the neck region when the neck gets thinner. The shape in
Figure 3A does not have a prominent neck, therefore, it does
not host any antidefects. The shape in Figure 3B hosts two
m = −1/2 antidefects, and the shape in Figure 3C hosts
six m = −1/2 antidefects. As the necks are getting thinner,
more and more m = −1/2 antidefects assemble in the neck
regions with the negative Gaussian curvature. The fact that
the positive (negative) Gaussian curvature (deviatoric curvature)
acts as an attractor for topological defects (antidefects) is
well-established [75, 94–96].

A similar phenomenon is observed in Figure 4. The shape in
Figure 4A hosts no topological antidefects because the negative
Gaussian curvature in the neck is not strong enough. The shape
in Figure 4B hosts two m = −1/2 antidefects and the shape in
Figure 4C hosts four m = −1/2 antidefects. As the neck of the
invaginated membrane region becomes thinner, more and more
m = −1/2 antidefects assemble in the neck region. The neck
region has the negative Gaussian curvature and acts as a strong
attractor for antidefects [75, 94–96]. Consequently, this triggers

the formation of new antidefects in the neck region. Note that
four m = −1/2 antidefects in the neck region represent a limit
case scenario in which the catenoid-like neck structure is neutral
in terms of the “effective topological charge” as described in [94],
i.e., the real topological charge of antidefects neutralizes the so-
called smeared curvature topological charge of a catenoid surface
[94]. Four m = −1/2 antidefects on a highly curved catenoid-
like neck surface are therefore topologically favorable [97], while
there is no topological reason for more antidefects to occur in the
membrane neck.

In both cases (Figures 3, 4), antidefects assemble in the neck
regions as the necks get thinner. Topological defects/antidefects
are a source of large local elastic penalties. At the core
of topological defects and antidefects, the ordering field is
melted and the degree of nematic ordering is relatively
weak [91, 92]. In Figure 3C, two antidefects are located
within each neck, while in Figure 4C, the neck region
of invaginated stomatocyte hosts 4 antidefects. In both
cases, neck regions represent relatively small surface areas,
which host many topological antidefects. Consequently, local
interactions between neighboring molecules within the neck
regions are weakened, which might result in the neck rupture,
leading to the fission process [75]. This process is shown
in Figures 3D, 4D, where two distinct closed membranes
are formed. In Figure 4D, the neck rupture results in the
formation of a closed membrane surface inside another closed
membrane surface. In both cases, there is no more need
for antidefects after the fission process because there is no
more neck with strong negative Gaussian curvature (i.e., large
curvature deviator).
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FIGURE 4 | Invaginated stomatocytes with topological antidefects in their neck region. The sequence demonstrates the transformation from a relatively opened

stomatocyte (A) through the intermediate stomatocyte (B) to the stomatocyte with a thin neck (C). Finally, the stomatocyte neck rupture results in the formation of one

closed membrane surface inside another (D). The positions of antidefects are marked by small squares. Orientational ordering profiles with the superimposed nematic

director fields in the vicinity of topological antidefects are magnified. R/ξ = 21, where R represents a typical linear dimension of a shape and ξ the nematic order

correlation length defined in section 4.

6. WHY THE GAUSSIAN TERM IN
HELFRICH LOCAL BENDING ENERGY
CANNOT EXPLAIN VESICLE FISSION

As pointed out by [101], in lipid bilayer vesicle, the daughter
vesicle remains connected to the mother vesicle by microscopic
neck after budding. It was also suggested that in the case of
one-component giant unilamellar lipid vesicles (GUVs), the neck
connecting the daughter to the mother vesicle may be stabilized
by lateral segregation of membrane components, i.e., by the
accumulation of impurities in the neck having high deviatoric
curvature, which decreases the membrane free energy [102]. It
was later shown that the accumulation of anisotropic membrane
components can actually decrease the membrane free energy and
stabilize a thin microscopic neck between the mother and the
daughter vesicle [8, 61].

The neck can be additionally stabilized by the orientational
ordering of lipids themselves in the deviatoric curvature region
of the neck [76]. It was shown also in cellular systems,
experimentally and theoretically, that the neck can also be
elongated in the nanotube that connects the daughter to the
mother part of the vesicle [61, 103]. In GUVs, such lipid

nanotubes are usually invisible because they are too thin to
be observed [104, 105]. After the breaking of the neck (i.e.,
fission) and the formation of a spherical mother and a (inner
or outer) daughter vesicle, the decrease of the membrane
free energy due to the orientational ordering of anisotropic
membrane components is no longer present. Therefore, the
orientational deviatoric free energy increases after the fission,
i.e., the fission is not favored by the deviatoric (orientational
ordering) energy.

Furthermore, it was indicated by [55] that in the case of
homogeneous isotropic and thin membrane, there is essentially
no obvious physical reason why the mother and the daughter
vesicle, connected by a microscopic neck, would have smaller
Helfrich bending energy after fission and a decrease in this energy
by |4πkG| (where kG is the Gaussian bending constant/modulus)
just because of the change of topology after fission and
disappearance of a microscopically small neck. Therefore, we
suggest that a possible driving force of the fission process
might be topological defects in the region (vicinity) of the neck
due to high orientational ordering of anisotropic membrane
components [8]. When the topological defect disappears, the
energy might be reduced to a large extent due to the change
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of the direct interaction energies between the molecules in the
topological defect/antidefect.

Note also that in highly curved membrane parts, the so-called
extrinsic (c21 − c22) cos (2ω) [60, 97, 106] or deviatoric (c1 −
c2) cos (2ω) [51, 76] curvature termmight play an important role.
Here, ω describes the orientation of the membrane component
(inclusion) in the principal axis system. It was shown in [97]
that taking into account the extrinsic term would only affect
the local spatial distribution of antidefects within the necks—it
would not change the fact that topological antidefects assemble
in the neck region. Without the extrinsic term, topological
antidefects are assembled at the equatorial ring of the neck,
where the Gaussian curvature exhibits the minimal value as
demonstrated in this paper. If we take into account the
extrinsic term, topological antidefects are expelled from the
equatorial ring because of strong extrinsic ordering field [97].
Nevertheless, in this case, topological antidefects assemble near
the equatorial ring of a neck. Topological antidefects are therefore
robustly present within or very near the equatorial ring of
a neck [97].

The incorporation of additional types of membrane inclusion
in our model would also connect the mechanisms of formation
of the isotropic inclusions enriched protrusion and the anti-
defects driven disruption of the neck connecting the bud
and the parent membrane. The consideration of additional
anisotropic inclusions in the MC model would provide the
missing mechanism of the growing/stabilization of the neck
between the bud and the parent membrane driven by the
accumulation of anisotropic membrane components/inclusions
[8, 61, 76, 101, 102]. In the present work, we considered
only isotropic inclusions with the negative intrinsic curvature
which are depleted from the necks connecting the membrane
protrusions/buds to the parent membrane, as can be clearly seen
in Figure 2.

7. CONCLUSIONS

It is shown in this paper that the topological anti-defects may
be created in the membrane necks if the thickness of the neck is
small enough. It is further proposed that topological anti-defects
in thin membrane necks, which connect the membrane buds
(daughter vesicles) to the parent membrane, may induce the
rupture of the neck and thus the fission of the membrane
daughter vesicles. On the other hand, the formation of the
neck is facilitated and energetically favored by orientational
ordering and the accumulation of the anisotropic membrane
components in the neck. This means that both processes, i.e.,
the formation and the thinning of the membrane neck, as well
as the rupture of the neck are driven by the same mechanisms,
i.e., orientational ordering and the accumulation of anisotropic
membrane components in the neck.
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17. Hägerstrand H, Mrówczyńska L, Salzer U, Prohaska R, Michelsen KA, Kralj-
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59. Kralj-Iglič V. Stability of membranous nanostructures: a possible key
mechanism in cancer progression. Int J Nanomed. (2012) 7:3579.
doi: 10.2147/IJN.S29076
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and Iglič. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 10 September 2020 | Volume 8 | Article 342

https://doi.org/10.2147/IJN.S16982
https://doi.org/10.1016/S0006-3495(99)77167-5
https://doi.org/10.1039/C5SM00431D
https://doi.org/10.1007/s12572-016-0164-3
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1016/B978-0-12-396533-2.00006-9
https://doi.org/10.1016/j.cis.2014.03.003
https://doi.org/10.1155/2014/373674
https://doi.org/10.1016/S0006-3495(95)79921-0
https://doi.org/10.1073/pnas.0904614106
https://doi.org/10.1016/j.bpj.2009.06.028
https://doi.org/10.1073/pnas.0910785107
https://doi.org/10.1016/S0006-3495(91)82117-8
https://doi.org/10.2147/IJN.S38314
https://doi.org/10.1007/s10955-006-9051-9
https://doi.org/10.1103/PhysRevLett.67.1169
https://doi.org/10.1016/j.bpj.2008.11.067
https://doi.org/10.1146/annurev.physchem.012809.103450
https://doi.org/10.1201/b18607
https://doi.org/10.1038/nrm1784
https://doi.org/10.1016/j.bpj.2015.11.3512
https://doi.org/10.1103/PhysRevA.38.3065
https://doi.org/10.1038/21154
https://doi.org/10.1371/journal.pone.0023798
https://doi.org/10.1073/pnas.0408215102
https://doi.org/10.1051/jp2:1992133
https://doi.org/10.1063/1.3660673
https://doi.org/10.1103/RevModPhys.74.953
https://doi.org/10.1039/C0SM00378F
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1070/PU1988v031n03ABEH005710
https://doi.org/10.1016/j.ceca.2012.04.001
https://doi.org/10.1038/srep27117
https://doi.org/10.1103/PhysRevE.69.041102
https://doi.org/10.1103/PhysRevLett.93.215301
https://doi.org/10.1002/pssa.201800722
https://doi.org/10.1007/s00161-012-0259-4
https://doi.org/10.3390/cryst7060153
https://doi.org/10.1080/026782998207640
https://doi.org/10.1051/jp2:1992129
https://doi.org/10.1103/PhysRevE.50.4156
https://doi.org/10.1529/biophysj.108.131375
https://doi.org/10.1016/S0006-3495(96)79693-5
https://doi.org/10.1088/0305-4470/35/7/305
https://doi.org/10.1103/PhysRevLett.108.207803
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Budding and Fission of Membrane Vesicles: A Mini Review
	1. Introduction
	2. Membrane Budding and Endovesiculation
	3. Fission of the Membrane Daughter Endovesicles
	4. Modeling of Membrane Ordering in the Neck Region
	5. Distributions of Antidefects in Membrane Neck Regions
	6. Why the Gaussian Term in Helfrich Local Bending Energy Cannot Explain Vesicle Fission
	7. Conclusions
	Author Contributions
	Funding
	References


